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functions and processes of the two muscles. Moreover, 
transcriptome comparison between EDL and Sol identi-
fied many muscle-related genes (CSRP3, ACTN2, MYL1, 
and MYH6) and pathways related to myofiber formation, 
such as focal adhesion, tight junction formation, extracel-
lular matrix (ECM)–receptor pathway, calcium signaling, 
and Wnt signaling. In addition, 58,362 and 58,359 single 
nucleotide polymorphisms were identified in EDL and Sol, 
respectively, and the sequence of 9069 genes was refined 
at the 5′, 3′ or both ends. Numerous novel transcripts and 
alternatively spliced RNAs were also identified. Our tran-
scriptome analysis constitutes valuable sequence resource 
for uncovering important genes and pathways involved in 
muscle fiber type determination, and might help further our 
understanding of the molecular mechanisms in different 
types of muscle.
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Abbreviations
EDL	� Extensor digitorum longus
Sol	� Soleus
DEGs	� Differentially expressed genes
GO	� Gene ontology
SNPs	� Single nucleotide polymorphisms
CPC	� Coding potential calculator
FDR	� False discovery rate
AS	� Alternative splicing

Introduction

Vertebrate skeletal muscles are mainly comprised of two 
myofiber types: red (type I and IIa) and white (type IIb) 

Abstract  Skeletal muscle fibers are mainly categorized 
into red and white fiber types, and the ratio of red/white fib-
ers within muscle mass plays a crucial role in meat qual-
ity such as tenderness and flavor. To better understand the 
molecular difference between the two muscle fibers, this 
study takes advantage of RNA-seq to compare differences 
in the transcriptome between extensor digitorum longus 
(EDL; white fiber) and soleus (Sol; red fiber) muscles of 
large white pigs. In total, 89,658,562 and 46,723,568 raw 
reads from EDL and Sol were generated, respectively. 
Comparison between the two transcriptomes revealed 561 
differentially expressed genes, with 408 displaying higher 
and 153 lower levels of expression in Sol. Quantitative 
real-time polymerase chain reaction validated the differ-
ential expression of nine genes. Gene ontology and Kyoto 
Encyclopedia of Genes and Genomes pathway analy-
sis discovered several differentially enriched biological 
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(Lefaucheur et al. 2004). In many pig breeds, muscles with 
different fiber type composition vary in postmortem proper-
ties, thus affecting meat quality (Choi et al. 2013). Specifi-
cally, favorable meat quality determinants, such as tender-
ness and color, show tight and positive correlation with the 
abundance of red (or oxidative) muscle fibers (Maltin et al. 
2003). Profiling differentially expressed genes (DEGs) 
among different muscles with varying fiber type composi-
tions enables molecular differences between the two fiber 
types and factors dictating fiber type determination to be 
discovered. It will also contribute to improvement of meat 
quality in the animal husbandry industry.

Transcriptome studies have been performed in the hope 
of revealing the complete network that regulates the pheno-
typic traits of different types of muscles. cDNA microar-
ray analysis of porcine skeletal muscle by Bai et al. (2003) 
identified a large number of candidate genes for muscle 
phenotype determination, which included several mem-
bers of the casein kinase 2 signaling pathway. In 2012, de 
la Serrana et al. (2012) performed a de novo assembly of 
454 reads of the transcriptome of the fast skeletal muscle 
of gilthead sea bream and identified numerous gene para-
logs, microsatellite repeats and splice variants. Recently, 
a genome-wide investigation between the slow (soleus) 
and fast (longissimus dorsi) skeletal muscle of Chinese 
Meishan pigs identified 28 key signaling pathways, such 
as insulin and mitogen-activated protein kinase (MAPK) 
pathways that contribute to metabolic discrepancy (Li et al. 
2010). However, the aforementioned methods also come 
with some limitations, such as an over-reliance on the pre-
sent understanding of relative genome sequences, and irreg-
ular high background levels caused by cross-hybridization. 
Furthermore, the dynamic range detection is also impeded 
by both background and saturation of signals (Wang et al. 
2009).

Next generation sequencing technologies (e.g., RNA-
seq) are powerful tools for unraveling transcriptome com-
plexity, identification of genes, and for alternative splice 
and transcriptome profiling. RNA-seq displays several 
advantages over other existing methods, as it is not con-
strained to identifying transcripts that relate to existing 
genome sequence and also has very low background sig-
nals, enabling the whole transcriptome to be studied in a 
high-throughput and quantitative manner (Wang et  al. 
2009). Previously, Palstra et al. (2013) utilized an RNA-seq 
approach to classify slow and fast muscle transcriptomes of 
rainbow trout and found 1085 and 1228 novel sequences 
in the muscle types, respectively, covering most of the key 
genes for skeletal muscle function.

The large white, an intensively selected porcine breed, 
shows better growth performance than many other pig 
breeds (Ruusunen et al. 2012). Breeding and selection can 
increase skeletal muscle mass by significantly changing 

both the number and diameter of myofibers. However, 
a byproduct of breeding and selection aiming to increase 
growth rate and lean meat production is variation in skel-
etal muscle traits, such as myofiber composition. This is 
important because muscle fiber composition is a major 
property of meat quality (Rehfeldt et al. 2008). Therefore, a 
better understanding of the molecular mechanisms defining 
this trait will provide insight into improving meat produc-
tion and quality.

In this study, RNA-seq was used to investigate dif-
ferences in skeletal muscle transcriptomes between red 
(soleus, Sol) and white (extensor digitorum longus, EDL) 
fiber muscles of the large white pig. We also explored the 
effects of DEGs in transcriptome networks between differ-
ent types of myofiber. Our study provides an analysis of the 
mechanisms underlying muscle fiber type determination, 
and expands our existing knowledge on the molecular net-
works regulating meat quality and production.

Materials and methods

Animals and tissue sampling

Three 180-day-old large white pigs from the same litter 
were slaughtered by electrical stunning and exsanguination, 
in accordance with the national regulations for commercial 
slaughtering. EDL and Sol muscle samples were isolated 
and then snap-frozen in liquid nitrogen for further analysis.

RNA isolation, library construction and RNA‑seq 
analysis

EDL and Sol muscle samples from the three 180-day-old 
pigs were, respectively, pooled, and total RNA was col-
lected from each pooled sample using Trizol reagent 
(Invitrogen, USA) in accordance with the manufacturer’s 
protocol. The quality and concentration of RNAs were 
determined by denaturing gel electrophoresis and spec-
trophotometry (Thermo, USA). The pooled RNA samples 
from three pigs are tested by RNA-seq and we carry out 
qPCR validation with these pigs for three times separately.

Total RNA was treated with DNase I and mRNA iso-
lated with Oligo (dT) magnetic beads. The mRNA was 
fragmented into short fragments using fragmentation buffer 
and cDNA was synthesized using the mRNA fragments 
as templates. The purified short fragments were incubated 
with EB buffer for end reparation and single nucleotide 
A (adenine) addition, and then the short fragments were 
ligated to adaptors. After agarose gel electrophoresis, the 
proper fragments were isolated as polymerase chain reac-
tion (PCR) templates. Quantification and quality control of 
the sample libraries were performed using an Agilent 2100 
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Bioanalyzer and the ABI StepOnePlus Real-time PCR 
System.

The library was sequenced using an Illumina HiSeq™ 
2000, and primary sequencing data (raw reads) were sub-
jected to quality control to filter clean reads from raw reads. 
Clean reads were aligned to reference sequences using 
SOAPaligner/SOAP2 (Li et al. 2009b). The alignment data 
were utilized to calculate read distribution and to perform 
coverage analysis.

Sequence annotation and analysis of differential gene 
expression

After quality control and filtering of raw data, clean reads 
were annotated to reference sequences using SOAPaligner/
SOAP2 with up to five mismatches allowed. Mapping was 
performed against the entire genome sequence archived in 
the Ensemble database (Sus scrofa, http://ensembl.org/pub/
release-71/fasta/sus_scrofa/), and the statistics of alignment 
results are presented for each reference. We used a rigorous 
algorithm by BGI-Shenzhen to detect DEGs between EDL 
and Sol muscles based on the reads per kilobase transcrip-
tome per million mapped reads (RPKM) method (Mor-
tazavi et al. 2008), and the formula is:

Given to be the expression level of reference gene X, 
N represents the whole number of uniquely aligned reads 
for all genes, C to be number of uniquely mappable reads 
that aligned to gene X, and L shows the number of bases on 
gene X. The RPKM algorithm is utilized to minimize the 
impact of sequencing discrepancy as well as different gene 
length for calculating the expression level. As a result, the 
relative gene expression could be directly applied for com-
paring the genes with differentially expressed levels among 
detected samples.

DEG analysis tests thousands of hypotheses simultane-
ously; therefore, correlation for false positive and false neg-
ative errors was performed using the False Discovery Rate 
(FDR) method. We defined genes as DEGs that had abso-
lute fold-change values between EDL and Sol of greater 
than 2.0 and an FDR of less than 0.001 (Wang et al. 2010).

GO and pathway enrichment analysis of DEGs

To thoroughly assess the properties of genes and their prod-
ucts in the two different types of muscle, Gene Ontology 
(GO) and pathway enrichment analysis were performed to 
categorize the considerably enriched functional classifica-
tion or metabolic pathways in which DEGs operate. First 
all DEGs were aligned to GO terms in the database (http://
www.geneontology.org/), and gene numbers calculated for 

RPKM =
109C

NL

every term. Hypergeometric tests then filtered consider-
ably enriched GO terms from the input list of DEGs, based 
on GO::TermFinder. The calculated p value was assessed 
by Bonferroni correction, and GO terms were considered 
as significantly enriched when corrected p values ≤  0.05. 
Pathway analysis was used to identify the significant path-
ways in which DEGs are involved according to the KEGG.

Refinement of gene structures

Transcripts were assembled from reads using Cufflink soft-
ware (Roberts et al. 2011). Gene structure was determined 
on the basis of the distribution of reads, reference gene 
annotations and paired-end sequences. Having performed 
transcript reconstruction and aligned reads to the reference 
genome, we obtained the genomic regions that have con-
tinuous and uniquely mapped reads, called transcription-
active regions (TARs). With the paired-end data, differ-
ent TARs are utilized to construct a potential gene model, 
and optimization of 5′ and 3′ boundaries was decided by 
comparing the potential gene model with existing gene 
annotations.

Single nucleotide polymorphism analysis

We utilized SOAPsnp software (Li et  al. 2009a) to detect 
putative single nucleotide polymorphisms (SNPs) between 
EDL and Sol samples. According to alignment of the 
sequencing reads on existing reference sequences, this pro-
gram assembles the consensus sequence for the transcrip-
tome of a newly sequenced individual. SNPs were then 
detected on this consensus sequence after being compared 
with the reference. The program calculates the probability 
of each genotype at each site according to the alignment 
results of short reads to a reference sequence accompanied 
by the corresponding sequencing quality scores. Finally, it 
deduces the genotype with the highest posterior probability 
at each site on the basis of Bayes’ theorem.

Identification of novel transcript units and alternative 
splicing events

To identify novel transcribed regions, assembled transcripts 
and annotated genomic transcripts were compared with 
reference sequences in the Ensemble database. Transcript 
units identified in intergenic regions more than 200  bp 
away from annotated genes and with a continuous mapping 
length ≥180 bp and the sequence depth ≥2 were defined as 
putative novel transcript units. Coding Potential Calculator 
software (CPC; http://cpc.cbi.pku.edu.cn/) was employed 
to assess protein-coding ability.

According to the structure of exons, we classified alter-
native splicing (AS) events into seven different types, 

http://ensembl.org/pub/release-71/fasta/sus_scrofa/
http://ensembl.org/pub/release-71/fasta/sus_scrofa/
http://www.geneontology.org/
http://www.geneontology.org/
http://cpc.cbi.pku.edu.cn/
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namely exon skipping, intron retention, alternative 5′ splic-
ing, alternative 3′ splicing, alternative first exon, alternative 
last exon, and mutually exclusive exon, using SOAPsplice 
software (Huang et  al. 2011). SOAPsplice implements an 
alignment step by mapping all of the complete reads to the 
reference genome, then the initially unmapped reads are 
mapped using a spliced alignment algorithm.

Protein–protein interaction network construction

To improve understanding of the complex relationships 
between genes in the EDL and Sol libraries, a network 
analysis of protein–protein interactions was performed. 
We analyzed 18 muscle-related DEGs and converted the 
gene IDs to the symbols of corresponding encoded pro-
teins using bioDBnet software (http://biodbnet.abcc.ncifcrf.
gov/db/db2db.php). Then we aligned gene symbols to the 
human functional interaction network in the BioGRID data-
base (http://thebiogrid.org/) and generated a network using 
Cytoscape (http://www.cytoscape.org/). In this interaction 
network, proteins are represented as nodes and intermolecu-
lar interactions are indicated as edges between nodes.

Real‑time quantitative PCR

Total tissue RNAs were isolated using Trizol reagent 
(Takara, Japan) and the quality of RNA was checked by 
agarose gel electrophoresis. RNA concentration was cal-
culated using a spectrophotometer (Thermo, USA). cDNA 
was synthesized using a reverse transcription kit with ran-
dom six-mers and oligo-dT primer (Takara, Japan) and 
approximately 500  ng of total RNA per reaction. Real-
time quantitative PCR analysis was performed in triplicate 
using a SYBR green kit on a Bio-Rad iQ™5 system with 
GAPDH as the internal reference. The 2−ΔΔCt algorithm 
was used to calculate the expression level of target genes. 

Supplementary Table S12 lists the primer sequences, melt-
ing temperature and predicted product sizes for each gene 
studied. The expression difference of each gene between 
the two types of muscles was analyzed using the t test. A 
value of p < 0.05 was defined to be significant and p < 0.01 
highly significant.

Results

Overview of RNA‑Seq data

High-throughput mRNA sequencing was performed to 
obtain expressed short reads for EDL and Sol muscles of 
large white pigs. Two libraries were constructed by pooling 
RNA collected from three EDL muscles and from three Sol 
muscles. As shown in Table  1, RNA-seq analysis yielded 
89,658,562 total reads for EDL muscle and 46,723,568 total 
reads for Sol muscle. After filtering to remove low-quality 
reads and adaptor sequences, we obtained 60,582,089 and 
30,748,017 unique match reads for EDL and Sol samples, 
respectively.

Expressed short reads were mapped to 32,432 reference 
genes (16,415/16,017, EDL/Sol) of the Sus scrofa genome 
assembly in the Ensemble database (Supplementary Table 
S1). As shown in Fig.  1a, b, relatively large numbers of 
genes were highly expressed in both EDL and Sol muscle 
with RPKM values fluctuating from 1.0 to 50. Figure 1c, d 
shows the percentage of genes in the EDL and Sol librar-
ies with different RPKM values. Only a small proportion 
of genes have very high expression levels (>1000 RPKM), 
while many genes are not expressed or only transcribed at 
a low level in both EDL and Sol. The gene ACTA1 (ENS-
SSCG00000010190) was highly expressed in both types 
of muscle with RPKM values of 49,175.14 and 60,481.23, 
respectively. In summary, in both muscle samples only a 

Table 1   RNA-seq data 
summary and annotation results

Perfect match: in total mapped reads, no mismatch exists; <=5 bp mismatch: in total mapped reads, mis-
match number is less than 5 bp; unique match: in total mapped reads, reads aligned to only one position; 
multi-position match: in total mapped reads, reads aligned to two or more positions; total unmapped reads: 
reads that cannot aligned to reference sequence

Alignment statistics EDL Sol

Reads number Percentage (%) Reads number Percentage (%)

Total reads 89658562 100.00 46723568 100.00

Total basepairs 8069270580 100.00 4205121120 100.00

Total mapped reads 58984552 65.79 29749333 63.67

perfect match 37221239 41.51 20443722 43.75

<=5 bp mismatch 21763313 24.27 9305611 19.92

Unique match 56074274 62.54 27654879 59.19

Multi-position match 2910278 3.25 2094454 4.48

Total unmapped reads 30674010 34.21 16974235 36.33

http://biodbnet.abcc.ncifcrf.gov/db/db2db.php
http://biodbnet.abcc.ncifcrf.gov/db/db2db.php
http://thebiogrid.org/
http://www.cytoscape.org/
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few genes were expressed at high levels, whereas most 
genes displayed medium or relatively low expression levels.

Identification of differentially expressed transcripts 
between EDL and Sol skeletal muscle

In this study, a rigorous formula was applied to catego-
rize different expression levels of genes in the two differ-
ent types of muscle based on “The significance of digital 
gene expression profiles”. Transcripts with a twofold or 
greater difference (FDR  ≤  0.001 and absolute values of 
log2(ratio) ≥ 1 ) between the two muscle libraries were 
identified. The global expression pattern of Sol was com-
pared with that of EDL and revealed that up to 2152 genes 

were differentially expressed between the two types of mus-
cle. Overall, we identified 1534 up-regulated and 618 down-
regulated genes (FDR ≤ 0.001 and |log2 Ratio| ≥ 1). More-
over, 561 transcripts with at least twofold difference (408 
up-regulated and 153 down-regulated) were identified with 
the defined significance level (Supplementary Table S2).

Expression levels of muscle‑related genes

To validate the two libraries, we investigated the transcrip-
tion levels of 57 genes related to muscle characteristics 
(Table 2). In summary, there was no significant discrepancy 
for 22 muscle-related genes between EDL and Sol librar-
ies (at most 1.5-fold up- or down-regulation). There were 

Fig. 1   Distribution of genes based on RPKM. a–b The RPKM range detected in EDL and Sol libraries. c–d The percentage of RPKM range 
occupied in the whole reference genes between EDL and Sol samples
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five muscle-related transcripts expressed at relatively high 
levels in both EDL and Sol (RPKM value > 1000), and the 
gene CXADR (ENSSSCG00000012012) was expressed 

at considerably lower levels in the Sol library than in the 
EDL library (Supplementary Table S3). The differen-
tially expressed transcripts participate in contractile fiber 

Table 2   List of some muscle-related genes between EDL and Sol muscle of large white pigs

“+” and “−” indicate the up- and down-regulated expression in Sol group, respectively

Gene title Fold change p value Structure and function

Contractile fiber

Myosin, heavy chain 1, −1.02 0 Muscle contraction

Kyphoscoliosis peptidase 2.04 1.46E-98 Muscle growth, neuromuscular junction

Myosin binding protein C, slow type 1 1.50 0 Binds MHC, F-actin and native thin filaments

Myosin, light chain 1 −1.22 0 Regulatory light chain of myosin

Myomesin 1 1.65 0 Binds myosin, titin, and light meromyosin

Ryanodine receptor 1 1.55 0 Triggering muscle contraction following depolarization of T-tubules

Actinin, alpha 2 2.07 0 Anchor actin to a variety of intracellular structures

Myosin, heavy chain 6 3.40 0 Muscle contraction

Supervillin 1.35 0 Involved in myosin II assembly

Myosin, light chain 4 −1.72 0.000078 Regulatory light chain of myosin

Myosin, heavy chain 7 2.95 0 Muscle contraction

Troponin T type 2 −1.47 0.000012 Thin filament regulatory complex

Cysteine and glycine-rich protein 3 2.17 0 Positive regulator of myogenesis

Histone deacetylase 4 1.73 6.33E-143 Transcription corepressor activity, histone deacetylase activity

Actin, alpha, cardiac muscle 1 4.45 0 ATP binding, myosin binding

Myofibril

Myosin, heavy chain 7 2.95 0 Muscle contraction

Myopalladin 1.68 0 Muscle alpha-actinin binding, cytoskeletal protein binding

TIMP metallopeptidase inhibitor 4 −1.81 4.77E-23 Protein binding, metal ion binding

Ankyrin repeat domain 1 −1.52 0 p53 binding, transcription corepressor activity

Actinin, alpha 2 2.07 0 Calcium ion binding, cytoskeletal protein binding

Ankyrin repeat domain 2 1.96 0 Structural constituent of muscle

Obscurin-like 1 1.23 2.64E-130 Cytoskeletal adaptor activity

Sarcomere

Myosin, light chain 4 −1.72 0.000078 Regulatory light chain of myosin

Crystallin, alpha B 1.05 0 Microtubule binding, cytoskeletal protein binding

Keratin 19 −1.11 5.91E-14 Organization of myofibers, structural constituent of muscle

Troponin C type 1  1.03 0 Striated muscle contraction, calcium ion binding

Myosin complex

Myosin, light chain 9 −1.50 0 Calcium ion binding, structural constituent of muscle

MYOSIN, heavy chain 7B 3.46 0 Muscle contraction

Myosin XVIIIB  1.97 0 Intracellular trafficking of the muscle cell

Muscle cell development

Cholinergic receptor, nicotinic, beta 1 1.30 2.15E-111 Protein binding, ligand-gated ion channel activity

Caveolin 2  −1.25 5.84E-150 Protein binding, protein homodimerization activity

Cyclin B1 −1.61 0.000295456 Control of the cell cycle at the G2/M transition

Cholinergic receptor, nicotinic, alpha 1 1.46 3.71E-08 Contributes to acetylcholine-activated cation-selective channel activity

Regulator of calcineurin 1 1.82 0 Sequence-specific DNA binding transcription factor activity

Coxsackie virus and adenovirus receptor −6.36 8.88E-05 Virus receptor activity, beta-catenin binding

Prospero homeobox 1 1.93 1.48E-73 Transcription corepressor activity

Myogenin 1.15 7.49E-70 Muscle differentiation, Induces fibroblasts to differentiate into myoblasts

Xin actin-binding repeat containing 1 2.64 9.67E-86 Protects actin filaments from depolymerization
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and sarcomere formation, myofibril and myosin complex 
constitution, and muscle cell development. These RNA-
seq results reaffirmed the differential expression of sev-
eral genes between fast and slow skeletal muscles, such 
as GATA-6, HSP20, PGM, fibronectin and MyHC II b. In 
addition, several important transcription factors, including 
CSRP3, ACTG2, HOXD8 and HBM, which play crucial 
roles in muscle development, were observed to be differ-
entially expressed. The newly identified DEGs might func-
tion in transcriptional regulation of metabolic or contractile 
characteristics in the different muscle fiber types.

qPCR validation of RPKM fold changes in EDL 
and Sol muscle

To validate the expression levels of DEGs observed in our 
RNA-seq assay, nine randomly selected transcripts shown 

to be differentially expressed on the basis of RPKM values 
were validated by qPCR. These genes included four with 
higher expression (MYOM3, CSRP3, MYH7B and COMP) 
and five with lower expression (ACTG2, HOXD8, HBM, 
IGFN1 and IFIT1) in EDL muscle compared with Sol mus-
cle. Fold changes from qPCR analyses were compared with 
those from the RPKM values of the RNA-seq results. As 
shown in Fig. 2, the qPCR results confirmed our RNA-seq 
analysis, with all nine genes displaying similar expression 
patterns in both methods. Taken together, these results indi-
cate the high reliability and accuracy of the RNA-seq data.

Gene ontology analysis of DEGs

To illustrate the relationship between differential expres-
sion patterns of genes and their phenotypic variance, we 
performed GO analysis on genes that are differentially 

Fig. 2   qRT-PCR validation of nine differentially expressed genes 
between EDL and Sol. Black indicates the tissue of EDL and white 
indicates the Sol. The data presented in Y axis represented the rela-

tive mRNA expression of both RPKM and qRT-PCR and expressed 
as means of three pigs ± SD. *p < 0.05, **p < 0.01. N = 3
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expressed between the two muscle types. In summary, 
1422, 1481, and 1526 genes were mapped to one or mul-
tiple GO terms for biological process, molecular function 
and cellular component, respectively (Supplementary Table 
S4). According to biological process, the most abundant 
GO terms in both fast and slow muscles consisted of cel-
lular process, single-organism cellular process, metabolic 
process, single-organism process, and biological regula-
tion (Fig. 3). As for molecular function, GO terms for fast 
and slow muscle were predominantly composed of binding, 
catalytic activity, protein binding, heterocyclic compound 
binding, organic cyclic compound binding and ion binding. 
In terms of cellular component, GO terms in both fast and 
slow muscle mainly converged on cell and cell part, intra-
cellular and intracellular part, organelle and intracellular 
organelle. Comparing the fast muscle transcriptome against 
that of the slow muscle identified a variance of GO term dis-
tribution with the threshold of corrected p ≤ 0.05. This level 
of significance indicates significantly enriched GO terms in 
DEGs. Significant expression discrepancy was identified for 
biological processes such as those correlated with muscle 
cell development and muscle structure development. With 
regard to molecular function, cytoskeletal protein binding 
and oxidoreductase activity were identified on the basis of 
essential differential expression. Genes involved in cellu-
lar components that were differentially expressed between 
fast and slow muscle were relevant to myofibril, contractile 

fiber, actin cytoskeleton and sarcomere. Our results provide 
further evidence for a relationship between muscle fiber 
type transformation and DEGs.

Pathway analysis

KEGG pathway analysis was performed for annotated 
genes. Specific enrichment of DEGs was observed in 241 
signaling pathways using the KEGG pathway database 
and 1673 genes were assigned with one or more KEGG 
annotation. As shown in Supplementary Table S5, 230 
and 216 pathways were influenced by up- and down-reg-
ulated DEGs, respectively. The ten most enriched path-
ways between EDL and Sol are listed in Table 3. Notably, 
metabolic pathways occupied the top pathways influenced 
by both up- and down-regulated DEGs. The other enriched 
pathways mainly involved up-regulated DEGs, and 
included focal adhesion, dilated cardiomyopathy and regu-
lation of actin cytoskeleton.

Pathway analysis of DEGs indicated that transcripts 
up-regulated in Sol muscle were mostly concerned with 
hypertrophic cardiomyopathy, vascular smooth muscle 
contraction, regulation of actin cytoskeleton and p53 sign-
aling. Meanwhile, genes up-regulated in EDL muscle were 
involved with cardiac muscle contraction, tight junctions, 
vascular smooth muscle contraction and MAPK signaling. 
These results showed that different sub-branches of related 

Fig. 3   List of top ten enriched Gene Ontology terms based on GO 
classifications. GO annotations was based on Sus scrofa RefSeq and 
GO-terms were processed by GO::TermFinder and categorized into 

three functional groups such as biological process, molecular func-
tion and cellular component
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signaling pathways might lead to the distinct gene expres-
sion observed in these two muscle types.

Construction of protein–protein interaction network

We next studied potential protein–protein interactions of 18 
muscle-related DEGs. A comprehensive functional interac-
tion network is not available for pigs; therefore, Homo sapi-
ens interaction datasets were utilized to construct protein–
protein interacting networks according to the BioGRID 
database. Cytoscape software produced a protein–protein 
network of the candidate proteins and their candidate tar-
gets; we obtained 404 target proteins (including proteins 
that self-interact) involved in this network (Supplementary 
Table S6). In summary, 412 nodes (18 candidate proteins 
and 394 candidate targets) and 464 edges made up the net-
work. Many candidate targets are connected by only one 

candidate protein, but some can be regulated by multiple 
target proteins to affect their expression levels. As shown in 
Fig. 4, VCL, CRYAB and CCNB1 have more than 70 inter-
actions with other proteins. However, MYL1, MYH7 and 
MYPN, which are closely associated with muscle growth 
and development, showed fewer interactions compared 
with other candidate proteins.

Novel transcript prediction

To discover novel transcribed regions, we compared our 
assembled transcripts with annotated genomic transcripts 
from reference sequences. As shown in Supplementary 
Table S7, 10,962 and 9686 novel transcripts were identified 
in EDL and Sol muscles, respectively. The average length 
of a novel transcript unit was 1835 bp, with the size ranging 
from 180 to 22,355 bp. In EDL and Sol libraries, 81.91 and 
82.60 % of novel transcript units were composed of mul-
tiple exons, and the longest novel transcript unit for EDL 
and Sol contained 98 and 85 exons. To study the function 
of novel transcripts, we further distinguished protein-cod-
ing RNAs from non-coding RNAs. Using CPC software, 
we found 9537 and 8636 coding transcripts in EDL and Sol 
muscle, respectively. Generally, protein-coding transcripts 
are associated with a higher CPC score, and thus better 
overall quality. In EDL and Sol muscle, 24.06 and 24.01 % 
of these coding transcripts, respectively, possess relatively 
high potential for protein coding ability (CPC scores ≥ 10).

Optimization of annotated gene structures

To annotate the boundaries of genes more accurately, we 
refined the 5′ and 3′ ends of genes, which is important for 
determining genomic loci for further investigation. After 
genes were compared with existing gene annotations, we 
analyzed the up- and down-stream regions of relevant tran-
scripts acquired by RNA-seq analysis. We assigned 4870 
and 4199 reference transcripts to EDL and Sol, respec-
tively, and the extended results are shown in Supplemen-
tary Table S8. In the EDL sample, 3271 genes were refined 
in the 5′-end region, and 1599 genes had an extension at 
the 3′-end. In the Sol sample, 2814 genes were detected 
to be extended at the 5′-end, and 1385 genes had at least 
an extension at the 3′-end. In the optimized results, 1548 
(17.1  %) genes were extended in at least two regions in 
both muscle samples.

Identification of alternative splicing events

AS is considered to be a significant factor in regulating 
gene expression and increasing functional complexity. To 
elucidate a complete picture of AS events for EDL and 

Table 3   List of first ten pathways for up- and down-regulated DEGs 
between EDL and Sol

Pathway term Pathways ID DEGs tested p value

Pathways for up-regulated DEGs

Metabolic pathways ko01100 89 0.8520

Regulation of actin cytoskel-
eton

ko04810 65 0.0002

Focal adhesion ko04510 62 2.73E-05

Dilated cardiomyopathy ko05414 55 5.02E-08

Tight junction ko04530 55 2.33E-06

Pathways in cancer ko05200 52 0.1256

Hypertrophic cardiomyopa-
thy (HCM)

ko05410 50 1.19E-07

MAPK signaling pathway ko04010 49 0.01304

Vascular smooth muscle 
contraction

ko04270 45 0.0004

Salmonella infection ko05132 43 2.32E-05

Pathways for down-regulated DEGs

Metabolic pathways ko01100 65 0.8520

Cytokine-cytokine receptor 
interaction

ko04060 17 0.5775

Tight junction ko04530 16 2.33E-06

Regulation of actin cytoskel-
eton

ko04810 16 0.0002

Pathways in cancer ko05200 16 0.1256

Vascular smooth muscle 
contraction

ko04270 15 0.0004

Transcriptional misregulation 
in cancer

ko05202 15 0.1610

Purine metabolism ko00230 14 0.1148

Leukocyte transendothelial 
migration

ko04670 14 0.1148

Influenza A ko05164 14 0.3552
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Sol libraries, SOAPsplice software was used to identify all 
theoretical splicing junctions. In summary, 9334 and 8585 
AS events were observed in EDL and Sol libraries, respec-
tively. As shown in Fig.  5, different types of AS events 
and the associated gene numbers were determined. In this 
study, we found that 61.8 and 61.4 % of the alternatively 
spliced genes underwent multiple AS events in EDL and 
Sol libraries, respectively, indicating the complexity of the 
Sus scrofa transcriptome. Of seven types of AS event, exon 
skipping was the most common, accounting for 37.3  % 

(3478) and 26.0 % (2230) of all AS events identified in the 
EDL and Sol libraries, respectively. In contrast, mutually 
exclusive exons were not detected in either library. Sup-
plementary Table S9 shows all AS events in detail for each 
sample.

SNPs exploitation

Based on the alignment of the short reads to the Sus 
scrofa reference genome and the corresponding scores of 

Fig. 4   Protein–protein interaction network of 18 muscle-related 
DEGs. Network of 18 candidate proteins (Triangle) predicted to have 
405 protein targets (Circle). The red and green dots delineate the up-

regulated and down-regulated genes, respectively. Blue dots represent 
non-different expressed genes and the lines indicate the interactions 
between the proteins and their targets
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sequence quality, we obtained the likelihood of each geno-
type at each site using SOAPsnp software and then iden-
tified candidate SNPs. We identified 58,362 and 58,359 
potential SNPs in the EDL and Sol libraries (Supplemen-
tary Table S10). The most common change was C/Y, fol-
lowed by G/R and A/R (Table  4). We mapped most of 
the SNPs on the 19 pig chromosomes (18 autosomes and 
1 allosome). The two muscle samples displayed similar 
mapping results, including most of the SNPs distributed 
on chromosomes 2, 6 and 14. In addition, the number of 
SNPs was moderately higher in EDL than in Sol among 
four chromosomes (Fig. 6).

Discussion

In this study, we utilized RNA-seq to provide a detailed 
view of the transcriptome of red- and white-fiber skeletal 

muscle of the large white pig. We generated >100 million 
sequence reads, corresponding to 13.6 Gb of raw sequence 
data, by performing Illumina sequencing of mRNA from 
EDL and Sol skeletal muscle. We identified 2152 DEGs 
and classified them into GO and KEGG categories; 230 and 
216 pathways in EDL and Sol skeletal muscle, respectively, 
were influenced by up- and down-regulated DEGs. Among 
these DEGs, we identified a large body of genes and related 
pathways implicated in muscle fiber type determination, 
which may offer insight into further improvement of meat 
quality. By comparing the two types of muscle sample, we 
found numerous novel transcripts, AS events, SNPs and 
refinements of genes structure, which may play crucial 
roles in the different types of muscle.

The large white, as the lean type pig, shows better 
growth potential and stable meat quality in commercial use. 
The growth, carcass, fiber type and meat quality character-
istics in lager white pigs remained stable and indicates rela-
tively low standard error in the certain group. Selecting the 
live weight at the same age is one of the significant indi-
cators to improve and control meat quality without reduc-
ing the growth and carcass performance (Choi et al. 2013). 
Thus, the pooled EDL and Sol samples from three pigs in 
the certain age group would possibly represent the charac-
teristics of large white pigs in some extent.

Muscle‑related genes

In both EDL and Sol muscle, 110 annotated genes were 
categorized as muscle-related genes, most of which are 
implicated in contractile fiber, myofibril, sarcomere, con-
tractile fiber part, myosin complex and myosin II com-
plex (Supplementary Table S11). Myofibril was the most 
significant GO term in muscle fiber type determination 
process.

CSRP3 is a component of the Z-disk of sarcomeres. 
CSRP family members are LIM proteins and participate 
in several regulatory functions indispensable for skel-
etal muscle development and myogenic differentiation 
(Weiskirchen and Gunther 2003). GO terms related to 
CSRP3 included contractile fiber, myofibril and cation 
binding. CSRP3 is a muscle-specific isoform and belongs 
to the cysteine and glycine-rich protein family, which 
plays an important role in muscle fiber differentiation 
(Xu et al. 2010). The RPKM value of CSRP3 in Sol mus-
cle (5268.9) was nearly 3.5-fold higher than that in EDL 
muscle (1174.2), which is consistent with CSRP3 being 
constitutively expressed in slow muscle of rat but hav-
ing a low expression level in fast muscle (Schneider et al. 
1999). CSRP3 was previously shown to be expressed only 
in striated muscle and its expression pattern coincides with 
myogenic differentiation (Arber et al. 1994). In the indig-
enous Chinese Tongcheng pig breed, the relative mRNA 

Fig. 5   Statistics of alternative splicing and genes in EDL and Sol 
samples. The green bars illustrate the distribution of genes for each 
type of alternative splicing model. The red bars indicate the number 
of alternative splicing events identified in each gene
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expression of CSRP3 was up-regulated during the devel-
opment of embryonic skeletal muscle, indicating a poten-
tial role in muscle growth.

Alpha actinins are actin-binding proteins found in both 
muscle and non-muscle cells, and interact with dystrophin 
and spectrins (Tiso et al. 1999). In skeletal muscle, ACTN2 
and ACTN3 act as the key structural components of sar-
comeric Z-lines and function to anchor actin. ACTN2 has 
varying expression levels in all types of myofibers, whereas 
ACTN3 is localized to a fast-twitch-specific type, found 
only in type II muscle fibers (Mills et  al. 2001). The GO 
annotations related to these genes included contractile 
fiber, myofibril, sarcomere and actin filament. Previous 
research has indicated partial redundancy between ACTN3 
and ACTN2 as in the ACTN3−/− mouse, the loss of ACTN3 
in fast fibers is compensated for by an up-regulation of 
ACTN2, whose expression pattern changed from predomi-
nantly oxidative fibers to uniform expression in all fibers 
(MacArthur et al. 2007).

Pathways in different types of muscle

We have utilized RNA-seq analysis to thoroughly examine 
the skeletal muscle transcriptome of the large white pig, 
which will help elucidate the molecular mechanisms deter-
mining muscle fibers. From the results of pathway analy-
sis, we have identified several significant pathways related 
to myofiber type and muscle contraction, including focal 

Table 4   The summary of the SNPs by nucleotide change

Allele variation EDL Sol

CY 6921 7368

GR 6669 7152

AR 5728 5790

TY 5708 5873

AG 4813 4420

TC 4700 4257

GA 3653 3367

CT 3517 3139

GS 1480 1607

CS 1466 1703

CM 1282 1488

GK 1245 1476

AM 1158 1395

TK 1140 1289

CG 1019 885

GC 983 873

TW 946 1000

TG 933 827

AC 930 769

CA 925 793

GT 909 739

AW 898 1013

AT 659 566

TA 648 537

Fig. 6   The distribution of SNPs in Sus scrofa. 116,721 putative SNPs distributed on the 18 pig autosomes and X allosome from two libraries are 
shown. All of the SNPs distributed predominantly on chromosomes 2, 6 and 14
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adhesion, ECM–receptor pathway, calcium signaling path-
way, and Wnt signaling pathway.

Focal adhesion and ECM–receptor interaction pathways 
encompass a large proportion of the DEGs between the 
muscle types. The pathway analysis revealed 75 focal adhe-
sion genes and 41 ECM–receptor interaction genes related 
to the muscle types. Collagens, as the major constituent 
of the ECM-receptor interaction, account for the strength 
and form of tissues (Leitinger 2011). Moreover, collagen 
is found to be expressed abundantly in connective tissue, 
which is a pivotal molecule for regulation of meat tender-
ness and texture (Lepetit 2007). Six genes from the colla-
gen family were found according to the pathway analysis, 
including COL12A1, COL11A2, COL11A1, COL13A1, 
COL28A1 and COL6A3. GO annotations related to these 
genes were fibrillar collagen, extracellular region and 
extracellular matrix. Focal adhesions, composed of large, 
dynamic protein complexes, can connect the cytoskeleton 
of neighboring cells or join the cytoskeleton with the ECM. 
Their diverse components consist of scaffolding molecules, 
GTPases, and various enzymes, such as phosphatases, 
kinases, proteases and lipases (Geiger and Bershadsky 
2002). Focal adhesions not only function as anchorage for 
the cell, but also act as signal carriers to transmit informa-
tion about the condition of the ECM and thus influence the 
behavior of adjacent cells (Riveline et  al. 2001). In this 
study, higher expression of several collagen encoding genes 
(COL12A1, COL11A2, COL11A1 and COL13A1) was 
detected in Sol muscle compared with EDL muscle, sug-
gesting a distinction in collagen constituents between dif-
ferent types of myofibers.

Calcineurin is composed of calcineurin A catalytic subu-
nit, calcineurin B regulatory subunit as well as the calcium-
binding protein, calmodulin. It serves as a calcium medi-
ated serine–threonine phosphatase and is expressed in 
many types of tissues. Calcineurin participates in many bio-
logical functions, such as T-lymphocyte activation, vascular 
and cardiac development, and skeletal muscle development 
(Chin et  al. 1998). The expression of myofiber-type-spe-
cific genes in skeletal muscle was previously reported to be 
controlled by signaling pathways depending on calcineurin, 
which acted as a cyclosporin-sensitive, calcium-regulated 
serine/threonine phosphatase. Stimulation of calcineurin 
in skeletal muscle cells specifically activates the promoters 
of slow-fiber-specific genes. Transcriptional activation of 
slow-fiber-specific factor seems to be mediated by a com-
binatorial mechanism including NFAT and MEF2 fami-
lies (Naya et al. 2000; Wu et al. 2000). RNA-seq analysis 
showed that 36 genes were implicated in this pathway, and 
some of them have relatively high expression levels in EDL 
and Sol muscle. This finding indicates a complete signaling 
pathway linking DEGs to selective changes in muscle fiber 
type.

Wnt signaling pathways represent a group of signal 
transduction pathways that respond to proteins outside the 
cell that mediate their signal to the inside of the cell via 
cell surface receptors (Sethi and Vidal-Puig 2010). Canoni-
cal Wnt signaling has been documented to modulate the 
differentiation of muscle stem cells in adult skeletal mus-
cle, while non-canonical signals regulate the self-renewal 
of satellite cells and the development of myofibers (von 
Maltzahn et al. 2012). In this study, 29 enriched genes were 
identified in the Wnt signaling pathway. Multiple studies 
have investigated the role of canonical Wnt signaling in 
myofiber type determination. In the development of avian 
wing muscles, Wnt5a induces slow MHC-positive muscle 
fibers, while Wnt11 enhances the numbers of fast MHC-
positive muscle fibers. The distinct influences of Wnt5a 
and Wnt11 are in accordance with their different expres-
sion patterns, which contribute to the ultimate distribution 
of different types of myofibers in the wing (Anakwe et al. 
2003). Moreover, it has been confirmed that Wnt4 over-
expression in chicken embryos results in both enhanced 
muscle mass, and a significant shift to fast type myofibers. 
Wnt4 acts as a stimulator during myoblast proliferation and 
differentiation, as shown in the C2C12 model, especially 
for fast-type fiber differentiation (Takata et al. 2007).

The RNA-seq analysis presented here increases the 
existing gene annotation for large white pigs, mainly for 
novel transcripts, AS events and SNP identification. It has 
been shown that AS plays a significant role in muscle fiber 
type determination according to many previous studies 
(Wei and Jin 2011; Sebastian et al. 2013). In this research, 
9334 and 8585 AS events were detected in EDL and Sol 
libraries, respectively. We also identified 58,362 and 58,359 
potential SNPs in the EDL and Sol libraries and the most 
common change was C/Y, followed by G/R and A/R. It is 
reported that SNPs are widely utilized linkage mapping, 
and they can potentially be tightly related to functional 
genes which may control muscle fiber type (Mortazavi 
et al. 2008; Lee et al. 2012; Lim et al. 2015). In addition, 
10,962 and 9686 novel transcripts were found between 
EDL and Sol muscles from our analysis. The identification 
of novel transcripts, AS events and SNP will contribute to 
a better understanding of the mechanisms of transcription 
regulation in large white pigs.

Muscles with a higher percentage of type IIB fibers were 
reported to produce a higher amount of lactate and more 
rapid pH decline at the early postmortem period, contribut-
ing to a generally poorer meat quality than a higher per-
centage of type I fibers (Choi et  al. 2010). Meat animals 
selected for their muscle growth capacity produce muscles 
with a higher percentage of larger type IIB fibers in pigs 
(Ruusunen and Puolanne 2004). Our RNA-seq analysis 
identified 2,152 DEGs and classified them into GO and 
KEGG categories; 230 and 216 pathways in EDL and Sol 
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skeletal muscle were influenced by up- and down-regulated 
DEGs. Among these DEGs, CSPR3, ACTN2 and ACTN3 
were selected to be implicated in muscle fiber type determi-
nation, and we construct the interaction network to see how 
these muscle-related DEGs affect the potential target genes. 
In addition, some important pathways such as wnt signal-
ing, calcineurinm, focal adhesion and ECM–receptor inter-
action pathways, were identified to study the function in 
different muscle fiber types in further research. In conclu-
sion, this study provides a comprehensive analysis of the 
EDL and Sol transcriptome in large white pigs, and further 
functional analysis of these potential may help us elucidate 
the mechanism of muscle fiber type determination.
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