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Introduction

With the development of next generation sequencing 
methods and DNA tiling arrays, it has become possible to 
sequence the complete human transcriptome. Numerous 
studies have revealed that the human genome consisted 
of 20,500 of coded genes, which is only less than 2 % of 
the genome (Archer et al. 2015). Not surprisingly, at least 
90 % of the genome is actively transcribed into non-coding 
RNAs (ncRNAs), which have no protein coding potenti-
ality (Birney et al. 2007). ncRNAs can be approximately 
classified into two groups: (1) classical ‘housekeeping’ 
RNAs, such as rRNAs, tRNAs, small nuclear RNAs (snR-
NAs) and small nucleolar RNAs (snoRNAs), which are 
constitutively expressed and play critical roles in protein 
biosynthesis; and (2) ‘regulatory’ RNAs that include small 
regulatory RNAs (e.g., microRNAs, siRNAs and piRNAs) 
and long non-coding RNAs (lncRNAs). The functions of 
most small RNAs have been clarified, however, our under-
standing of lncRNAs is still obscure.

LncRNAs are defined as all transcripts that are greater 
than 200 nucleotides in length but lack of protein-coding 
capacity (Iyer et al. 2015). LncRNAs are mainly transcribed 
by RNA polymerases (RNAP) II or III in mammal ani-
mals, and additionally, by RNAP IV and V in plants (Struhl 
2007; Bierhoff et al. 2010). Due to the wide applications of 
high throughput RNA-sequencing (RNA-seq) approaches, 
thousands of lncRNAs in many organisms, such as mam-
mal animals and plants, have been identified. For instance, 
about 6480 lncRNAs were identified from 200 Arabidopsis 
thaliana transcriptomic data sets, with either organ-specific 
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or stress-induced expression profiles (Liu et al. 2012). 
Nearly 50,000 annotated lncRNA genes have been discov-
ered in the human genome (Iyer et al. 2015). LncRNAs 
are processed by splicing or non-splicing, polyadenyla-
tion or non-polyadenylation, and can be located in the 
nucleus or cytoplasm (Wierzbicki 2012), which play cis- or 
trans-regulators of gene transcription, and are involved in 
a wide range of biological processes. This review summa-
rizes recent progress in the research of lncRNAs, with an 
emphasizing on their role in gene expression regulation and 
human diseases.

Classification of lncRNAs

According to the current literature, there are several differ-
ent classification methods. LncRNAs can be categorized 
as sense, antisense, intronic, intergenic and bidirectional 
lncRNAs based on their genomic proximity to protein cod-
ing genes (Ponting et al. 2009; Rinn and Chang 2012). 
Another classification includes “high abundance” and“low 
abundance” lncRNAs. Some publications have divided 
lncRNAs into cis- and trans-acting lncRNAs by function 
(Wang et al. 2011b). Recently, Di Gesualdo et al. (2014) 
provided an updated classification of lncRNAs: (1) lncR-
NAs that are transcribed from loci distinct from sense tran-
script-encoding gene loci are termed long intergenic non-
coding RNAs (lincRNAs); (2) exceptionally long lncRNAs 
are termed macroRNAs and very long intergenic non-cod-
ing RNAs (vlincRNAs); (3) lncRNAs that are bidirection-
ally transcribed from the enhancer and promoter regions 

are referred to as enhancer-associated RNAs (eRNAs) and 
promoter-associated long RNAs (PALRs), respectively; (4) 
transcripts on the antisense strand can generate natural anti-
sense transcripts (NATs) with varying degrees of overlap, 
including divergent and convergent NATs.

Functions of lncRNAs

Due to their low sequence conservation between species, 
lncRNAs were initially thought to be non-functional and 
even spurious transcriptional noise arising from low RNA 
polymerase fidelity (Struhl 2007; Bierhoff et al. 2010). In 
recent years, some functions of lncRNAs have been found, 
including participating in the formation of RNA–protein 
complexes or subcellular structures as scaffolds, modulat-
ing protein activity and localization by binding with spe-
cific proteins, regulating gene expression and controlling 
genomic imprinting and X-inactivation (Clemson et al. 
2009; Kornienko et al. 2013).

lncRNAs act as scaffolds

The formation of diverse RNA–protein complexes or sub-
cellular structures is the common function of many lncR-
NAs, and it is within these structures where lncRNAs carry 
out scaffolding functions (shown in Fig. 1a). The earliest 
evidence of this phenomenon came from the discovery of 
telomerase (Greider and Blackburn 1985).

Telomerase is a ribonucleoprotein enzyme that is able 
to add telomere repeats to the end of the chromosomes 

Fig. 1  LncRNAs interact with proteins to function as scaffolds, influ-
ence protein activity and modulate protein localization. a LncRNAs 
can participate in the formation of diverse RNA–protein complexes 
or subcellular structures, where they carry out scaffolding functions. 
b LncRNAs can be involved in modulating the activity of proteins. 
ncRNACCND1 is induced upon DNA damage and enhances both the 
cleavage of TLS as well as its inhibition of CBP functions, thereby 

repressing CCND1 transcription. c LncRNAs can influence protein 
localization: lncRNA NRON binds to the transcription factor NFAT 
and limits the nuclear-cytoplasmic trafficking of NFAT, ultimate lead-
ing to the repression of NFAT target gene expression. POL II, RNA 
polymerase II; Ca2+, Calcium ion; CaM, calmodulin; Calcineurin, 
Ca2+∕calmodulin-dependent phosphatase calcineurin
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and which is expressed in most malignant tumor cells. 
The telomerase holoenzyme consists of a protein compo-
nent, a reverse transcriptase termed telomerase reverse 
transcriptase (TERT) and an RNA primer, also known as 
telomerase RNA component (TERC) (Feng et al. 1995). 
TERC act as a template for TERT-catalyzed reverse tran-
scription and as a molecular scaffold for the polymerase 
enzyme around the RNA (Lingner et al. 1997).

Another example of lncRNA scaffolding is the study of 
the composition of paraspeckles. Paraspeckles are a rela-
tively new class of subnuclear bodies found in the inter-
chromatin space of mammalian cells. These bodies are crit-
ical for the control of gene expression through the nuclear 
retention of RNA that contains double-stranded regions 
that have been subject to adenosine-to-inosine editing (A–I 
editing) (Fox and Lamond 2010). Clemson et al. (2009) 
have found that the nuclear enriched autosomal transcript 
1 (NEAT1) RNA is associated with intense concentrations 
of PSP1 and P54, which demark paraspeckles in vivo and 
in vitro (Fox et al. 2002). These authors also proved that 
paraspeckles may initially form when NEAT1 RNA is tran-
scribed and that their spread throughout the nucleus corre-
sponds with the spread of NEAT1 RNA. Furthermore, an 
increase in NEAT1 expression causes a parallel increase 
in paraspeckle number, and knockdown of NEAT1 RNA 
leads to loss of paraspeckles (Clemson et al. 2009; Fox 
and Lamond 2010). Taken these results together, it is clear 
that NEAT1 is essential to the formation of paraspeckles 
and may function as, but is not necessarily limited to, a 
scaffold.

lncRNAs modulate protein activity and localization

Evidence is accumulating that lncRNAs, aside from their 
scaffolding function, are also involved in modulating the 
activity and localization of protein complexes. Wang et al. 
(2008) identified a series of single-stranded ncRNA tran-
scripts with low copy number (known as ncRNACCND1) that 
are induced in response to DNA damage signals and teth-
ered to the 5’ regulatory regions of the cyclin D1 (CCND1) 
gene. These authors found that ncRNACCND1 serves as a 
molecular “ligand” for translocation in liposarcoma (TLS), 
an RNA-binding protein that represses CCND1. ncR-
NACCND1 interacts with the C-terminus of TLS to enhance 
the binding and cleavage of TLS to CREB-binding protein 
(CBP), which can inhibit histone acetylation of the CCND1 
promoter and repress its expression (Wang et al. 2008; 
Guttman and Rinn 2012) (shown in Fig. 1b).

Similarly, the lncRNA non-coding repressor of NFAT 
(NRON) was found to repress nuclear factor of activated 
T cells (NFAT), a Ca2+-regulated transcription factor 
that controls gene expression in many cell types (Sharma 
et al. 2011) (shown in Fig. 1c). The activation of NFAT 

protein is regulated by the phosphorylation status of the 
NFAT regulatory domain, which is necessary and suffi-
cient for nuclear transport (Sharma et al. 2011). Phospho-
rylated NFAT proteins reside in the cytoplasm of resting 
cells, and dephosphorylated NFAT protein translocates to 
the nucleus to activate target gene expression when cells 
are stimulated by an increase in the intracellular Ca2+ con-
centration (Sharma et al. 2011). The lincRNA NRON can 
bind to NFAT proteins together with NFAT kinases and 
is involved in the maintenance of phosphorylated NFAT 
proteins (Sharma et al. 2011; Guttman and Rinn 2012). 
Consequently, the lncRNA NRON renders NFAT proteins 
inactive and inhibits their trafficking from cytoplasm to 
nucleus, ultimately leading to inhibition of NFAT target 
gene expression (Sharma et al. 2011; Guttman and Rinn 
2012).

lncRNAs regulate gene expression

The most important function of lncRNAs is their role in 
regulating gene expression (Gutschner and Diederichs 
2012; Ma et al. 2012). This function was confirmed first 
by loss-of-function studies on most intergenic lncRNAs 
(lincRNAs) expressed in mouse embryonic stem (ES) 
cells. This analysis revealed that knockdown of lncRNAs 
has significant consequences on gene expression patterns 
(Guttman et al. 2011). As we will show, lncRNAs have 
been demonstrated to regulate protein-coding gene expres-
sion through a variety of mechanisms, including epigenetic 
modifications, transcription and post-transcriptional pro-
cessing (Mercer et al. 2009; Kornienko et al. 2013).

Epigenetic modification‑dependent pre‑transcriptional 
regulation

Studies from several research groups have shown that 
lncRNAs are involved in epigenetic regulations by recruit-
ing chromatin-remodeling complexes, such as PRC1, 
PRC2, MLL and G9A, to specific locations in the genome 
(Nagano et al. 2008; Pontier and Gribnau 2011; Wang et al. 
2011a) (shown in Fig. 2a).

HOTTIP lncRNA is expressed in the HOXA cluster, 
whose higher-order structure is dependent on positional 
identity (Wang et al. 2011a; Kornienko et al. 2013). Wang 
et al. (2011a) have demonstrated a looped conformation 
within the 5′ HOXA locus and a linear conformation within 
the 3′ HOXA locus in anatomically distal cells, which is 
diametrically opposite to the pattern in anatomically proxi-
mal cells. Their research showed that chromosomal loop-
ing brings the HOTTIP gene into close proximity to the 5′ 
HOXA genes. Then, the HOTTIP gene produces HOTTIP 
lncRNA, which directly binds the adaptor protein WDR5 
and targets the WDR5/MLL histone-modifying complexes 



1016 Mol Genet Genomics (2016) 291:1013–1033

1 3

to the 5′ HOXA locus, driving histone H3 lysine 4 trimeth-
ylation and transcription activation.

Except for HOTTIP,which acts in cis-regulation, there 
are many other lncRNAs regulated gene expression in 
trans, such as HOTAIR (Rinn et al. 2007). HOTAIR is 
transcribed from the HOXC locus and represses transcrip-
tion in trans across 40 kb of the HOXD cluster by recruit-
ing the PRC2 complexes (Rinn et al. 2007). The epigenetic 
regulatory-mechanism mediated by lncRNA may explain 
the question of how chromatin-remodeling complexes 
gain locus specificity (Mercer et al. 2009; Kornienko et al. 
2013).

Recent evidence rasied the possibility that lncR-
NAs may interact with target genes through formation of 
RNA–DNA triplex structures, serving as a link between 
chromatin and chromatin modifiers. Very recently, Mon-
dal et al. (2015) have demonstrated that lncRNA MEG3 
regulates the TGF-β pathway genes through RNA–DNA 
triplex formation. Genome-wide mapping of MEG3 bind-
ing sites reveals that MEG3 modulates the activity of 
TGF-β pathway genes by binding to distal regulatory ele-
ments containing GA-rich sequences, which guide MEG3 
to the chromatin through RNA–DNA triplex formation, 
and then contributing to PCR2 recruitment. O’Leary et al. 
(2015) named a new lncRNA PARTICLE (gene PARTI‑
CLE, promoter of MAT2A-antisense radiation-induced cir-
culating lncRNA), which can forms a DNA-lncRNA triplex 
upstream of a MAT2A promoter CpG island and interacts 
with the transcription-repressive complex proteins G9a and 
SUZ12 (subunit of PRC2) to repress MAT2A via methyla-
tion (Yang et al. 2001). These findings implicate lncRNA 

play as a recruitment platform for gene-silencing machiner-
ies by RNA–DNA triplex formation.

Transcriptional regulation

As the first critical step in gene expression, the transcrip-
tion of protein-coding genes into mRNA is an intricate bio-
logical process that consists of multiple steps, from the for-
mation of the preinitiation complex to transcript elongation 
(Espinoza et al. 2004; Yakovchuk et al. 2009). Each step in 
the transcription reaction has the potential to be regulated 
by trans-acting activators and repressors (Espinoza et al. 
2004; Mariner et al. 2008; Yakovchuk et al. 2009, 2011). 
It is presently becoming clear that ncRNAs also play key 
roles in regulating the process of transcription. Diverse 
lncRNAs have been identified as regulators of nearly every 
step in the process of transcription and act through different 
mechanisms (Yakovchuk et al. 2009).

In eukaryotes, RNAP II transcribes protein-coding genes 
into mRNA in collaboration with general transcription fac-
tors (Espinoza et al. 2004; Mariner et al. 2008; Yakovchuk 
et al. 2009, 2011). Some lncRNAs have been reported to 
influence the general output of mRNAs by directly affect-
ing the loading and activity of RNAP II or general tran-
scription factors (shown in Fig. 2b). As an example, Alu 
RNA in human (Mariner et al. 2008; Yakovchuk et al. 
2009) and B2 RNA in mouse (Espinoza et al. 2004; Yak-
ovchuk et al. 2009) have been shown to function as gen-
eral repressors of mRNA transcription and are transcribed 
by RNAP III from short interspersed elements (SINEs) 
(Yakovchuk et al. 2009). The levels of Alu and B2 RNA 

Fig. 2  LncRNAs regulate gene expression by multiple mechanisms. 
a LncRNAs can recruit chromatin-modifying complexes to specific 
genomic loci to regulate target gene expression. b LncRNAs influ-
ence the general output of mRNAs by directly affecting the loading 
and activity of RNAPII (middle panel) or general transcription fac-
tors (left panel). In addition, lncRNAs can act as co-factors or inhibi-
tors to regulate the activity of a particular transcription factor (right 
panel). The right panel shows that the lncRNA Evf2 acts as a co-acti-

vator of the transcription factor DLX2 to regulate DLX5 and DLX6 
gene transcription. c Antisense lncRNAs can mediate the alternative 
splicing of mRNA by forming RNA duplexes. LncRNA Zeb2 NAT 
can overlap the 5′splice site in an intron located in the 5′-untranslated 
region (UTR) of Zeb2 mRNA and prevent the splicing of the intron, 
causing an up-regulation of Zeb2 protein without significantly alter-
ing the level of Zeb2 mRNA
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increase in response to heat shock, at which point they bind 
directly to RNAP II to assemble into preinitiation com-
plexes at the promoter. This interaction disrupts important 
contacts between RNAP II and the promoter DNA, block-
ing RNAP II-dependent transcription (Espinoza et al. 2004; 
Mariner et al. 2008; Yakovchuk et al. 2009, 2011). Another 
lncRNA, 7SK, is transcribed by RNAP III and has been 
shown to regulate RNAP II-dependent transcription elon-
gation (Yik et al. 2003; Chen et al. 2004; Peterlin et al. 
2012). 7SK lncRNA binds to phosphorylated PTEFb (Chen 
et al. 2004) and serves as a scaffold to mediate the interac-
tion of HEXIM1 and PTEFb. In this interaction, HEXIM1 
inhibits the CTD-kinase activity of PTEFb (Yik et al. 2003; 
Chen et al. 2004; Peterlin et al. 2012), thereby preventing 
the phosphorylation of RNAP II and blocking transcription 
elongation (Yik et al. 2003; Chen et al. 2004; Peterlin et al. 
2012). In contrast, stress-inducing agents, such as ultravio-
let irradiation and actinomycin D, can dissociate HEXIM1 
and 7SK from PTEFb, leading to an increase in nuclear 
levels of active PTEFb, an effect that may activate stress-
induced gene expression (Yik et al. 2003; Chen et al. 2004; 
Peterlin et al. 2012).

LncRNAs also act as co-factors or inhibitors to regulate 
the activity of a particular transcription factor. The lncRNA 
Evf2 is transcribed from the Ei region, one of the two DLX-
5/6 ultraconserved intergenic enhancer regions (Feng et al. 
2006). Evf2 specifically binds to the homeodomain protein 
DLX-2 and recruits DLX-2 to this same enhancer, result-
ing in an induction of both DLX-5 and -6 expression. This 
result indicates that Evf2 lncRNA acts as a co-factor of 
DLX-2 (Feng et al. 2006) (shown in Fig. 2b). Unlike Evf2, 
NRON lncRNA, as mentioned earlier, binds to the NFAT 
transcription factor and renders it inactive by preventing its 
nuclear accumulation, inhibiting the expression of target 
genes (Sharma et al. 2011).

Post‑transcriptional regulation

Another class of ncRNAs, referred to as NATs, are derived 
from the anti-sense strand of many protein-coding genes 
(Beltran et al. 2008). The ubiquitous NATs in the human 
transcriptome and their ability to bind with complementary 
sequences suggest that they may play a key role in gene 
expression regulation, especially in the post-transcriptional 
processing of mRNA, including mRNA editing, splicing, 
transport, translation and degradation (Beltran et al. 2008; 
Annilo et al. 2009).

Antisense lncRNAs can mediate alternative splicing of 
mRNA by forming RNA duplexes. One of these ncRNAs, 
Zeb2 (zinc finger E-box binding homeobox 2) NAT, over-
laps the 5′ splice site in an intron located in the 5′-untrans-
lated region (UTR) of Zeb2 mRNA. Zeb2 NAT can bind 
Zeb2 mRNA through complementary base-pairing and 

prevent the splicing processing of the intron. This event 
results in the up-regulation of Zeb2 protein without sig-
nificantly altering the level of Zeb2 mRNA (Beltran et al. 
2008) (shown in Fig. 2c). Another study has shown that 
the natriuretic peptide precursor A (NPPA) also has an 
antisense partner, NPPA-AS. The NPPA gene codes for a 
precursor of atrial natriuretic peptide (ANP), which pro-
tects the cardiovascular system from volume and pressure 
overload. NPPA-AS lncRNA can bind to NPPA, generating 
RNA duplexes and displaying a complex pattern of alterna-
tive splicing in vivo. This process reduces the levels of the 
intron-retained NPPA mRNA isoform (Annilo et al. 2009).

lncRNAs in imprinting and X chromosome inactivation 
(XCI)

Genomic imprinting is an epigenetic phenomenon result-
ing in a monoallelic, parental-specific expression pattern 
and an excellent model for understanding how lncRNAs 
regulate transcriptional gene silencing in cis. Although 
imprinted genes accounts for only a few of the human 
genome (perhaps less than 1 % of known genes), they paly 
important roles in growth and development, particularly in 
higher-order brain processes, such as learning and behav-
ior (Davies et al. 2005; Wilkinson et al. 2007; Bartolomei 
and Ferguson-Smith 2011). Imprinting is established in cis 
primarily by DNA methylation marks on imprinting con-
trol regions (ICRs) in the gametes (Abramowitz and Barto-
lomei 2012). It has been demonstrated that most imprinted 
genes are located in clusters and all the well-characterized 
imprinted clusters contain at least one lncRNA as their 
partners (Sleutels and Barlow 2002; Mohammad et al. 
2009). For the most part, the imprinted genes in each clus-
ter are expressed from the same parental chromosome, 
whereas the lncRNA is expressed from the other parental 
chromosome (shown in Fig. 3a) (Barlow and Bartolomei 
2014). Generally, lncRNAs functionally implicated in the 
parental-specific expression of genes can be classified into 
antisense lncRNAs (Kcnq1ot1, Airn, Nespas, Ube3a-ATS), 
intergenic lncRNAs (H19, IPW and MEG3 lncRNA) and 
enhancer RNAs (IG-DMR eRNA) (Barlow and Bartolomei 
2014). These imprinted lncRNAs employ diverse molecular 
mechanisms to control epigenetically regulated transcrip-
tion across imprinted clusters. Antisense lncRNAs epige-
netically regulate expression of multiple genes in imprinted 
clusters by interacting with and recruiting chromatin-
remodeling complexes in a sequence-specific fashion (Kan-
duri 2015). Enhancer RNAs can regulate genomic imprint-
ing by promoting higher-order chromatin establishment, 
thereby enabling early replication and inner subnuclear 
positioning of target locus (Darrow and Chadwick 2013). 
As for intergenic lncRNAs, it seems that there is no com-
mon mechanism being employed by them. For example, 
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IPW, a lncRNA in the critical region of the Prader-Willi 
syndrome (PWS) locus, may promote a cross-talk between 
two imprinted clusters through regulating the chroma-
tin structure of an imprinting control region (Stelzer et al. 
2014; Kanduri 2015). However, the methylation status of 
H19 promoter can regulate IGF2 expression through affect-
ing the chromatin insulator CTCF binding to the ICR of the 
cluster (Delaval and Feil 2004).

In mammals, females possess two X chromosomes, 
however, males have one X and one Y. Thus, a dosage 
equalization mechanism is necessary for most X-linked 
genes. XCI occurs randomly in female post-implantation 
embryonic somatic cells (Autuoro et al. 2014). The molec-
ular mechanisms of XCI are still obscure, but several lncR-
NAs have been identified from a 500 kb stretch of DNA at 
Xq13 known as the X-inactivation center (XIC) (Kanduri 
2011). LncRNA X-inactive specific transcript (Xist) and 
its antisense transcript Tsix are of key importance. Xist 
lncRNA is expressed exclusively from the XIST gene on the 
inactive X chromosome and is spliced and polyadenylated 
(Goto and Monk 1998; Pontier and Gribnau 2011). The 
Xist lncRNA coats the X chromosome in cis and recruits 

chromatin-remodeling complexes PRC2, which trimeth-
ylates lysine 27 on histone H3 (H3k27me3) and induces 
the formation of heterochromatin, ultimately leading to X 
chromosome inactivation (Brockdorff 2011; Pontier and 
Gribnau 2011). Meanwhile, the function of Xist is antag-
onized by the antisense transcript Tsix lncRNA, which is 
transcribed from the active X chromosome (Pontier and 
Gribnau 2011). Tsix may inhibit XIST expression by tran-
scriptional interference (Sado et al. 2006) or by recruiting 
chromatin-remodeling complexes to the XIST promoter 
(Sun et al. 2006). However, another study suggests that Xist 
and Tsix can form a duplex RNA that is then processed by 
the RNA interference pathway to generate siRNAs required 
for depositing chromatin-remodeling complexes (Ogawa 
et al. 2008; Pontier and Gribnau 2011).

The roles of lncRNAs in complex human diseases

There is increasing interest in the potential role of lncRNAs 
in the pathogenesis of many human diseases. Moreover, 
lncRNAs also act as diagnostic or prognostic biomarkers 
and attractive therapeutic targets for a variety of human 
conditions, such as cancers, cardiovascular diseases, auto-
immune diseases and neurodegenerative disorders.

lncRNAs involved in cancers

A larger number of literatures find that aberrant expressed 
lncRNAs were involved in the etiology of cancers and 
tumor metastasis (Serviss et al. 2014). Besides H19, 
HOTAIR, ANRIL, MALAT1, MEG3,PCGEM1 and 
PCAT-1, which have been extensively reviewed previously 
(Maruyama and Suzuki 2012), many newer lncRNAs were 
found to play a critical regulatory role in the pathogenesis 
of cancer in recent years (Poliseno et al. 2010; Chen et al. 
2015a, b; Nie et al. 2015; Yang et al. 2015a) (Summarized 
in Table 1).

More recently, the lncRNA PVT1 has been shown to 
be dysregulated in several cancers, such as hepatocellu-
lar carcinoma (HCC) (Wang et al. 2014a), non-small cell 
lung cancer (NSCLC) (Yang et al. 2014), pancreatic cancer 
(Huang et al. 2015), gastric cancer (Ding et al. 2014) and 
acute promyelocytic leukemia (APL) (Zeng et al. 2015). 
Wang et al. (Wang et al. 2014a) have found that PVT1 
was upregulated in HCC and promoted cell proliferation, 
cell cycling, and stem cell-like properties of HCC cells by 
enhancing the stability of NOP2, a RNA-binding protein 
that binds to PVT1. Another study reported that elevated 
PVT1 expression in APL may result from gain of supernu-
merary copies of the 8q24 chromosomal region and MYC 
protein activation in APL cells, which correlated with 
leukemic cell proliferation (Zeng et al. 2015). The novel 

Fig. 3  LncRNAs are involved in genomic imprinting and X chromo-
some inactivation (XCI). a Most imprinted genes (IG) are located in 
clusters and contain multiple protein-coding genes and at least one 
lncRNA (IG-lncRNA). Nonimprinted genes (NG) can also be present. 
Imprinting is established in cis primarily by DNA methylation (Me) 
marks on imprinting control regions (ICRs) in the gametes. One pair 
of diploid chromosomes is shown: the pink is of maternal origin and 
the gray of paternal origin. b In female mammalian cells, one of the 
two X chromosomes is randomly silenced. At around the implanta-
tion stage of early embryogenesis, both X chromosomes express the 
Tsix lncRNA, which negatively regulates its antisense transcript, 
Xist. On the future active X chromosome (Xa), TSIX continue being 
expressed, and the other allele on the future inactive X chromosome 
(Xi) is silenced. As a result, XIST is de-repressed on the Xi. The 
Xist lncRNA coats the X chromosome in cis and recruits chromatin-
remodeling complexes PRC2, which trimethylates lysine 27 on his-
tone H3 (H3k27me3) and induces the formation of heterochromatin, 
ultimately leading to X chromosome inactivation. X represents most 
genes on the X chromosome outside of the XIC (color figure online)
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lncRNA prostate cancer non-coding RNA 1 (PRNCR1), 
which has been demonstrated to be associated with pros-
tate cancer susceptibility (Chung et al. 2011; Yang et al. 
2013a), is also located in the susceptible genomic area 
of colorectal cancer (CRC). A latest study has suggested 
that PRNCR1 was significantly overexpressed in CRC tis-
sues compared with adjacent tissues, which associated 
with large tumor volume (Yang et al. 2016), Further study 
found that knockdown of PRNCR1 by a specific antisense 
oligonucleotide (ASO) induced cell cycle arrest in the G0/
G1 phase and a significant decrease in the proportion of 
cells in the S phases, but did not affect cell apoptosis or 
invasive ability.

LINC00152 was documented as an important lncRNA 
participated in cell cycle arrest, apoptosis, epithelial-mes-
enchymal transition (EMT), cell migration and invasion in 
gastric cancer (Zhao et al. 2015). Further exploring found 
that LINC00152 can also exist in blood stably because of 
its protected by exosomes, indicating that it may act as a 
circulating biomarker for gastric cancer (Li et al. 2015b). 
More recently, Zhou et al. (2015) have confirmed that cyto-
plasmic LINC00152 could directly bind with epidermal 
growth factor receptor (EGFR) which caused a constitu-
tive expression of EGFR and an activation of PI3K/AKT 
signaling, then promoting tumor growth. Another study 
has demonstrated that hypomethylated LINC00152 was 
upregulated in HCC and induced cell proliferation as well 
as tumor growth by binding to the promoter of epithelial 
cell adhesion molecule (EpCAM) through a cis-regulation 
and then activating the mechanistic target of rapamycin 
(mTOR) pathway (Ji et al. 2015).

Taurine-up-regulated gene 1 (TUG1), a 7.1-kb lncRNA, 
is generally down-regulated in NSCLC. Decreased TUG1 
lncRNA expression was also found to be associated with a 
higher tumor (T), lymph node (N), metastasis (M) stage and 
tumor size, as well as poorer overall survival (Zhang et al. 
2014). Further experiments revealed that TUG1, as a direct 
transcriptional target of P53, could epigenetically represses 
the expression of HOXB7 (a known oncogene) by bind-
ing to PRC2, thus inhibiting cell proliferation in NSCLC. 
Together, these results suggested that P53-regulated TUG1 
lncRNA is a growth regulator that acts partly by control-
ling HOXB7. In addition, the P53/TUG1/PRC2/HOXB7 
network might serve as targets for NSCLC diagnosis and 
therapy.

Recently, Wu et al. (2015) have demonstrated that a 
lncRNA TCF7 was induced by IL-6 in a time- and dose-
dependent manner through activating STAT3, which was 
essential for IL-6 induced epithelial-mesenchymal transi-
tion (EMT) process, invasion and mobility of HCC cells. 
LncRNA urothelial cancer-associated 1 (UCA1) was 
reported to be involved in several type of tumors, includ-
ing bladder cancer (Li et al. 2014c), tongue squamous cell 

carcinoma (TSCC) (Fang et al. 2014), melanoma (Tian 
et al. 2014), esophageal squamous cell carcinoma (ESCC) 
(Li et al. 2014a), gastric cancer (Zheng et al. 2015), HCC 
(Wang et al. 2015a), NSCLC (Wang et al. 2015c) and ovar-
ian cancer (Wang et al. 2015b), mostly by regulating cellu-
lar migration and invasion. Recently Xue et al. (2015) have 
discovered that UCA1 induced EMT of bladder cancer 
cells by increasing the expression of ZEB1/2, and regulated 
bladder cancer cell migration and invasion by hsa-miR-145 
and its target gene the FSCN1.

It has been suggested that interactions of tumor cells 
in microenvironment are recognized as a critical determi-
nant of the carcinogenesis and promote the invasion and 
metastasis of tumors (Bissell et al. 2002). Exosomes, as 
intercellular communication tools originating from endo-
somal compartments called multivesicular bodies (MVBs), 
have recently been reported to be important carriers for 
some lncRNAs that play roles in tumor progression (Wang 
et al. 2014b; Isin et al. 2015). For example, a recent study 
has found that intercellular transfer of lncRNA TUC399, 
which was functionally implicated in modulating tumor 
cell growth and adhesion, can be mediated by HCC cells-
derived exosomes (Kogure et al. 2013). The exosomes-
mediated intercellular transfer of TUC399 may be a 
mechanism by which tumor cells can modulate their local 
cellular environment. Taken together, functionally active 
lncRNA molecules can be transferred by exosomes, ena-
bling cells to exert genetic influences on other cells within 
the microenvironment.

lncRNAs involved in cardiovascular diseases

It is becoming more evident that lncRNAs play important 
roles in cardiovascular development and diseases. Two 
recent reports have demonstrated that the two lncRNAs 
Fendrr and Braveheart (Bvht) are involved in heart devel-
opment (Grote et al. 2013; Klattenhoff et al. 2013). With 
the application of high-throughput sequencing techniques, 
some lncRNAs were found to be master regulators in the 
pathogenesis of human heart diseases, including myocar-
dial infarction, cardiomyopathy, heart failure, and athero-
sclerosis (summarized in Table 2).

lncRNAs in myocardial infarction

Ishii et al. (2006) identified and named the lncRNA myo-
cardial infarction associated transcript (MIAT), which 
might confer a genetic risk of myocardial infarction (MI). 
The MIAT gene has six SNPs, and the minor variant of 
one SNP (A11741G) caused a 1.3-fold increase in MIAT 
lncRNA transcriptional level in vitro, with the normal A 
allele exhibiting tighter binding to an unidentified nuclear 
factor (Ishii et al. 2006; Schonrock et al. 2012). According 
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to the results of this study, it is possible that the altered 
expression of MIAT lncRNA due to this SNP may play a 
role in MI pathogenesis.

Furthermore, a microarray-based study identified 20 up-
regulated lncRNAs and ten down-regulated lncRNAs fol-
lowing MI in mice, among which two specific lncRNAs, 
MIRT1 and MIRT2, were significantly up-regulated by 
fivefold and 13-fold, respectively. MIRT1 and MIRT2 were 
associated with genes involved in left ventricular remod-
eling (Zangrando et al. 2014).

lncRNAs in ischemia/reperfusion injury

LncRNAs were also studied in the pathology of cardiac 
ischemia/reperfusion (I/R). Liu et al. (2014) analyzed the 
expression changes of lncRNAs in the early stage of rep-
erfusion in the mouse infarct region. After ischemia, 64 
lncRNAs were up-regulated and 87 lncRNAs were down-
regulated among total 31,423 lncRNAs. Specifically, fur-
ther analysis by the co-expression modules indicated that 
a down-regulated lncRNA uc007prv.1 was connected to a 
tumor necrosis factor-alpha-inducible gene, encoding A20 

(TNFAIP3) which was reported to be involved in I/R (Yu 
et al. 2011). PHB2, as a subunit of the prohibition com-
plex, has an important role in inhibiting mitochondrial fis-
sion and apoptosis and is abundantly expressed in cardio-
myocytes under physiological conditions. Recently, a study 
reported that the lncRNA cardiac apoptosis-related lncRNA 
(CARL) can act as an endogenous sponge of miR-539 that 
targets PHB2 (Wang et al. 2014d). CARL can impair miR-
539-dependent PHB2 down-regulation by directly binding 
to miR-539 and inhibiting its expression upon I/R. The ulti-
mate result in a reduction in mitochondrial fission, apopto-
sis and infract sizes.

lncRNAs in cardiac hypertrophy and heart failure

Clusters of lncRNAs have been associated with cardiac 
hypertrophy. Recently, Pei et al. (Han et al. 2014) iden-
tified a cluster of lncRNA transcripts from the myosin 
heavychain 7 (MYH7) loci, which they termed myosin 
heavy-chain-associated RNA transcripts (Myheart, or 
Mhrt). These authors demonstrated a reciprocal Mhrt-
Brg1 inhibition feedback circuit that is crucial for heart 

Table 2  Representative lncRNAs involved in cardiovascular diseases

I/R ischemia and reperfusion, MI myocardial infarction, Myd88 myeloid differentiation primary response gene 88, MDM2 murine double minute 
2, GPR119 G protein-coupled receptor
a The experimental subject is mouse

LncRNA Size Cytoband Diseases Biological functions References

CARLa N/A Chr2 I/R Increases the expression of PHB2  
through directly binding to miR-539  
and inhibiting its expression

Wang et al. (2014d)

MIAT ≈9 kb 22q12.1 MI Retinal cell fate specification, SNPs  
of lncRNA, confers risk of MI

Ishii et al. (2006) and 
Schonrock et al. (2012)

MIRT1a N/A Chr19 MI May attribute to infiltration of  
inflammatory cells into the heart

Zangrando et al. (2014)

MIRT2a N/A Chr19 MI May attribute to infiltration of  
inflammatory cells into the heart

Zangrando et al. (2014)

LIPCAR N/A N/A MI Unknown, biomarker Kumarswamy et al. (2014)

CHRFa N/A Chr18 Cardiac hypertrophy Regulates Myd88 expression through 
repressing miR-489 expression

Wang et al. (2014c)

Mhrt Splice variants 14q11.2 Cardiac hypertrophy Sequesters Brg1 from its genomic  
DNA targets by competitive binding  
to the helicase domain of Brg1

Han et al. (2014)

APOA1-AS ~20 kb 11q23.3 Coronary heart disease Inhibits the expression of APOA1  
through recruiting chromatin- 
modifying complexes

Halley et al. (2014)

lincRNA-p21 N/A 6p21.2 Coronary heart disease Directly binds to MDM2, leads to p53 
release from MDM2 and binding to  
p300, which thereby enhances p53  
activity

Wu et al. (2014)

DYN-LRB2-2a ~29.1 kb 16q23.3 Coronary heart disease Promotes cholesterol efflux mediated  
by ABCA1 and up-regulates GPR119

Hu et al. (2014)

Coromaker N/A N/A Coronary heart disease Unknown, biomarker Yang et al. (2015b)



1022 Mol Genet Genomics (2016) 291:1013–1033

1 3

function. Brg1, a chromatin-remodeling factor that is acti-
vated by pathological stress, can repress MYH6 and MHRT 
in sense and antisense directions in the heart by occupying 
their promoter regions. This repression causes a pathologi-
cal switch of MYH6/7 expression, contributing to cardio-
myopathy. Interestingly, this stress/Brg1-dependent MYH 
switch can be largely eliminated by restoring Mhrt lncRNA 
to pre-stress levels. In this context, Mhrt lncRNA seques-
ters Brg1 from its genomic DNA targets by competitive 
binding to the helicase domain of Brg1, a domain with a 
dual-binding feature and which is crucial for Brg1′s teth-
ering to chromatinized DNA targets. The studies of these 
authors thereby identified a cardioprotective lncRNA and 
established a new paradigm for lncRNA-chromatin inter-
actions. Another research has identified a lncRNA termed 
cardiac hypertrophy related factor (CHRF), which regulates 
myeloid differentiation primary response gene 88 (MYD88) 
expression and consequent cardiac hypertrophy by repress-
ing miR-489 expression (Wang et al. 2014c).

lncRNAs in coronary heart diseases

Apolipoprotein A-1 (APOA-1), which plays an important 
role in cholesterol efflux, is the major protein component 
of high-density lipoprotein (HDL) in plasma (Fatemi et al. 
2014). Halley et al. (2014) have identified an endogenously 
expressed lncRNA, APOA1-AS, that can negatively regu-
late APOA1 through the recruitment of chromatin-mod-
ifying complexe. These authors found that knockdown of 
APOA1-AS up-regulated APOA1 both in vitro and in vivo, 
with increased active H3K4met3 marks and decreased 
repressive H3K27met3 in the promoter and enhancer 
regions of the APOA1 gene. The knockdown of APOA1-AS 
caused a reduction in the chromatin binding of lysine (K)-
specific demethylase 1 (LSD1) and suppressor of zeste 12 
(SUZ12) protein, a key component of the PRC2 complex. 
This study suggested that targeting APOA1-AS may have 
therapeutic potential in protecting against coronary heart 
disease. Similarly, a mouse study found that oxidized low-
density lipoproteins (LDLs) stimulated an lncRNA called 
DYN-LRB2-2, which promoted cholesterol efflux mediated 
by a transmembrane transport protein functions to transport 
cellular cholesterols to its corresponding apolipoproteins 
(ABCA1) and up-regulated G protein-coupled receptor 119 
(GPR119), which regulated atherosclerotic plaque forma-
tion by decreasing cellular cholesterol levels and inflamma-
tion (Hu et al. 2014).

Another lncRNA associated with coronary heart disease 
is lincRNA-p21, which was observed to be down-regulated 
in patients with coronary artery disease. In a recent study, 
lincRNA-p21 was identified as a key regulator of cell 

proliferation and apoptosis during atherosclerosis (Wu et al. 
2014). The authors showed that lincRNA-p21 repressed 
cell proliferation, neointima formation and induced apopto-
sis by directly binding to mouse double minute 2 (Mdm2). 
This binding leads to P53 release from Mdm2 and its bind-
ing to P300, thereby enhancing P53 activity.

lncRNAs and autoimmune diseases

In recent years, a few of lncRNAs have been identified in 
the context of autoimmune diseases, suggesting that lncR-
NAs may be involved in the pathogenesis of these condi-
tions (Table 3).

lncRNAs in systemic lupus erythematosus (SLE)

SLE is a chronic systemic autoimmune disease character-
ized by the production of multiple autoantibodies, comple-
ment activation and immune-complex deposition, resulting 
in widespread tissue damage (Zhao et al. 2010). Recently, 
a lncRNA GAS5 has been linked with increased suscepti-
bility of SLE in mouse models, presumably as a result of 
its effect on the immunosuppressant role of glucocorticoids 
(Kino et al. 2010). Since suppressed GAS5 may inhibit cell 
cycle and apoptosis, it is implicated in autoimmune dis-
eases by leading promotion antigen exposure and produc-
tion of autoantibodies (Coccia et al. 1992; Haywood et al. 
2006).

lncRNAs in rheumatoid arthritis (RA)

RA is a systemic autoimmune disorder characterized by 
chronic inflammation of synovial tissue (ST) that results 
in irreversible destruction of small to medium size joints 
(Smolen et al. 2007). LncRNA H19, as discussed above, 
may act as both a tumor suppressor and oncofetal gene. 
More interestingly, a previous study has reported that H19 
lncRNA may also play an important role in RA (Stuhlmul-
ler et al. 2003). Stuhlmuller et al. found that H19 lncRNA 
was significantly overexpressed in ST of RA patients 
relative to normal/joint trauma controls. Moreover, H19 
lncRNA exhibited increased sensitivity to starvation/
cytokine regulation in RA (Stuhlmuller et al. 2003).

Recently, Muller et al. (2014) have found that lincRNA 
(used total number, 7.419 lincRNA) was regulated by 
TNFα and superior to IL-6 in CD14 monocytes in human 
subjects with RA. These cytokines have a specific correla-
tion with lincRNA transcription. Therefore, the interregula-
tion of lincRNA may be important intracellular molecular 
effectors of different cytokines in cells of innate immune 
system in the context of RA.
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lncRNAs in psoriasis

A previous study reported that the lncRNA Psoriasis sus-
ceptibility-related RNA Gene induced by stress (PRINS) 
is essential in the survival of keratinocytes under stress 
conditions and may contribute to psoriasis susceptibility 
(Sonkoly et al. 2005). Recently, Tsoi et al. (2015) identi-
fied and characterized the expressed lncRNAs in lesional 
psoriatic, uninvolved psoriatic and normal skin biopsies by 
RNA-seq. These authors detected 2942 previously anno-
tated and 1080 novel lncRNAs that are expected to be skin 
specific. Notably, over 40 % of the novel lncRNAs, such 
as lncRNAs G2608, G25746, and G36220 (a differen-
tially expressed lncRNA (ENSG00000237499) in psori-
atic skin and located within a psoriasis susceptibility locus 
TNFAIP3), are differentially expressed in psoriatic lesions 
versus uninvolved or normal skin. This study implicates 
many lncRNAs in the immunopathogenesis of psoriasis 
and provides a resource for lncRNA studies in other auto-
immune diseases.

lncRNAs in autoimmune thyroid disease (AITD)

AITD, including Graves disease (GD) and Hashimoto’s 
thyroiditis (HT), is caused by an autoimmune response 
to selfthyroid antigens and has a significant genetic com-
ponent. LncRNA SAS-ZFAT (small antisense transcript 
of ZFAT) is a CD19+B cell-specific antisense transcript. 
Shirasawa et al. (2004) discovered that the T allele of SNP 
Ex9b-SNP10, located in intron 9 of ZFAT and the promoter 
region of SAS-ZFAT, is associated with an increased risk 

for AITD. Further studies demonstrated that an unknown 
nuclear factor binds more tightly to the Ex9b-SNP10-T-
associated ZFAT-allele. This binding results in the repres-
sion of SAS-ZFAT expression, which inversely affects the 
expression level of its sense counterpart, truncated ZFAT.

lncRNAs in other autoimmune diseases

Li et al. (2014b) have identified a lncRNA named TNFα 
and hnRNPL related immunoregulatory LincRNA 
(THRIL), which bound specifically to heterogenous 
nuclear ribonucleoprotein L (hnRNPL) and formed a func-
tional THRIL–hnRNPL complex that regulated basal and 
stimulated transcription of TNFα gene by binding to its 
promoter. In activated cells, high levels of TNFα secretion 
initiated a negative feedback loop in which THRIL and, 
in turn, TNFα expression is down-regulated. Interestingly, 
they found that THRIL expression was clearly lower during 
the acute phase of Kawasaki disease during which TNFα 
levels were elevated. This effect mirrored the negative feed-
back loop of THRIL regulation demonstrated in previous 
vitro experiments and suggested that THRIL could be a 
novel biomarker for immune activation.

lncRNAs involved in neurological diseases

The human brain is one of the most complex biological sys-
tems, and recent studies have emphasized an important role 
for lncRNAs in the development and function of the nervous 
system, highlighting the functional importance of this sub-
class of non-coding RNAs in neurological diseases (Table 4).

Table 3  Representative lncRNAs involved in autoimmune diseases

SLE systemic lupus erythematosus, AITD autoimmune thyroid disease, RA rheumatoid arthritis, hnRNPL heterogenous nuclear ribonucleopro-
tein L

LncRNA Size Cytoband Diseases Biological functions References

GAS5 0.6–1.8 kb 1q25.1 SLE Associates with increased susceptibility 
of SLE

Haywood et al. (2006) and Kino et al. 
(2010)

SAS-ZFAT 2.619 kb 8q24.22 AITD May play a critical role in B cell function 
by affecting the expression of truncated 
ZFAT and determine susceptibility to 
AITD

Shirasawa et al. (2004)

H19 2.3 kb 11p15.5 RA May be an indicator of physiological/
pathological stress situations

Stuhlmuller et al. (2003)

PRINS 8.925 kb 10p12.1 Psoriasis May play a protective role in cells 
exposed to stress and contribute to 
psoriasis susceptibility

Sonkoly et al. (2005)

lncRNA G36220 N/A N/A Psoriasis Unknown, differentially expresses in  
psoriatic skin and locates within a  
psoriasis susceptibility locus TNFAIP3

Tsoi et al. (2015)

THRIL 1.98 kb 12q24.31 Kawasaki disease Regulates TNF-α transcription by  
interacting with hnRNPL

Li et al. (2014b)
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lncRNAs and neurodegeneration

In a study of Alzheimer’s disease (AD), Faghihi et al. 
(2008) identified a conserved noncoding antisense tran-
script for β-secretase-1 (BACE1), a crucial enzyme for 
the accumulation of amyloid-β 1–42 (Aβ 1–42) that plays 
a key role in the pathogenesis of Alzheimer’s disease. 
The antisense transcript (lncRNA BACE1-AS) rapidly 
and reversibly up-regulates BACE1 levels by increasing 
BACE1 mRNA stability in response to a variety of cell 
stresses, including Aβ1–42 exposure; this effect results in 
additional Aβ1–42 production. Subsequently, increased 
Aβ1–42 levels further increase BACE1-AS expression 
through a post-transcriptional feed-forward mechanism 
(Faghihi et al. 2008). In addition, Faghihi et al. also found 
that treatment with BACE1-AS siRNA can abolish stress-
induced increases in BACE1 expression without disturbing 
physiologically essential expression levels. Consequently, 
the authors proposed that BACE1-AS may be a perfect 
biomarker and therapeutic target in Alzheimer’s disease 
(Faghihi et al. 2008). Another lncRNA that was found to 
be dysregulated in AD was brain cytoplasmic 200 (BC200) 
RNA, a translational regulator that is selectively targeted to 
the somatodendritic domains of neurons (Mus et al. 2007). 
BC200 levels were found to be up-regulated in brain areas 
that are affected in AD, such as Brodmann’s area 9 and 
the hippocampus. Relative BC200 levels in those areas 
increased in parallel with disease severity. Moreover, in 
more advanced stages of AD, BC200 was mislocalized and 
clustered in the perikaryon. These observations suggested a 
potential role of this dendritic lncRNA in the synaptoden-
dritic deterioration that occurs in AD.

Spinocerebellar ataxia type 8 (SCA8) is characterized 
by bidirectional transcription of the CTG/GAG expansion 

repeat, which produces both (1) a lncRNA transcript con-
taining a CUG expansion (CUGexp), ATXN8OS; and (2) a 
polyglutamine expansion protein encoded by the ATXN8 
CAG expansion (CAGexp) transcript, which is transcribed 
in the opposite direction (Moseley et al. 2006). A recent 
study found that the expanded ATXN8OS transcripts 
accumulated as ribonuclear inclusions that co-localized 
with the splicing factor MBNL1 in a subset of neurons in 
SCA8 patients and mice (Daughters et al. 2009). In addi-
tion, ATXN8OS transcripts induced splicing changes and 
increased the expression of a CUGBP1-MBNL1-regu-
lated CNS target, GABA-A transporter 4 (Gabt4). This 
transporter is associated with the loss of GAB Aergic 
inhibition within the granular cell layer (Daughters et al. 
2009). Together, these results suggested that the expanded 
ATXN8OS transcripts can alter the activities of alternative 
splicing factors through an RNA gain-of-function mecha-
nism, contributing to SCA8 pathogenesis.

To elucidate the lncRNA network changes in Hunting-
ton’s disease (HD), Johnson (2012) have mined existing 
microarray data (Hodges et al. 2006) to identify seven new 
lncRNAs that were dysregulated in HD brains. Three of 
them were novel, among which LINC00341 and RPS20P22 
were elevated in HD compared to controls, whereas 
LINC00342 was decreased. The four known lncRNAs 
changed significantly in the brains of HD patients including 
TUG1 and NEAT1 (which were upregulated in HD) and 
MEG3 and DGCR5 (which were downregulated). Interest-
ingly, several of these lncRNAs contained genomic binding 
sites for RE1 Silencing transcription factor (REST), a key 
mediator of transcriptional changes in HD, including the 
known REST target lncRNA, DGCR5. Similarly, a sepa-
rate study showed that the HAR1 lncRNA locus (including 
both HAR1F and HAR1R transcripts) was a direct target 

Table 4  Representative lncRNAs involved in central nervous system diseases

AD Alzheimer disease, SCA8 spinocerebellar ataxia type 8, HD Huntington’s disease, FXS fragile X syndrome, SZ schizophrenia, ASD autism 
spectrum disorder

LncRNA Size Cytoband Diseases Biological functions References

BACE1-AS ~2 kb 11q23.3 AD Increases BACE1 mRNA stability Faghihi et al. (2008)

BC200 13.458 kb 2p21 AD May play a role in synaptodendritic  
deterioration of AD

Mus et al. (2007)

ATXN8OS 32 kb 13q21 SCA8 A toxic gain of function at RNA level;  
causes splicing changes and increased  
expression of Gabt4

Moseley et al. (2006)  
and Daughters et al. (2009)

HAR1 N/A N/A HD Influences genes promoting aberrant  
nuclear-cytoplasmatic trafficking of REST gene

Johnson et al. (2010)

FMR4 2.4 kb Xq27.3–28 FXS Antiapoptotic function, function in FXS is unknown Khalil et al. (2008)

Gomafu/MIAT ≈9 kb 22q12.1 SZ May act as a splicing factor scaffold Barry et al. (2014)

MSNP1AS 3.9 kb 5p14.1 ASD Associates with the susceptibility of ASD Kerin et al. (2012)
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of REST, and that the expression of HAR1 lncRNA was 
significantly reduced in the brains of HD patients (Johnson 
et al. 2010).

lncRNAs and neurodevelopmental/neuropsychiatric 
disorders

Fragile X syndrome (FXS) is caused by the expansion 
of CGG trinucleotide repeats in the 5′UTR of the fragile 
X mental retardation 1 (FMR1) gene, which encodes the 
crucial neuronal development protein FMRP. The expan-
sion of CGG repeats to above 200 leads to promoter meth-
ylation and consequently to the repression or silencing of 
the FMR1 gene (Garber et al. 2006; Khalil et al. 2008). 
A recent study identified the lncRNA FMR4, the tran-
scription of which is initiated upstream and likely shares 
a bidirectional promoter with FMR1 (Khalil et al. 2008). 
The researchers found that FMR4 lncRNA was silenced 
in Fragile X patients. In addition, FMR4 lncRNA was 
determined to markedly affect cell survival given that its 
overexpression increased cell proliferation while its down-
regulation induced apoptosis. Thus, the silencing of FMR4 
lncRNA in the neurons of Fragile X patients might contrib-
ute to the pathogenesis of this disease.

Schizophrenia (SZ) is a complex disease that has been 
associated with alternative splicing (Morikawa and Manabe 
2010). Recently, Barry et al. (2014) demonstrated that 
the lncRNA Gomafu (also known as MIAT and RNCR2), 
which localized to a novel nuclear compartment consisting 
of pre-mRNA splicing factors, was involved in alternative 
splicing of the SZ pathology-related genes DISC1 (dis-
rupted in schizophrenia 1) and 4ERBB4 (v-erb-a erythro-
blastic leukemia viral oncogene homolog). These studies 
functionally link activity-regulated lncRNAs and alterna-
tive splicing in neuronal function and open up new avenues 
for potential SZ therapies that target lncRNA (Barry et al. 
2014).

Autism spectrum disorder (ASD), whose pathophysiol-
ogy is poorly understood, refers to a heterogeneous group 
of neurodevelopmental disorders characterized by defects 
in social interactions, language, and behavioral flexibil-
ity (Geschwind 2008). A GWAS conducted by Kerin et al. 
(2012) identified a SNP associated with ASD in a gene-
poor region of chromosome 5p14.1. This locus was found 
to encode a 3.9 kb lncRNA (named MSNP1AS) antisense 
to moesin pseudogene 1 (MSNP1), which shows no evi-
dence of being transcribed in the sense orientation. The 
SNP-containing MSNP1AS transcript was highly over-
expressed in post-mortem cerebral cortex of patients with 
ASD and regulated expression of moesin protein (a known 
regulator of nuclear architecture (Paglini et al. 1998) 
in human cells lines, suggesting a possible role in ASD 
pathophysiology.

The potential of lncRNAs as biomarkers 
and therapeutic targets

As introduced previously, lncRNAs show higher tissue 
specificity compared with mRNAs and miRNAs and are 
significantly dysregulated expression in a wide range of 
diseases. In addition, they are detectable in tissue and body 
fluids steady. These features make lncRNAs very suitable 
as biomarkers. In recent years, most of lncRNAs biomark-
ers have been identified in many kinds of cancers and car-
diovascular diseases.

As aberrant regulation of lncRNAs promotes tumor 
formation, progression and metastasis, they may be attrac-
tive novel biomarkers and therapeutic targets for cancers 
(Ge et al. 2013; Ishibashi et al. 2013; Konishi et al. 2015; 
Shi et al. 2015; Tian and Xu 2015; Walsh et al. 2014; Wei 
and Niu 2015; Yan et al. 2015). On the one hand, lncRNAs 
with differential expressions in tumor tissues can be used 
as biomarkers (Chen et al. 2015c; Guo et al. 2015; Ellinger 
et al. 2015; Liu et al. 2015b). For example, lncRNA PVT1, 
which was up-regulated in human gastric cancer, was 
identified as a new biomarker for gastric cancer and may 
indicate lymph node invasion (Ding et al. 2014). LncRNA 
ABHD11-AS1 (ABHD11 Antisense RNA 1) expression 
was significantly increased in gastric cancer compared 
with adjacent non-tumor tissues, indicating its potential 
to be a biomarker for the diagnosis of gastric cancer (Lin 
et al. 2014). Prensner et al. (2014) have identified and 
validated high expression of lncRNA SChLAP1 as sig-
nificantly prognostic for metastatic disease progression of 
prostate cancer, suggesting the potential of SChLAP1 as a 
biomarker for treatment intensification in aggressive pros-
tate cancer.

On the other hand, circulating lncRNAs may be 
extremely suitable as noninvasive biomarkers for cancers. 
For example, HULC and LINC00152 are novel plasma bio-
markers in predicting diagnosis of HCC (Li et al. 2015a). 
GAS5 may be a plasma biomarker in breast cancer for 
assessing the surgical effects (Han et al. 2015). PTENP1 
are serum diagnostic markers for gastric cancer (Dong et al. 
2015). PCA3 (DD3) (Nilsson et al. 2009) and TRPM2-AS 
(Orfanelli et al. 2015) are urine biomarkers for prostate 
cancer. Recently, Tong et al. (2015) have identified lncRNA 
POU3F3 as a novel plasma biomarker for diagnosis of 
ESCC, and the combination of POU3F3 and serum squa-
mous cell carcinoma antigen (SCCA) was more efficient 
for ESCC detection, in particular for early tumor screening. 
Another research has reported three lncRNAs including 
RP11-397D12.4, AC007403.1, and ERICH1-AS1 as poten-
tial biomarkers for predicting the tumorigenesis of NSCLC 
in the future (Tang et al. 2015). More biomarkers for vari-
ous tumors were summarized in Table 5.
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Since tissues of heart and vascular are difficult to obtain 
from patients of cardiovascular diseases, the identified bio-
markers are mainly circulating lncRNAs (Van Roosbroeck 
et al. 2013). For instance, the mitochondrial lncRNA LIP-
CAR, which showed decreased expression early after myo-
cardial infarction but increased expression during later 
stages, was identified as a novel plasma biomarker for 
cardiac remodeling and predicts future death in patients 
with heart failure (Kumarswamy et al. 2014). LncRNA 
Coromaker was increased in the plasma of coronary artery 
disease (CAD) patients with a 92 % specificity and was 
very stable in plasma samples due to their contained in the 
plasma extracellular vesicles (Evs), making it a stable, sen-
sitive and specific biomarker for CAD (Yang et al. 2015b).

LncRNAs also have widespread application prospects 
in the targeted therapies. Chemically synthetic oligonucle-
otides that have been proven to be effective for targeting 
endogenous miRNAs in mice also have potential applica-
tions in lncRNAs-related therapies (Wang et al. 2012; Cai 
et al. 2015). For example, systemically administered ASOs 
in mice effectively knocked down the lncRNA MALAT1 in 
muscles, correcting myotonic dystrophy in vivo (Wheeler 
et al. 2012). Recently, Meng et al. (2015) developed a 
potential therapeutic intervention for AS by reducing 
UBE3A-ATS with ASOs and inducing a re-expression of 
UBE3A at both the RNA and protein level. In addition, 
preventing the interaction of lncRNAs with their target 
proteins may represent another therapeutic avenue. For 
example, the administration of an “antagolinc” against 
HOTAIR would lead to competitive inhibition of a chroma-
tin-remodeling complex, such as PRC2, by binding to the 
lncRNA. This inhibition would normalize the chromatin 
state to inhibit cancer cell growth and metastasis (Tsai et al. 
2011). Recently, lncRNAs related to tumor chemotherapy 
resistance were reported. Reversing the expression of these 
lncRNAs in tumors may improve tumor chemoresistance. 
For example, both HOTAIR (Hutzelmann et al. 2000) and 
AK126698 (Yang et al. 2013b) lncRNAs participate in 
resistance to cisplatin in NSCLC. Effective inhibitors that 
down-regulate HOTAIR expression or sensitize AK126698 
may be efficient therapeutic interventions for alleviating 
cisplatin resistance in NSCLC patients. Taken together, 
these recent advances indicate a significant potential in 
developing lncRNA-mediated diagnostics and therapies.

Techniques of identifying lncRNAs deregulated 
in human diseases

As lncRNAs are highly abundant in mammals and have 
been demonstrated to play important roles in many bio-
logical processes and diseases, there has been an ever 

increasing need to develop accurate detecting methods for 
deregulated lncRNAs in human diseases. So far, lncRNA 
detection technologies are mainly devided into two cat-
egories: high throughput technologies mainly including 
lncRNA microarray and next-generation RNA-seq, and 
gene-specific detection methods such as RT-qPCR and 
Northern blot.

LncRNA microarray technique is designed for the 
global profiling of human lncRNAs and mRNAs, which 
can identify the lncRNAs involved in known signal-
ing pathways according to the relevant mRNA expres-
sion changes in different diseases and control samples 
(Wang et al. 2015d). Next-generation RNA-seq enables 
non-biased, high throughput, probe-independent inspec-
tion of expression data and high coverage and quantifica-
tion of global transcript levels as well as the detection of 
expressed exons and junctions given a sufficient sequenc-
ing depth (Soreq et al. 2015). All RNA-seq experiments 
follow a similar protocol, during which total RNA is 
isolated from a sample of interest prior to preparing an 
lncRNA library, and ultimately produce one read in a 
single-end sequencing reaction or two ends separated by 
an unsequenced fragment in paired-end reactions (Mor-
tazavi et al. 2008). Recently, researchers proposed a tar-
get RNA-seq technology named RNA capture sequencing 
(RNA CaptureSeq), which integrated current gene cap-
ture techniques and the latest deep sequencing technol-
ogy (Mercer et al. 2012; Clark et al. 2015). This technol-
ogy can identify and characterize unannotated transcripts 
whose rare or transient expression is below the detection 
limits of conventional sequencing approaches (Mercer 
et al. 2012).

Besides custom RT-qPCR and in situ hybridization 
(ISH), there are several more advanced technologies for 
deregulated lncRNAs in human diseases. For example, 
Yue et al. (2014) have reported a new technique combining 
RNA fluorescent in situ hybridization (FISH) with immu-
nofluorescence (immuno-FISH), that can be employed at 
the single cell level to detect the spatial dynamics of spe-
cific lncRNA localization with simultaneous insight into 
the localization of proteins, epigenetic modifications and 
other details which can be highlighted by immunofluo-
rescence. Eissa et al. (2015) have developed a PCR-free 
nanoparticle-based specific hybridization assay for direct 
detection of lncRNA urothelial carcinoma associated-1 
(UCA1). Very recently, Liu et al. (2015a) also proposed a 
novel strategy based on Pt–Pd bimetallic nanodendrites/
nanoflower-like clusters on graphene oxide/Au/horserad-
ish peroxidase (PtPd BND/BNF@GO/Au/HRP) to enhance 
the catalytic efficiency and sensitivity. These strategies may 
provide more advanced selections for identifying lncRNAs 
in clinical tissues.
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Perspectives

Due to the diversity of lncRNAs function and their impor-
tant roles in a wide range of diseases, lncRNAs have 
become the focuses of scientists. Correspondingly, the 
field of lncRNAs is rapidly evolving with numerous novel 
lncRNA molecules discovered covering a variety of bio-
logical and cellular processes. Although several break-
throughs in understanding the mechanisms and roles of 
lncRNAs have occurred, researchers are still striving to 
identify novel lncRNAs and their associated molecules 
using bioinformatics and high-throughput sequencing 
technologies. However, there remain significant gaps in 
our understanding of this RNA species. First, we have 
only hit the tip of the iceberg as only a handful of mam-
mal lncRNAs involved in diseases have been identified 
in robust genetic models, and their roles in diseases are 
obscure. So, it’s urgent to identify more diseases-related 
lncRNAs and clarify their acting mechanisms. Develop-
ment of unbiased genetic screens, systematic identifica-
tion of lncRNA expression patterns, as well as a charac-
terization of the lncRNAs themselves and their associated 
proteins, should pave the way towards this issue. Second, 
lncRNAs are fast becoming novel targets for gene therapy 
because of their large number and broad means of gene 
expression regulation. For instance, ASOs, siRNA and 
‘antagolinc’ have been used to target diseases-associated 
lncRNAs for therapeutic purpose. However, there are still 
a lot of challenges to overcome: there is no mature gene 
therapy means based on lncRNAs as yet, and many tech-
nologies have their defects, with delivery and stability 
issues being the most common difficulties. So, it’s nec-
essary to overcome these challenges and develop better 
therapeutic technologies for exploring lncRNAs-based 
therapies to a greater degree, which ultimately unveil their 
utility as novel diagnostic and therapeutic strategies in 
human complex diseases. Third, given the fact that lncR-
NAs can mediate epigenetic regulation of gene expression 
by recruiting chromatin-remodeling complexes to specific 
locations in the genome, they may have potentials to be 
novel epigenetic intervention tools for specific sites within 
the genome. Exploring lncRNAs-based epigenetic inter-
vention tools will provide a new landscape for research 
and therapy of human complex diseases which involve 
epigenetic mechanisms. Taken together, further compre-
hensive study of lncRNAs will provide new answers to 
old questions in evolution, development as well as disease 
diagnostics and therapeutics.
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