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Abstract
The quality of fiber is significant in the upland cotton industry. As complex quantitative traits, fiber quality traits are worth 
studying at a genetic level. To investigate the genetic architecture of fiber quality traits, we conducted an association analysis 
using a multi-parent advanced generation inter-cross (MAGIC) population developed from eight parents and comprised of 
960 lines. The reliable phenotypic data for six major fiber traits of the MAGIC population were collected from five environ-
ments in three locations. Phenotypic analysis showed that the MAGIC lines have a wider variation amplitude and coefficient 
than the founders. A total of 284 polymorphic SSR markers among eight parents screened from a high-density genetic map 
were used to genotype the MAGIC population. The MAGIC population showed abundant genetic variation and fast linkage 
disequilibrium (LD) decay (0.76 cM, r2 > 0.1), which revealed the advantages of high efficiency and power in QTL explo-
ration. Association mapping via a mixed linear model identified 52 significant loci associated with six fiber quality traits; 
14 of them were mapped in reported QTL regions with fiber-related or other agronomic traits. Nine markers demonstrated 
the pleiotropism that controls more than two fiber traits. Furthermore, two SSR markers, BNL1231 and BNL3452, were 
authenticated as hotspots that were mapped with multi-traits. In addition, we provided candidate regions and screened six 
candidate genes for identified loci according to the LD decay distance. Our results provide valuable QTL for further genetic 
mapping and will facilitate marker-based breeding for fiber quality in cotton.
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Introduction

Cotton (Gossypium spp.) is an important crop that provides 
most natural fiber for industrial textiles. Gossypium hirsutum 
L., also called upland cotton, is the most widely cultivated 
cotton species and accounts for more than 90% of worldwide 
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production because of its high yield, wide adaptability, 
and acceptable fiber quality (Zhang et al. 2008; Page et al. 
2013). Cotton fibers are single-celled trichomes that pro-
vide a unique experimental system to study cell development 
processes, such as cell growth, biosynthesis, and response 
mechanisms for outside signals (Qin and Zhu 2011; Haigler 
et al. 2012; Walford et al. 2012; Guo et al. 2016). Cotton 
fiber has been involved in pioneering research concerning 
the genetic basis of its yield and quality through forward or 
reverse genetics (Haigler et al. 2012; Said et al. 2015).

Recently, molecular selection strategies based on quanti-
tative trait loci (QTL) mapping are efficient tools for breed-
ers to combine economically important traits to create a 
superior cultivar (Xu et al. 2012; Smykal et al. 2016). Iden-
tifying the QTL and dissecting the genetic basis of agron-
omy traits are critical steps and prerequisites for marker-
assisted breeding in crops. Linkage mapping and linkage 
disequilibrium (LD) mapping are the mainstream methods 
for dissecting the genetic architecture of complex traits in 
crops (Mackay and Powell 2007). Traditionally, bi-parental 
populations, such as  F2, recombinant inbred lines (RILs) 
and chromosome segment substitution lines (CSSLs), are 
utilized to excavate the QTLs or genes and to evaluate the 
biological effects for plant phenotypes (Xu et al. 2012; Said 
et al. 2015). For qualitative traits or main effect loci, linkage 
mapping is an efficient way to determine the target genes 
(Han et al. 2015; Ma et al. 2016; Liu et al. 2016a). However, 
the resolution of quantitative trait mapping in bi-parental 
populations is usually low (Mackay and Powell 2007). Asso-
ciation mapping offers a high resolution with either prior 
information on candidate genes or a genome scan with very 
high marker coverage (Zhao et al. 2011; Li et al. 2013b). 
Compared to linkage mapping, association analysis is more 
efficient and powerful for the dissection of complex traits 
(Cavanagh et al. 2008; Atwell et al. 2010). In addition, asso-
ciation analyses have been successfully employed in many 
crops (Zhao et al. 2011; Li et al. 2013b; Xu et al. 2016; Sun 
et al. 2017).

In most cases, researchers conduct an association analy-
sis based on a natural population from a diverse collection 
of inbred lines or germplasms that may constitute a group 
with population structure related to geographical origin or 
reproductive isolation. The population structure will disrupt 
the association mapping and give false-positive results. The 
multi-parent advanced generation inter-cross (MAGIC) 
population has richer genetic diversity and recombination 
rate without population structure, which provides power and 
resolution for gene targeting (Cavanagh et al. 2008; Huang 
et al. 2015; Pascual et al. 2016). The MAGIC population 
is suitable for genetic map developing and QTL mapping 
(Huang et al. 2011, 2015; Bandillo et al. 2013). Recently, 
MAGIC populations have been created for genetic analysis 
in crops, such as rice (Bandillo et al. 2013), wheat (Huang 

et al. 2012; Delhaize et al. 2015), maize (Dell’Acqua et al. 
2015), chickpea (Agarwal et al. 2015), and cotton (Islam 
et al. 2016).

Fiber quality traits are quantitative traits with a complex 
genetic basis (Fang et al. 2017). Several fiber characteristics, 
such as fiber length (FL), fiber strength (FS), micronaire 
value (MV), fiber elongation (FE), fiber uniformity (FU), 
and short fiber content (SFC) are the main determining fac-
tors for fiber quality. Dissection of QTLs for these fiber traits 
will help to enhance the genetic architecture of fiber quality. 
Recently, several studies were focused on the genetic bases 
of fiber quality traits using simple sequence repeat (SSR) 
or single-nucleotide polymorphism (SNP) markers (Said 
et al. 2015; Nie et al. 2016; Sun et al. 2017; Huang et al. 
2017). In this study, an upland cotton MAGIC population 
containing 960 lines was developed by a convergent cross 
based on 8 parents. An association analysis was performed 
based on phenotypic data from five environments, and geno-
typic data were generated from 284 polymorphic SSRs. This 
study aimed to take advantage of the MAGIC population 
to explore the genetic architecture of 6 fiber traits and to 
provide molecular genetic basis for fiber improvement in 
breeding.

Materials and methods

Development of the upland cotton MAGIC 
population

The upland cotton MAGIC population was developed with 
eight parents. The parents of MAGIC (PMs) were diverse 
accessions with abundant phenotypic characteristics for high 
yield and fiber quality (GY2, GY4, GY5, and GY6), pest 
resistance (KC9, CQ2, and CQ13) and Fusarium wilt and 
Verticillium wilt resistance (KB10) (Table S1). They were 
widely distributed in the Yangtze River valley and Yellow 
River valley and were provided by CCRI (Cotton Research 
Institute of Chinese Academy of Agricultural Sciences), 
HAAFS (Hebei Academy of Agriculture and Forestry Sci-
ences), ACYU (Agricultural College of Yangtze University), 
HSMS (Hubei Province Seed Management Station), and 
TCCSF (Taicang City Cotton Seed Farm in Jiangsu prov-
ince) (Table S1).

The convergent crossing followed the development of 
an eight-way cross or funnel crossing (Cavanagh et al. 
2008; Huang et al. 2015), and the MAGIC population 
was obtained by inter-crossing eight parents with three 
generations and successive selfing (Fig. 1). In the first 
stage, multiple parents  (G0) were inter-mated to generate 
four bi-parental crosses (two-way): GY5 × KB10 (AB), 
GY2 × KC9 (CD), CQ13 × GY6 (EF), and CQ2 × GY4 
(GH) at the Agricultural College of Yangtze University, 
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Jinzhou, Hubei province in the summer of 2004. Then, 
four  F1 plants  (G1) were inter-crossed to derive four-way 
crosses  (G2), including AB × CD (ABCD), and EF × GH 
(EFGH) at Sanya in Hainan province in the winter of 
2004. The four-way crosses formed a female parent group 
(ABCD) containing 200 individuals and a male parent 
group (EFGH) containing 200 individuals for subsequent 
crossing. The last stage involved individual inter-crossing 
between female and male parent groups that formed 200 
inter-mated hybridizations to derive the eight-way crosses 
 (G3) EFGH × ABCD (ABCDEFGH) in 2005. Only 168 of 
200 mated generations were successfully multiplied.

To create homozygous individuals, the eight-way cross 
generations  (G3) were self-pollinated with multiple gener-
ations. In the first self-crossing, the 168  G3 heterozygotes 
were self-crossed and generated ten plants from each line 
in 2006. Approximately 1680 filial lines were obtained 
after expanding propagation. However, some of the lines 
were lost in the process of selfing through single seed 
descent. Finally, a total of 960 lines were preserved after 
selfing for more than 5 generations from 2007 to 2011. The 
8 parents (PMs) and 960 MAGIC lines (MLs) formed the 
population panel for this study.

Fiber quality phenotyping

The fiber quality traits were measured under multiple envi-
ronments. The phenotypic data of eight PMs and 960 MLs 
were collected from five natural environments at Huang-
gang, Hubei province (HG), Zhoukou, Henan province (ZK), 
and Jingzhou, Hubei province (JZ). The five natural environ-
ments were defined as E1 (HG, 2013), E2 (HG, 2014), E3 
(ZK, 2014), E4 (ZK, 2015), and E5 (JZ, 2015). The 968 lines 
were grown during the planting season at each location. The 
field plots followed a completely randomized block design. 
Each plot contained one row of MLs and multi-rows of PMs. 
The row length and spacing were set as 5 and 1 m, respec-
tively. Each row included 10 plants with 40 cm between 
individuals. Fiber samples were collected from 20 normally 
opened bolls from the middle fruit branches of plants in 
each row. The fiber quality traits, including the fiber upper 
half mean length (FUHML, mm), fiber strength (FS, cN/
tex), micronaire value (MV), fiber elongation (FE, %), fiber 
uniformity (FU, %), and short fiber content (SFC, %), were 
measured by HVI1000 Automatic Fiber Determination Sys-
tem in Institute of Cotton Research, Shihezi Academy of 
Agricultural Sciences. FE data in 2014 Huanggang (E2) and 
Zhoukou (E3) were missing and only obtained from three 
environments. The remaining five traits were obtained from 
all five environments.

Phenotypic data analysis

The analysis of variance (ANOVA), correlation, and repeat-
ability analysis for fiber quality traits were conducted using 
IBM SPSS Statistics 21 (SPSS, Chicago, IL, USA). Best 
linear unbiased predictions (BLUP) were used to estimate 
phenotypic traits across multiple environments based on 
a linear model. The phenotypic data from BLUP and the 
broad-sense heritability (h2) were calculated with the R soft-
ware (http://www.r-proje ct.org). The statistical analysis of 
the mean, standard error (SE), and Kendall’s tau-b correla-
tion coefficient was calculated using IBM SPSS Statistics 21 
(SPSS, Chicago, IL, USA). The ANOVA was carried out to 
evaluate the effects of genotype (G), environment (E), and 
the interactions between genotype and environment (G × E).

SSR genotyping

Five young fresh leaves were picked from five plants of 
each line. The genomic DNA of 8 PMs and 960 MLs was 
extracted using the modified CTAB method (Paterson et al. 
1993). A 10-µL reaction volume for the SSR reaction sys-
tem was performed for PCR amplification (Lin et al. 2005). 
The Fragment Analyzer™ 96-Capillary Automated CE 
System and gel electrophoresis (6% denaturing polyacryla-
mide gel for SSR and 8% non-denatured polyacrylamide 

Fig. 1  Schema for MAGIC population development based on eight 
founders.  G0–Gn were generations of crossing and selfing. The par-
ents, A–G, were GY5, KB10, GY2, KC9, CQ13, GY6, CQ2, and 
GY4, respectively

http://www.r-project.org


796 Molecular Genetics and Genomics (2018) 293:793–805

1 3

gel electrophoresis for SSCP-SSR, silver staining develop-
ing after electrophoresis) were used to visualize the PCR 
products. A total of 3871 SSR primers were selected for 
detecting polymorphisms from the interspecific (Gossypium 
hirsutum × Gossypium barbadense) genetic map, which con-
tained 5152 loci and spanned 4696.03 cM (Li et al. 2016b). 
After screening the SSR primers by eight PMs, the polymor-
phic markers were used to genotype the 960 lines (Table 2). 
The 5 cM range nearly covered by SSR markers were set as 
effectively covered fragments. The adjacent markers with 
gaps ≤ 10 cM were treated as the same covered fragments.

Population structure, kinship and LD decay analysis

The genotypic data of polymorphic markers were used to 
calculate the genetic eigen value of the MAGIC population. 
Population structure and kinship could cause false positives 
or deviations in association mapping. Principal component 
analysis (PCA) and cluster analysis were used to confirm a 
reasonable population structure. PCA was conducted by the 
Powermarker software 3.25 (Liu and Muse 2005) and Ntsys 
2.1 (Adams and Rohlf 2000). The relative kinship coeffi-
cients (K) were estimated by SPAGeDi version 1.4b (Hardy 
and Vekemans 2002). The PCA matrix for phenotypic varia-
tions was calculated by IBM SPSS Statistics 21, whereas the 
contribution rate of the K matrix was calculated with TAS-
SEL 3.0 (Bradbury et al. 2007). The linkage disequilibrium 
(D′, r2 and p value) was calculated with TASSEL 3.0. The 
parameter r2 was used to graphically represent the LD curves 
with the R software.

Marker–trait association

Marker–trait association analyses for the six fiber quality 
traits based on the interspecific genetic map (Li et al. 2016b) 
were conducted using a general linear model (GLM) and 
mixed linear model (MLM) with the TASSEL 3.0 software 
package. The naive GLM model ignores the characteristic 
vector from the population structure. The MLM-incorpo-
rated kinship (K matrix) was used as the concomitant variant 
to eliminate random effects. The threshold for the signifi-
cance of associations between SSR markers and traits was 
set as p < 0.01 (− log10(p) > 2), and a Bonferroni threshold 
was set, so that p < 0.00352 (p = 1/n, − log10(1/284) = 2.45), 
which has been widely adopted in the previous studies 
(Wang et al. 2012; Liu et al. 2015b, 2016b). The sequences 
of significant associated markers were searched from Cot-
tonGen Database (http://www.cotto ngen.org) and assigned 
a genome location (NAU-genome database of TM-1, Zhang 

et al. 2015) using a BLAST (Altschul et al. 1994) search 
with E ≤ 1e−10.

Results

Upland cotton MAGIC population development 
and phenotypic characteristics of fiber quality

Eight upland cotton accessions with good characteristics 
in different traits were selected as the founders (PMs) to 
develop the MAGIC population (Table S1). An eight-way 
inter-cross was designed to aggregate the alleles from 
eight PMs. Overall, 960 stable inbred MAGIC lines (MLs) 
were obtained after selfing for more than six generations 
from eight-way lines (Fig. 1). Eight PMs and 960 MLs 
were used for phenotyping, genotyping, and the associa-
tion analysis.

The data of five fiber quality traits, including FUHML, 
FS, MV, FU, and SFC, were collected from E1 (HG, 
2013), E2 (HG, 2014), E3 (ZK, 2014), E4 (ZK, 2015), 
and E5 (JZ, 2015), while the FE data were only collected 
from E1, E4, and E5. These traits showed rich variations 
in different environments (Table S2). The coefficients of 
variation (CV) for six traits ranged from 1.17% (FU-E2) 
to 20.13% (SFC-E3) in MLs and ranged from 0.72% (FU-
E3) to 16.58% (FE-E4) in PMs (Table S2). The six traits, 
including FUHML, FS, FE, FU, MV, and SFC, varied from 
25.11 to 31.13 mm, 25.85 to 39.18 cN/tex, 2.86 to 9.66%, 
82.46 to 87.27%, 4.36 to 5.67, and 7.01 to 13.16% in PMs, 
respectively. The variations of the six traits were wider 
in MLs than in PMs and varied from 22.34 to 33.36 mm, 
12.04 to 43.72 cN/tex, 1.80 to 10.62%, 78.44 to 88.29%, 
2.77 to 6.74, and 4.20 to 23.80%, respectively (Table S2).

The six traits were also merged with BLUP to eliminate 
the environmental impact. The results also showed that 
phenotypic variations in MLs were more abundant than 
variations in PMs. The CVs of six traits in BLUP were 
2.12, 3.87, 0.65, 0.10, 3.48, and 1.93% in PMs, whereas 
they were 2.56, 4.03, 10.60, 0.26, 3.87, and 3.26 in MLs. 
The broad-sense heritability (h2) of six traits ranged from 
40 to 81% in MLs. Only the FU and SFC had relatively low 
h2, which were 42 and 40%, respectively (Table 1). The 
ANOVA showed that the genotype (G) and environment 
(E) had significant effects (p < 0.001) on fiber quality traits 
(Table S3). The results suggested that both genotype and 
environment affected phenotypic variation, and genotype 
played a stable role in most traits. Correlation analysis 
showed that FUHML and FS were significantly correlated 
with other traits (p < 0.01) (Table S4). Significant positive 
correlations were found among six paired traits, FUHML-
FS, FUHML-FU, FS-FU, FS-MV, FE-MV, and FU-MV, 

http://www.cottongen.org
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and there were significant negative correlations in the 
remaining pairs, except for FE-FU and FE-SFC.

Genotyping and genetic diversity

A total of 644 (17.15%) polymorphic markers screened 
from 3871 SSR markers by 8 PMs were used to genotype 
the 960 MLs. Among them, only 284 markers showed clear 

electrophoresis bands and considerable polymorphism, and 
the minor allele frequency (MAF) was > 0.05. The 284 poly-
morphic SSR markers were distributed across 26 chromo-
somes from 3 (Chr04) to 16 (Chr05 and Chr13) (Table 2). 
The effective fragment covered by SSR markers accounted 
for approximately 42.98% of the whole genome and ranged 
from 19.67% (Chr04) to 65.03% (Chr16). The mean val-
ues of genetic diversity for the PMs and MLs were 0.415 

Table 1  Statistics description 
and comparison of phenotypic 
variations between PMs and 
MLs

FUHML fiber upper half mean length, FS fiber strength, FE fiber elongation, FU fiber uniformity, MV 
micronaire value, SFC short fiber content, SD standard deviation, CV coefficient of variation

Traits Mean Range SD CV (%) Herit-
ability (h2) 
(%)PMs MLs PMs MLs PMs MLs PMs MLs

FUHML (mm) 28.26 28.02 27.56–29.46 25.71–30.32 0.60 0.72 2.12 2.56 81.12
FS (cN/tex) 30.12 29.18 28.54–30.66 25.03–33.13 1.18 1.37 3.87 4.03 70.07
FE (%) 5.04 4.32 4.99–5.10 3.09–6.51 0.03 0.46 0.65 10.60 85.39
FU (%) 84.65 84.18 84.51–84.78 83.49–84.84 0.08 0.21 0.10 0.26 41.96
MV 5.12 4.96 4.82–5.38 4.08–5.53 0.18 0.19 3.48 3.87 73.10
SFC (%) 9.36 9.77 9.13–9.81 9.00–10.91 0.18 0.32 1.93 3.26 40.26

Table 2  Summary of 
polymorphic SSR markers 
and comparison of the gene 
diversity and PIC between PMs 
and MLs

Chromosome Polymor-
phic SSRs

Effectively covered region Genetic diversity PIC

Length (cM) Coverage (%) PMs MLs PMs MLs

Chr01 10 64.92 34.74 0.428 0.405 0.355 0.340
Chr02 8 67.90 43.52 0.473 0.434 0.397 0.379
Chr03 8 40.97 24.84 0.441 0.536 0.372 0.463
Chr04 3 29.47 19.67 0.417 0.423 0.328 0.361
Chr05 16 98.11 40.41 0.458 0.461 0.388 0.396
Chr06 12 88.32 51.52 0.394 0.473 0.333 0.400
Chr07 7 40.71 38.49 0.357 0.511 0.291 0.412
Chr08 12 55.14 36.51 0.410 0.492 0.326 0.407
Chr09 11 75.56 50.77 0.357 0.528 0.298 0.445
Chr10 14 107.37 53.43 0.428 0.443 0.340 0.363
Chr11 12 88.39 37.65 0.485 0.479 0.408 0.400
Chr12 9 84.68 35.57 0.358 0.517 0.303 0.439
Chr13 16 107.98 51.88 0.334 0.479 0.272 0.394
Chr14 13 86.68 52.81 0.392 0.555 0.313 0.469
Chr15 13 85.67 43.47 0.389 0.386 0.339 0.321
Chr16 10 61.34 65.03 0.372 0.455 0.315 0.388
Chr17 9 61.18 37.71 0.386 0.353 0.328 0.316
Chr18 11 91.68 62.39 0.436 0.515 0.378 0.432
Chr19 12 102.77 40.74 0.464 0.391 0.379 0.325
Chr20 8 56.51 48.05 0.411 0.502 0.332 0.430
Chr21 13 94.68 36.98 0.386 0.454 0.326 0.377
Chr22 7 66.29 39.01 0.527 0.524 0.440 0.431
Chr23 11 71.76 37.14 0.432 0.438 0.356 0.369
Chr24 15 113.41 57.03 0.427 0.379 0.369 0.327
Chr25 14 89.43 51.94 0.455 0.434 0.390 0.380
Chr26 10 87.45 41.27 0.405 0.521 0.325 0.429
Genome-wide 284 2018.35 42.98 0.415 0.463 0.346 0.390
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and 0.465, respectively (Table 2). In addition, the average 
polymorphism information content (PIC) values of PMs 
and MLs were 0.346 and 0.390, respectively. These results 
suggested that the genetic diversity of MLs based on SSR 
markers was higher than the diversity of PMs.

Population kinship, genetic structure and linkage 
disequilibrium

The relative kinship coefficients were calculated as the pair-
wise relatedness between MLs. The results showed that the 
kinship values after standardized treatment were low with an 
average value of 0.057 in MLs, but the values were higher 
with an average value of 0.490 in PMs. In addition, 52.3% 
of pairwise kinship coefficients among MLs were 0, and 
approximately 97.0% of pairwise coefficients were less than 
0.3 (Fig. S1). The kinship matrix (K matrix) was used to 
correct random error in the marker–trait association. The 
K-matrix could explain 24.81, 20.60, 9.21, 11.41 12.73, and 
15.28% of the phenotypic variation for FUHML, FS, FE, FU, 
MV, and SFC, respectively (Table S5).

PCA was used to reflect the genetic divergence for MLs 
and PMs. The top three principal components (PCs), PC1, 
PC2, and PC3, accounted for 28.76, 13.06, and 7.99% of 
the genetic variations, respectively. The PC1–PC2 plots 

showed a dispersive distribution without obvious clusters 
(Fig. S2). In addition, the PC1–PC2 plots of MLs were 
scattered more widely than the PMs. It was suggested that 
the MLs obtained more diversity without population struc-
ture. In addition, for the PCA matrix, the top three PCs 
explained 14.2, 16.8, 0.2, 9.9, 7.7, and 9.8% of the pheno-
typic variations for FUHML, FS, FE, FU, MV, and SFC, 
respectively. It was obviously smaller than the K matrix.

The squared Pearson correlation coefficients (r2) were 
measured by 284 SSR markers to describe the LD relation-
ship between markers. The LD showed a very low level in 
MLs (Fig. 2). A total of 40,186 possible pair combinations 
were obtained with an average of r2 = 0.029. The distribu-
tion of r2 values was concentrated in the < 0.1 interval that 
accounted for 93.6% of all pairwise coefficients and 49.1% 
of the coefficients were < 0.01. In addition, 27.02, 33.70, 
and 43.49% of the coefficients (r2) were revealed to be sig-
nificant at p < 0.0001, p < 0.001 and p < 0.01, respectively. 
The LD decay rate was measured by an r2 plot based on the 
corresponding genetic distance across the entire genome. 
The average distance of pair combinations was ~ 0.60 cM 
with the r2 plot dropping to 0.2, and it was ~ 0.76 cM with 
the r2 plot dropping to 0.1 (Fig. 2c). The 0.76 cM approxi-
mately equaled 400 kb in physical genome map.

Fig. 2  Summary of LD in 960 MLs. a Distribution of r2 and p values 
for 284 SSR markers on 26 chromosomes. b Histograph of r2. The 
column diagram indicates the percentage of corresponding intervals 

for r2. The curve shows cumulative distribution for r2. c The LD 
decay curve was determined according to r2



799Molecular Genetics and Genomics (2018) 293:793–805 

1 3

Association mapping QTLs for fiber quality traits

The MAGIC population was calculated with a low popula-
tion structure. The naive general linear model (GLM) and 
mixed linear model with K matrix (MLM (K)) were used 
to execute the marker–trait associations based on the phe-
notypic data of six fiber traits. The Q–Q plot of naive GLM 
deviated materially from the predicted line, which suggested 
that there was a higher rate of false positives in GLM. Com-
pared to the GLM, the MLM model could correct the error 
from the random effects (Fig. S3). For this study, the MLM 
(K) was chosen as the optimal model.

Two thresholds, p < 0.01 (− log10(p) = 2) and a Bonfer-
roni threshold of p < 0.00352 (1/284, − log10(p) = 2.45) 
were set as the significance levels. When using the traits 
data from the BLUP results and MLM (K) model, a total of 
52 marker–trait associated loci were significantly associated 
with 6 traits at p < 0.01 (Table 3), while 31 of the 52 loci 
were identified with p < 0.00352 (Table S6). The FUHML 
was associated with the maximum loci of 18, while the other 
5 traits, including FS, FE, FU, MV, and SFC, identified 12, 
2, 4, 7, and 9 loci, respectively (p < 0.01, Table S6). The 
allele frequency of the significantly associated markers was 
dependable as the MAF > 7.15% (Table 3). The percent-
age of phenotypic variation explained by SSR markers (R2) 
ranged from 0.71 to 5.47% (Table S6). Furthermore, among 
the 52 loci, 47 loci shared a significant association with the 
results using a naive GLM model (Table S7). In addition, 
134 significant (p < 0.01) marker–trait association loci were 
found using trait data from individual environments (E1–E5) 
(Table S8). A total of 35 significant loci associated with 
the BLUP data were identified in individual environments. 
For example, MON_SHIN0376b, which was associated with 
MV based on BLUP data, were detected in E3, E4, and E5.

The 52 marker–trait associated loci were from 40 SSR 
markers and distributed on 22 chromosomes, except for 
Chr03, Chr10, Chr17, and Chr22 (Fig. 3). Based on the 
marker sequences and the NAU-genome database for TM-1, 
37 of the 40 identified SSR markers were located on a physi-
cal map using BLAST methods (Table S9). The other three 
markers were below the threshold or located in uncertain 
positions. There were nine markers associated with multiple 
traits (Table S10). For example, MON_CGR5525 was asso-
ciated with three traits, including FUHML, FU, and SFC. 
Based on studies in recent years, 14 markers were found 
to be mapped with the same traits or related traits (Fig. 3, 
Table S11). For example, BNL1231, which was associated 
with FS, FE, and SFC, was also located in the loci control-
ling FUHML, FS, MV, and some yield or plant type traits 
in other studies.

The candidate regions for marker–trait loci were set 
around the LD decay distance as 400 kb (r2 < 0.1). The num-
bers of genes ranged from 4 to 107 with an average of 53 in 

the candidate regions (Table S9). There were three regions 
covering only few genes that were less than ten. They were 
TMB0029b, MON_DPL0906, and MON_DPL0375c, which 
were significantly associated with the same trait FUHML, 
linked 2, 3, and 4 genes in the confidence genome intervals 
(Tables S9 and S12). In addition, there were 20 genes with 
the functions mainly affected fiber development via resource 
references, located in neighboring site of the significant SSR 
loci by BLAST (Table S13). Six genes, Gh_A01G1843 
(GhPIP1-2), Gh_A01G1915 (GhACT1), Gh_A09G1461 
(GhACT1), Gh_A13G0162 (GhLIM1), Gh_D01G0018 
(GhPIP2-4), and Gh_D01G1810 (GhCER6) were located 
in the candidate regions with a short distance < 400 kb. 
In addition, the other 14 genes were near the marker–trait 
loci within < 3 Mb. Several reported genes were found 
multi-copy loci to be related to different loci; for example, 
GhACT1 was linked with four loci, HAU4552b, MON_
CGR5707, MON_DPL0042, and NAU7153.

Discussion

In this study, an association analysis was performed to 
explore the genetic basis of fiber quality traits in an upland 
cotton MAGIC population. Association mapping is a power-
ful and popular tool for studying the genetic basis of com-
plex traits in plants (Yu et al. 2008; Ingvarsson and Street 
2011; Yang et al. 2012). The efficiency of association analy-
sis is determined by the diversity of a population, the experi-
mental population size, and reasonable statistical methods 
(Yan et al. 2009; Bush and Moore 2012). We developed a 
MAGIC population with sufficient diversity and individuals. 
The MAGIC population takes advantage of populations that 
are known to have high efficiency, high precision, and low 
false-positive rate (Mackay and Powell 2007; Cavanagh et al. 
2008; Huang et al. 2015).

The wider range of phenotypic and genotypic variations 
generated in MAGIC recombination lines is beneficial for 
carrying out genetic research of complex traits (Cavanagh 
et al. 2008; Huang et al. 2015). To maintain relatively high 
levels of diversity in the MAGIC population, eight parents 
were selected from different areas with various character-
istics and convergent crosses were performed to obtain 
sufficient recombination (Fig. 1, Table S1). Multiple par-
ents could carry more alleles than a bi-parental program. 
Although the eight parents had relatively low polymor-
phism at the genetic level, they created more abundant phe-
notypic and genotypic variations in the MAGIC lines. The 
screened SSR markers used for genotyping demonstrated 
that the MAGIC population had higher genetic diversity 
compared to the PMs (Table 2) as well as higher diversity 
than the population used in the association analysis for cot-
ton (Zhao et al. 2014; Liu et al. 2015a). In addition, the 



800 Molecular Genetics and Genomics (2018) 293:793–805

1 3

Table 3  Significant SSR 
markers associated with six 
fiber traits after BLUP

Chr chromosome, MAF the minor allele frequency, Env environment
a Significant level: *significant at p < 0.01; **significant at p < 0.00352

Traits SSR  markera Chr − log10(p) R2 (%) MAF (%) Env

FUHML NAU3419c* Chr02 2.11 1.03 28.94 E2
MON_DPL0375c* Chr06 2.07 0.79 39.31 E2
MON_CGR5525** Chr06 2.57 1.27 28.91 E3
MON_DPL0906** Chr07 2.54 0.95 46.16 E2, E3
TMB0029b** Chr08 3.47 1.39 47.39 E1, E5
HAU1321** Chr12 3.18 3.22 45.04 E3, E4
MON_SHIN1558** Chr13 2.62 0.98 44.51 E1
DPL0354** Chr14 3.20 1.24 30.15 E3
HAU1058** Chr15 3.32 1.30 38.27 E4
MON_DPL0542* Chr15 2.29 1.27 35.70 E1
DPL0318* Chr15 2.09 0.74 34.73 E3
MON_SHIN0376a** Chr16 2.48 0.91 19.96 E3, E4
BNL3452** Chr19 2.82 1.35 43.60 E2
MON_DPL0042** Chr21 3.17 1.86 29.75 E3
NAU7153* Chr21 2.27 1.11 30.42 E1
MON_DC20017** Chr24 3.05 1.16 18.70
MON_DPL0441** Chr25 3.22 1.55 25.81 E1
NAU6347** Chr25 2.53 0.92 31.68 E1

FS MON_DC40265** Chr02 2.66 1.65 34.74 E3
MON_DPL0024* Chr05 2.02 1.11 29.09 E1, E3
Gh185** Chr06 2.64 0.97 23.69
BNL1231** Chr11 3.87 1.90 17.49
HAU1321** Chr12 2.92 2.97 45.04 E5
HAU1129* Chr16 2.37 1.17 30.43 E3
TMB1838** Chr20 3.52 2.00 21.98
Gh277* Chr20 2.02 0.98 41.11
HAU2026* Chr21 2.09 1.38 17.05 E4
MON_DC20017* Chr24 2.04 0.71 18.70
HAU4814** Chr25 2.89 1.08 16.09 E1
MON_DPL0441* Chr25 2.24 1.08 25.81

FE BNL1231** Chr11 2.62 1.30 17.49 E1, E5
MON_CGR5352b** Chr13 2.72 1.77 34.81 E4

FU MON_CGR5525* Chr06 2.34 1.15 28.91
NAU6468* Chr16 2.12 1.74 46.03
MON_DC30015** Chr23 2.74 5.47 43.01
NBRI_HQ526817* Chr26 2.34 0.83 47.98

MV MON_SHIN1584* Chr02 2.08 1.04 7.15 E5
BNL3089** Chr04 2.93 1.47 27.04 E1, E4, E5
MON_SHIN0376b** Chr07 2.50 0.93 35.82 E3, E4, E5
MON_CGR5707* Chr09 2.02 1.02 45.25
MON_SHIN0376a** Chr16 3.67 1.45 19.96 E4, E5
NAU3861** Chr18 2.85 1.40 33.47 E1
TMB1838* Chr20 2.11 1.24 21.98

SFC HAU4552b* Chr01 2.18 0.85 27.97 E4
HAU2610** Chr02 2.88 1.44 43.74 E5
MON_CGR5525** Chr06 4.47 2.19 28.91 E1, E2, E4
Gh185** Chr06 2.51 0.92 23.69 E4
BNL1231* Chr11 2.23 1.08 17.49
JESPR274* Chr23 2.22 1.09 27.87
MON_DC20017* Chr24 2.13 0.74 18.70 E5
BNL3655** Chr25 3.16 2.28 40.55
NBRI_HQ526817** Chr26 2.47 0.89 47.98
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Fig. 3  Distribution of the marker–trait loci identified by association 
analysis on the published genetic map. Genetic distances in centi-
morgans (cM) are indicated on the left side of the linkage map. The 

marker name and associated fiber quality traits are indicated on the 
right side. Asterisk indicates that the markers were the overlapped 
marker in this study with other studies, as listed in Table S11
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MAGIC population had relatively abundant phenotypic 
variations compared to the PMs. The multiple parents inter-
cross is a breeding method that could gather favorable alleles 
and create excellent new varieties through recombination 
(Cavanagh et al. 2008; Huang et al. 2015). In this study, 
more MLs had better properties in terms of fiber quality with 
fiber lengths > 30 mm and fiber strengths > 30 cN/tex. The 
selection of germplasm from the cotton MAGIC population 
could potentially improve fiber traits. There are 960 MLs 
in the MAGIC population, which is larger than the natural 
population used in association analysis of upland cotton con-
ducted in the previous studies (Islam et al. 2016; Nie et al. 
2016; Sun et al. 2017), which ensures a high efficiency in 
QTL mapping.

The LD decay is an important factor that determines the 
mapping resolution of an association analysis. The LD level 
is affected by recombination and some factors that generate 
change of allele frequency distribution, such as mutations, 
gene drift, selection, and migration. Recombination is the 
major factor that decides the speed of LD decay. On the 
other hand, the LD can reflect the historical condition of 
recombination in most inbred plant populations. For exam-
ple, Zea mays, which is an allogamy crop, was confirmed 
to have short attenuation distances of < 100 kb (Gore et al. 
2009; Dinesh et al. 2016). The average distance of LD decay 
in upland cotton was more than 3 cM (~ 1.5 Mb) in the previ-
ous studies using SSR markers (Abdurakhmonov et al. 2008; 
Fang et al. 2013; Li et al. 2016a). The results limit the depth 
exploration of QTL mapping and gene discovery, such as 
map-based cloning. However, the increase in the recombi-
nation rate through artificial crossing could efficiently break 
the genetic linkage and speed up LD decay. In our study, 
the distance of the LD decay of the MAGIC population was 
0.76 cM (r2 = 0.1), which was estimated with 284 SSR mark-
ers. It is a relatively low LD level that represents suitable 
precision for QTL mapping.

Association mapping based on a MAGIC population is a 
powerful and reliable tool for detecting variation in genomic 
regions. There were three statistical models, including GLM 
(naive, Q, and PCA), MLM (K, Q + K, and PCA + K), and 
AD test, that were used in association analyses (Yang et al. 
2014; Sun et al. 2016; Xu et al. 2016). In general, the popu-
lation structure is the major factor that increases the num-
ber of false positives in marker–trait association (Yu et al. 
2006). The convergent cross could eliminate or attenuate 
the effect of population structure. Given the noninterference 
from structure for a MAGIC population and the preponder-
ance of MLM (Mackay et al. 2014; Sallam and Martsch 
2015), we chose the MLM (K) model for the current study. 
Although the low density of SSR markers resulting from 
low polymorphism is inconvenient for delicate loci and gene 
mining, 52 significant loci were identified for six fiber qual-
ity traits (Table 2; Fig. 3), which provides preliminary and 

systematic studies for the genetic basis of fiber quality traits. 
In addition, MLM (K) is a reliable method for complex trait 
association analysis, and most of the loci were simultane-
ously identified by phenotypic data after BLUP as well as 
traits in a single environment (Table 3). The marker–trait 
loci identified by MLM (K) were also frequently shared 
with the GLM model. Furthermore, compared to the previ-
ous studies of QTL mapping in cotton using SSR markers 
published in an online database (http://www2.cotto nqtld 
b.org:8081), 14 markers coincided with the previous results. 
Nine of them, including BNL1231, BNL3089, BNL3452, 
DPL0354, Gh277, HAU1129, HAU2026, NAU3419, and 
NAU6468, were reported to be located in QTLs for fiber 
traits. DPL0345 and NAU3419 were stable loci associated 
with fiber length that were also detected by two previous 
researchers (Cao et al. 2014; Jamshed et al. 2016). The 
SSR markers BNL1231 and BNL3452 were two hotspots 
mapped with multi-traits, including fiber quality, yield, and 
resistance traits (Table S11) (Said et al. 2015). In addition, 
MON_CGR5525, Gh185, BNL1231, HAU1321, MON_
SHIN0376a, TMB1838, MON_DC20017, MON_DPL0441, 
and NBRI_HQ526817 were the new loci that control more 
than two fiber traits (Table S10). These loci express plei-
otropism and create multiple effects in fiber development.

Along with the development of sequencing technol-
ogy and genomics, association mapping has been used 
for candidate gene mining (Ma et al. 2016; Andres et al. 
2017). The identified significant SSR markers have been 
anchored on physical locations that provided candidate 
regions in confidence interval based on LD decay distance. 
The genes located in these regions could be further veri-
fied by fine mapping or using reverse genetics methods. The 
candidate genes could also be screened by genome annota-
tion (Sun et al. 2016). For example, the annotation gene 
for Gh_A06G0913 in Arabidopsis thaliana, AT5G25170, 
has been reported to code PPPDE putative thiol peptidase 
family protein which is related to cell development (Kim 
et  al. 2013), while Gh_A06G0913 is located in MON_
DPL0375c-FUHML locus (Table S12). In addition, the 
genes with known functions can also provide reference 
for candidate genes. GhPIP1-2, GhPIP2-4, GhACT1, and 
GhCER6, located in candidate regions of HAU4552b (SFC), 
MON_CGR5707 (MV), MON_CGR5352b (FE), HAU1058 
(FUHML), and MON_DPL0542 (FUHML), were involved 
in fiber elongation or development proved by gene expres-
sion or transgenic technology (Luo et al. 2003; Li et al. 2005, 
2013a; Qin et al. 2007; Liu et al. 2008). Besides, numbers 
of genes near the candidate markers but out of confidence 
regions should also be taken attention as linkage or clus-
ter, such as GhXTH, GhFBP7, GhGA20ox2, GhKNL1, 
GhHOX3-A, GhPRF1_D, GhWLIM1a, GhSusA1, GhF3H, 
GhHOX3-D, and GhCaM7 were also important during fiber 
growth (Lee et al. 2010; Xiao et al. 2010; Zhang et al. 2011; 

http://www2.cottonqtldb.org:8081
http://www2.cottonqtldb.org:8081
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Argiriou et al. 2012; Jiang et al. 2012; Han et al. 2013; Tan 
et al. 2013; Gong et al. 2014; Shan et al. 2014; Tang et al. 
2014). The candidate loci and genes found in our study are 
a valuable resource for cotton genetic analyses as well as 
cotton improvement.

In conclusion, a cotton MAGIC population containing 
960 lines was developed from 8 parents, and the population 
showed abundant phenotypic and genetic variation as well 
as a low LD level. The association mapping based on 284 
SSR markers provides useful information for understanding 
the genetic basis of fiber traits and for genetic improvement 
of cotton fiber quality.
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