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contigs containing priming sites. Experimental validation 
of 52 randomly selected microsatellite loci demonstrated 
that 45 (86.54%) loci were successfully amplified and pol-
ymorphic in two geographically isolated populations of T. 
fasciatus. Compared with traditional approaches based on 
DNA cloning and other approaches based on next-genera-
tion sequencing, our newly developed approach could yield 
thousands of microsatellite loci with much higher suc-
cessful amplification rate and lower costs, especially for 
non-model species with shallow background of genomic 
information. The “RAD-seq-Assembly-Microsatellite” 
approach holds great promise for microsatellite develop-
ment in future ecological and evolutionary studies of non-
model species.

Keywords  Microsatellite · Next generation RAD 
sequencing · Population genetics · Non-model species · 
Trachidermus fasciatus

Introduction

Microsatellites, also known as simple sequence repeats 
(SSRs), are tandem repeats of one to six nucleotides in 
DNA sequences (Oliveira et  al. 2006). Given their exten-
sive distribution in genome, high polymorphism, codomi-
nant inheritance and high success amplification rate, 
microsatellites have been one of the most powerful and 
valuable molecular tools in many research areas, such as 
population genetics, conservation genetics, genome map-
ping, parentage analysis, and quantitative trait loci iden-
tification (Chang et  al. 2009; Montanari et  al. 2016; Xue 
et  al. 2014). Despite advances in the achievement of sin-
gle nucleotide polymorphism (SNP) data, microsatellites 
are still useful and more easily accessible for many studies 
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such as those involving genetic diversity monitoring for a 
long period of stock management, and breeding or pedigree 
estimation (Hodel et  al. 2016; Minegishi et  al. 2015; Sta-
bile et al. 2016; Weinman et al. 2015; Zalapa et al. 2012). A 
major limitation to the usage of microsatellites is that tradi-
tional methods for microsatellites development, such as an 
enriched library followed by cloning and Sanger sequenc-
ing, were labor-intensive, time-consuming, and expensive 
(Glenn and Schable 2005; Zane et al. 2002). Furthermore, 
microsatellites had to be developed de novo for every spe-
cies under study, as cross-amplification from congeneric 
species is not generally feasible (Schoebel et  al. 2013). 
Therefore, rapid and cost-effective methods for microsatel-
lite development are urgently needed for population man-
agement and conservation of non-model species.

Next generation sequencing (NGS) can produce large 
amount of sequences, from which numerous genome-
wide and gene-based microsatellite loci could be isolated 
and developed (Zalapa et  al. 2012). So far, studies using 
NGS to develop microsatellite loci have largely rely on 
the Roche 454 and Illumina sequencing platforms (Hodel 
et  al. 2016; Minegishi et  al. 2015; Schoebel et  al. 2013; 
Zalapa et al. 2012). Since read length is an important fac-
tor that affects the possibility to discover microsatellites 
and design primers, the 454 sequencing platform was 
used extensively for microsatellite development (Hodel 
et al. 2016; Mastretta-Yanes et al. 2015). However, 454 is 
less cost-effective than Illumina on a per-megabase basis 
(Glenn 2011; Zalapa et  al. 2012). Moreover, Roche have 
discontinued the use of the 454 instrument since 2016. Cur-
rently, projects of microsatellite discovery largely focused 
their efforts on Illumina platforms. However, the short read 
lengths obtained with Illumina platform limited its utility 
for microsatellite development, because most reads did 
not have enough flanking sequences for primer design. To 
improve the efficiency of microsatellite development using 
Illumina reads, sequence assembly should be performed to 
create longer DNA sequences or contigs before microsatel-
lite discovery.

One cost-efficient and practical strategy to develop 
microsatellite markers using NGS technologies is the 
sequencing of a reduced representation genomic library 
(Bonatelli et  al. 2015). Restriction site-associated DNA 
sequencing (RAD-seq) is a useful approach to create 
reduced representation genomic libraries and provide 
sequence data adjacent to restriction enzyme recognition 
sites (Davey et al. 2011; Hohenlohe et al. 2013). RAD-seq 
incorporates a random shearing step in library prepara-
tion, which can be modified to generate overlapping paired 
reads. The reads of a single RAD locus generated by tradi-
tional RAD-seq technology could be firstly clustered using 
the similarity of the first reads with the restriction enzyme 
recognition site, and then the overlapping paired-end reads 

allowed local assembly of contigs containing both the 
forward and reverse reads of each pair (Hohenlohe et  al. 
2013), which could improve accuracy and quality of the 
assembled contigs, and therefore improve the success rate 
of microsatellite development. The roughskin sculpin Tra-
chidermus fasciatus Heckel (Scorpaeniformes: Cottidae), is 
a small, benthic, carnivorous, and catadromous fish species 
with a native distribution in Northwestern Pacific distribu-
tion (Onikura et al. 2002; Wang 1999). In the past decades, 
it has experienced severe population declines in China, 
probably due to degradation of habitats, water pollution and 
dam construction (Wang and Cheng 2010). However, only 
a few molecular genetic resources are publicly available for 
roughskin sculpin (Xu et  al. 2008; Zeng et  al. 2012), and 
the use of microsatellite markers in conservation genetic 
studies and maker-assisted selection was limited (Li et al. 
2016b).

In the present study, a “RAD-seq-Assembly-Microsat-
ellite” approach was developed and applied in the rough-
skin sculpin as a representative of non-model species, for 
which limited genetic data were available. To improve the 
success rate of microsatellite development in a simple, fast, 
and economic way, the advantages offered by the tradi-
tional RAD-seq technology coupled with fast and efficient 
bioinformatic tools for reads assembly, microsatellite iso-
lation and primer design were explored in this approach. 
The essence of the approach is to generate enough long 
contiguous sequences of high quality to overcome technical 
limitations introduced by short read lengths and to isolate 
abundant microsatellite loci. Briefly, genomic DNA of a 
roughskin sculpin individual was sequenced using the over-
lapping paired-end RAD-seq protocol, and the generated 
reads were sorted according to RAD loci and locally assem-
bled to achieve longer contiguous sequences. Then micros-
atellite sequences in the assembled contigs were searched 
and primer pairs were designed. Finally, 52 microsatellite 
loci were randomly selected and validated in two rough-
skin sculpin populations based on PCR amplification and 
genotyping. The newly developed rapid and cost-effective 
approach would be of particular advantage for the isola-
tion and characterization of sufficient microsatellite loci for 
ecological and evolutionary studies of non-model species.

Materials and methods

Sampling and genomic DNA extraction

A total of 48 individuals were collected from two geo-
graphic sites in China: 24 individuals from Dandong, 
Liaoning Province (39°46′N, 124°20′E) in May 2014, and 
24 individuals from Fuyang, Zhejiang Province (30°03′N, 
119°58′E) in January 2014. Muscle tissue were preserved 
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in 95% ethanol. Genomic DNA was extracted using the 
standard phenol–chloroform extraction protocol, and 
checked using 1% agarose electrophoresis and Nanodrop 
2000c spectrophotometer.

Library preparation and RAD tag sequencing

Approximately 1  μg of genomic DNA extracted from a 
single individual of Fuyang was digested with restric-
tion enzyme EcoRI. The digested products were ligated 
to a modified Illumina P1 adapter containing individual-
specific index sequences of 6 bp for sample tracking. The 
total genomic DNA samples were then randomly sheared 
to an average size of 500  bp, and fragments with insert 
size spanning 200–600 bp were isolated using a MinElute 
Gel Extraction kit (Qiagen). An “A” base overhangs were 
added to the 3′ ends of the blunt DNA fragments, and then 
a modified P2 adapter containing a 3′ dT overhang was 
ligated onto the ends of DNA fragments with 3′ dA over-
hangs. Finally, the library was enriched by high-fidelity 
PCR amplification, preparing RAD tags that contain both 
adaptors for paired-end (2  ×  125  bp) sequencing on an 
Illumina Hi-Seq 2500 platform at Novogene in Tianjin.

RAD data assembly and assessment

Illumina raw reads were quality-filtered, and PCR dupli-
cates were removed by “clone_filter” in STACKS (version 
1.32) (Catchen et al. 2013). The first reads with restriction 
enzyme recognition sites were sent to STACKS to identify 
RAD loci. The minimum depth of stacks was set to 10, and 
the number of mismatches allowed between stacks was set 
to 3 to maintain the true alleles from paralogues. Delev-
eraging and removal algorithms were turned on to filter 
out highly repetitive loci. Finally, the second reads corre-
sponding to each RAD locus were collected into separate 
files using a modified version of “sort_read_pairs.pl” in 
STACKS. The reads for each locus were locally assembled 
by CAP3, which is a DNA sequence assembly program 
based on overlap-layout-consensus methods (Huang and 
Madan 1999). The assembly was performed by a custom 
developed multi-threading Perl scripts CP3_Opti.pl (avail-
able at https://github.com/lyl8086/RAD_SSR) according to 
an optimized assembly approach. Firstly, the second reads 
for each RAD loci identified by the first reads were locally 
assembled into contigs. Secondly, the assembled contigs 
of the second reads were merged with the corresponding 
consensus sequences of the first reads for each RAD locus. 
Thirdly, a final assembly was performed on each RAD loci 
to generate the final assembled RAD reference. In general, 
the overlapping paired reads generated by RAD-seq are 
staggered over a local genome location, these reads can be 
locally assembled into high-quality contigs, which are up 

to 1 kb depending on the strategy of size selection in the 
library preparation. The longer contigs thus provided suffi-
cient sequences for the downstream microsatellites discov-
ery and primer design.

In order to check the quality of the assembled RAD ref-
erence, the paired reads used for assembling were mapped 
back to the reference by BWA 0.7.12 (Li and Durbin 2009). 
BWA “mem” (Li 2013) was used to generate SAM file, the 
parameters were set to default except for the minimum seed 
length of 32. The SAM file was processed by SAMTOOLS 
1.3.1 (Li et  al. 2009) to check the overall coverage, the 
number of mapped reads and the depth. To further improve 
the quality of the assembled RAD reference, only contigs 
with properly mapped read pairs (paired reads mapped in 
right direction with proper insert size given by the aligner) 
and a minimum mapping quality of 20 were retained. Soft 
or hard clipped reads, secondly aligned reads, and reads 
with the SAM tags of “XA” or “SA” were also removed. 
The generated high-quality contigs were then used for 
downstream microsatellites discovery and primer design.

Microsatellites searching and primer design

QDD 3.1.2 (Meglécz et  al. 2010) was chosen for micros-
atellite discovery and primer design. The program was run 
in a local Galaxy (Afgan et al. 2016) platform with default 
parameters. Microsatellite was defined as pure or com-
pound tandem repeats of di- to hexa-nucleotide motif with 
at least five uninterrupted repeats. To improve the success 
rate, primers were selected based on the following five cri-
teria: (1) select one primer for each locus; (2) select pure 
microsatellites with repeat number great than 5; (3) select 
primers that were only in design category A; (4) remove 
primers with alignment score greater than 10; and (5) 
select primers that were away from the target microsatellite 
(>10 bp).

Microsatellite genotyping and polymorphism survey

A total of 52 primer pairs were randomly selected for 
laboratory verification. Initial testing for PCR amplifi-
cation used two individuals from Fuyang. A M13-tail 
(5′-GGAAACAGCTATGACCATG-3′) was added on the 
5′ end of each forward primer. PCR amplification were 
performed in a total volume of 10 μL containing 10 ng 
genomic DNA, 1×  PCRmix (Dongsheng Biotech Co., 
China) and 0.2  μM each primer, using the following 
cycling conditions: (1) initial activation step for 5 min at 
95  °C; (2) 35 cycles of denaturation at 95  °C for 20  s, 
annealing at 52  °C for 30  s and extension at 72  °C for 
30 s; and (3) a final extension of 5 min at 72 °C. The PCR 
products were electrophoresed on a 1.5% agarose gel 
and only primers that produced specific products were 

https://github.com/lyl8086/RAD_SSR
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further evaluated using an initial set of eight individu-
als. PCR amplification were carried out in a final volume 
of 10 μL containing 10 ng genomic DNA, 1×  PCRmix 
(Dongsheng Biotech Co., China), 0.02  μM forward 
primer, 0.2 μM reverse primer, and 0.2 μM of M13-tail 
primer that was fluorescently labeled with FAM, HEX 
or TAMRA. The PCR amplification program was the 
same as mentioned above. Fluorescently labeled PCR 
fragments were electrophoresed on an ABI 3730xl auto-
mated sequencer (Applied Biosystems) with the GS-500 
size standard. Allele calling was performed using Gen-
eMarker (SoftGenetics, State College, USA). The final 
scoring was manually checked to minimize genotyp-
ing errors. Finally, polymorphism of microsatellite loci 
screened out by the above two steps were checked in 48 
individuals from Fuyang and Dandong.

Genetic diversity indices for each loci and popula-
tion including observed heterozygosity (HO), expected 
heterozygosity (HE) and polymorphism information con-
tent (PIC) were calculated using the Excel Microsatellite 
Toolkit (Park 2001). The number of alleles (Na), allelic 
richness (AR) and inbreeding coefficient (FIS) was calcu-
lated using FSTAT 2.9.3 (Goudet 2001). Deviations from 
Hardy–Weinberg equilibrium and genotypic linkage equi-
librium were tested with Genepop 4.5.1 (Rousset 2008). 
The significance tests were estimated by the Markov chain 
Monte Carlo (MCMC) method (10,000 dememorization 
steps, 1000 batches of 10,000 iterations). Micro-checker 
2.2.3 (van Oosterhout et al. 2004) was used to test for the 
presence of null alleles. A standard Bonferroni correction 
was used for all above significance levels of tests.

Results

RAD sequencing, filtering and assembly

A total of 33.5 million raw paired reads were obtained, and 
25.1 million clean paired reads were retained after qual-
ity filtering and removing PCR duplications. A total of 
137,409 loci identified by STACKS were exported into sep-
arate fasta files for local assembly. CAP3 assembled a total 
of 127,864 contigs with a mean length of 517 bp and N50 
of 543 bp. About 20.8 million reads could be mapped back 
to the assembled contigs, and 94% of these were properly 
paired. After retaining contigs with properly paired reads 
and a minimum mapping quality of 20, and removing clip-
ping and other possible spurious reads, a total of 121,750 
contigs were retained as the final assembled RAD reference 
for microsatellites discovery (Online Resource 1). The final 
assembled RAD reference had a mean length of 522 bp and 
GC content of 41.59%.

Microsatellite isolation and characterization

A total of 19,782 contigs possessing microsatellite motifs 
were identified. For 16,497 contigs that contained priming 
sites for microsatellite loci, the types of the microsatellites in 
the target region were variable. The number of the pure micro-
satellites was 12,127, while the number of the compound 
microsatellites was 3242. Finally, a total of 156,150 primer 
pairs sets were successfully designed (Online Resource 2). 
Using one primer pair for each locus, pure microsatellites, 
design category A, PCR primer align score ≤10, and mini-
mum primer target distance >10 bp, a total of 1854 primer 
pairs were retained (Table  1). These 1854 microsatellite 
motifs included 1536 di- (82.85%), 262 tri- (14.13%), 49 
tetra- (2.64%), 5 penta- (0.27%) and 2 hexa- (0.11%) nucleo-
tide repeats, of which the repeats number ranged from 5 to 41.

Of the 52 primer pairs randomly selected, 48 primer 
pairs produced clear and specific amplification products of 
the expected size by being screened in 1.5% agarose elec-
trophoresis in two individuals, and were subsequently used 
for evaluation with capillary to test genotyping in eight 
individuals. Finally, a set of 45 microsatellite loci were 
used to evaluate polymorphism in 48 individuals from the 
two populations, and a total of 618 alleles were detected 
(Table 2). The number of alleles per locus ranged from 3 
to 29, and the expected (HE) and observed (HO) heterozy-
gosity ranged from 0.3510 to 0.9800 and from 0.2080 to 
1.0000, respectively. The polymorphism information con-
tent (PIC) ranged from 0.3070 to 0.9590. No linkage dis-
equilibrium was detected between microsatellite loci. Sig-
nificant deviation from Hardy–Weinberg equilibrium was 
observed in four loci (tfa 28, tfa 32, tfa 36 and tfa 57), of 
which two loci (tfa 32 and tfa 57) were significant in both 
tested populations (Table 2). Analyses using micro-checker 
indicated the presence of null alleles at the same four loci.

Discussion

The present study, with the roughskin sculpin as a rep-
resentative of non-model species, developed a rapid 

Table 1   Summary of the number of primer pairs designed from the 
16,497 assembled RAD contigs for Trachidermus fasciatus

Filtering steps Number of primer pairs

Total primer pairs designed 156,150

One primer for each locus 16,497

Pure microsatellites 12,127

Design category A 2735

PCR primer align score ≤10 27,11

Min primer target distance >10 bp 1854
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and cost-effective microsatellite identification approach 
(RAD-seq-Assembly-Microsatellite) using paired-end 
RAD-seq. This approach can create longer sequences by 
assembling the overlapping paired-end RAD reads for 
microsatellite discovery, which overcomes the issues of 
short read lengths generated by the Illumina platform and 
improves microsatellite detection rates. The approach 
could efficiently generate a large set of polymorphic 
microsatellite markers for a wide range of applications 
from population genetics, behavioral ecology, to marker-
based breeding programs, especially for non-model 
species.

Next-generation sequencing (NGS) technologies have 
enhanced our ability to obtain hundreds of microsatel-
lites in a rapid and low cost manner, and dramatically 
accelerated the discovery of genomic information even in 
non-model species (Cai et  al. 2013; Davey et  al. 2011; 
Hu et  al. 2016). Compared with traditional methods for 
microsatellite markers development (Zane et  al. 2002), 
our approach, which based on RAD-seq and de novo 
local assembly, is more efficient in terms of money and 
time. At current market prices, the RAD library construc-
tion costs approximately $75, and a 125 bp × 2 paired-
end sequencing run on the Illumina Hiseq 2500 platform 
to produce 1  Gb of sequences costs approximately $70. 
The Illumina Hiseq 4000 and X-ten platforms have much 
lower per-base sequencing costs with higher throughout 
than Hiseq  2500 platform (http://www.illumina.com). 
So the total costs for library construction and sequenc-
ing using our approach ($360 for 4  Gb data) are lower 
than that using traditional (at least $800 for 100 sequence 
data) approaches (Zalapa et  al. 2012). In general, tradi-
tional approaches require 2–4 weeks for DNA extrac-
tion, library construction, cloning, Sanger sequencing 
and primer design, whereas our approach requires only 
1–2  weeks for DNA extraction, RAD library construc-
tion, Illumina sequencing and primer design. Moreover, 
our approach can identify thousands of microsatellites 
and then batch design primers simultaneously, while tra-
ditional approaches can usually find repeated units in a 
relative small pool of sequences (Zane et al. 2002).

There have been studies that used the next generation 
sequencing technologies to develop microsatellite mark-
ers (Bonatelli et al. 2015; Castoe et al. 2010; Hung et al. 
2016; Li et al. 2016a, b; Minegishi et al. 2015). The two 
major NGS platforms used for the discovery of micros-
atellites are Roche 454 and Illumina sequencing (Zalapa 
et  al. 2012). The main advantage of the 454 sequenc-
ing for microsatellite discovery is that the read-length is 
350–600 bp, which could allow the discovery and develop-
ment of microsatellites even directly from the raw reads. 
Castoe et  al. (2010) identified 14,612 microsatellite loci 
in 11.3% of the 128,773 Roche 454 shotgun reads, and Ta
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4564 of which had flanking sequences suitable for primer 
design. Bonatelli et al. (2015) validated 22 (30.56%) poly-
morphic microsatellites out of 64 loci using double digest 
restriction site–associated DNA sequencing (ddRAD-seq) 
on a Roche 454 platform. Seventy-four projects using 454 
sequencing reviewed in Hodel et  al. (2016) yielded 8–91 
polymorphic loci, with an average of 16 polymorphic loci 
and 4400 potential loci derived from an average of 139,418 
reads. The main advantage of using Illumina platform for 
microsatellite discovery is that the much higher through-
out and lower costs than 454 platform (Zalapa et al. 2012). 
Cai et  al. (2013) assembled the generated Illumina shot-
gun reads into a draft genome of Anisogramma anomala, 
and successfully amplified 214 (90.7%) microsatellite loci 
with specific products. Hung et al. (2016) applied Illumina 
shotgun sequencing to Apodemus semotus and mapped 
the obtained sequences reads against the genome of Mus 
musulus, then successfully amplified 44 (74.57%) of 59 
microsatellite loci. Hu et  al. (2016) used transcriptome 
data from RNA-Seq using Illumina sequencing and found 
that 20 (31.75%) loci were successfully amplified and also 
were polymormic. For microsatellites development studies 
using Illumina sequencing reviewed in Hodel et al. (2016), 
the average number of polymorphic microsatellite markers 
reported was 15, and the average number of potential loci 
per study was 15,539.

However, the Illumina platform generates relative 
short reads (100–300 bp), so assembly is usually required 
to achieve longer contiguous sequences, which could pro-
vide sufficient flanking sequence for the design of prim-
ers to amplify the target microsatellite and reduce redun-
dancy of closely linked microsatellites (Zalapa et  al. 
2012). Yang et al. (2016) only identified 650 microsatel-
lite loci from 4.5 million RAD raw reads and only 285 
(43.84%) primer pairs were successfully designed. How-
ever, in the present study, 22,835 microsatellites were 
discovered in 121,750 contigs assembled, and 156,150 
primer pairs were designed for 16,497 (77.24%) loci con-
taining microsatellites. Therefore, careful consideration 
should be given to the quality of assembly. RAD-seq is 
a family of genomic approaches that provide sequence 
data adjacent to restriction enzyme recognition sites 
(Davey et al. 2011; Hohenlohe et al. 2013). Furthermore, 
the overlapping paired-end reads by traditional RAD-seq 
technology allowed local assembly of contigs containing 
both the forward and reverse reads of each pair. These 
RAD contigs are anchored at one end by the restriction 
enzyme recognition site and contain several hundred base 
pairs of continuous genomic sequence data (Hohenlohe 
et  al. 2013). This assembly method for RAD holds sev-
eral advantages comparing to whole genome sequencing. 
Firstly, reads of a single RAD locus could be clustered 
before assembly using the similarity of the first reads 

with the restriction enzyme recognition site, and therefore 
reducing complexity and the computational costs, which 
is even affordable for desktop computer. Secondly, local 
assembly of the contigs could improve the quality of de 
novo assembly, and therefore improve the success rate 
of microsatellite development. Thirdly, the size selection 
in library preparation is flexible, which makes the length 
of contigs easily customized. In our study, PCR ampli-
fications were successful for 48 (92.31%) of the 52 ran-
domly selected loci, which was higher than those of the 
other approaches above. This indicated that primer pairs 
in the database and the assembled RAD contigs were of 
high quality and most of primer pairs would amplify their 
targets. Compared to other approaches using next-gener-
ation sequencing, our assembly based approach exhibited 
great advantages on developing thousands of microsatel-
lites rapidly and accurately, especially for non-model spe-
cies with shallow background of genomic information.

In conclusion, the present study has contributed a 
detailed approach to rapidly and cost-effectively develop 
genome-wide microsatellite markers in non-model spe-
cies with high success rate. A total of 45 polymorphic loci 
were validated, which could serve as a proof-of-concept 
showing that the “RAD-seq-Assembly-Microsatellite” 
approach was successfully applied to a non-model spe-
cies. The “RAD-seq-Assembly-Microsatellite” approach 
developed in the present study holds great promise for 
microsatellite development in future ecological and evo-
lutionary studies of non-model species.
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