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has achieved 84.46  % accuracy. The empirical results 
revealed that the performance of iRSpot-GAEnsC is not only 
higher than the examined algorithms but also better than 
existing methods in the literature developed so far. It is antici-
pated that the proposed model might be helpful for research 
community, academia and for drug discovery.
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Introduction

Meiotic recombination plays a preliminary role in the main-
tenance of sequence diversity in human genomes (Chen et al. 
2013; Qiu et  al. 2014a). The process of recombination is 
carried out in two steps. In first step, the genome is divided 
into two equal parts called daughter cells, which participate 
in sexual reproduction; this process is referred to as meiosis. 
In the second step, these diverse gametes are joined to form 
new combination of genetic variations, it is known as recom-
bination. Recombination is very crucial to genetic variations 
and is considered a main driven force in these variations. In 
human chromosomes, it targets very narrow spots, which are 
called hotspots and coldspots. The region of chromosomes 
where the frequency of recombination is high is called hot-
spot and the region where the frequency is low recombination 
is referred to as coldspot. The identification of recombina-
tion spots is very essential to understand the reproduction and 
growth of the cells. A recent study demonstrated that meiotic 
recombination events occur in 1–2.5 kilo base regions rather 
than its random occurrence across a genome. A schematic 
drawing of the meiotic recombination pathway in a DNA sys-
tem is illustrated in Fig. 1.

The process of recombination is initiated by double-
strand break (broken DNA ends) (Chou 2001a; Keeney 
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2008; Liu et  al. 2012). The hotspots, coldspots and the 
pattern that is formed by these sites provide fundamental 
in-depth information on processes of human crossover 
and gene conversion. Due to large exploration of genome 
sequences, it is highly desired to develop a precise, con-
sistent, robust and automated system for timely identifi-
cation of recombination spots. A considerable progress 
has been made in this area; still need for further improve-
ments in terms of accuracy exists. A series of efforts have 
been reported in the literature (Chen et al. 2013; Qiu et al. 
2014a). Initially, recombination of spots has been pre-
dicted using nucleotide composition. However, the main 
issue in nucleotide composition was only considering lit-
tle sequence into account where some important hereditary 
information was lost (Liu et al. 2012). However, the num-
ber of possible patterns for DNA sequence is extremely 
large. Thus, it is very difficult to incorporate the sequence-
order information into a statistical predicator with such a 
large length. To compensate this problem, the concept of 
pseudo-amino acid composition (PseAAC) was introduced 
by Chou (Chou 2001a). Further, this concept of PseAAC 
was adopted by almost all fields of computational pro-
teomics such as predicting protein subcellular localiza-
tion (Lin et  al. 2008, 2009a; Khan et  al. 2011; Dehzangi 
et  al. 2015; Mandal et  al. 2015), protein structural class 
(Sahu and Panda 2010), DNA-binding proteins (Fang et al. 
2008); identifying bacterial virulent proteins (Nanni et al. 
2012), predicting metalloproteinase family (Beigi et  al. 
2011), protein folding rate (Guo et  al. 2011), GABA(A) 
receptor proteins (Mohabatkar et  al. 2011), protein super 
secondary structure (Zou et  al. 2011), cyclin proteins 
(Mohabatkar 2010); classifying amino acids (Georgiou 
et  al. 2009); predicting enzyme family class (Zhou et  al. 

2007), identifying risk type of human papillomaviruses 
(Esmaeili et  al. 2010); predicting allergenic proteins 
(Mohabatkar et  al. 2013); identifying G protein-coupled 
receptors and their types (Khan 2012) and discriminating 
outer membrane proteins (Hayat and Khan 2012a), among 
many others.

As demonstrated in series of recent publication and 
comprehensive review demonstrated in (Xu et al. 2013a, b, 
2014a, b; He et al. 2015; Jia et al. 2015; Liu et al. 2015f) 
and in compliance with Chou’s 5-step rule (Chou 2011), to 
establish a really useful sequence-based statistical predictor 
for a biological system, we should follow the following five 
guidelines: (a) construct or select a valid benchmark dataset 
to train and test the predictor; (b) formulate the biological 
sequence samples with an effective mathematical expres-
sion that can truly reflect their intrinsic correlation with the 
target to be predicted; (c) introduce or develop a powerful 
algorithm (or engine) to operate the prediction; (d) properly 
perform cross-validation tests to objectively evaluate the 
anticipated accuracy of the predictor; (e) establish a user-
friendly web server for the predictor that is accessible to 
the public.

In this study, we propose genetic algorithm (GA)-
based ensemble model iRSpot-GAEnsC for identification 
of DNA recombination hotspots and coldspots. Numeri-
cal descriptors are extracted using two powerful sequence 
representation techniques namely: dinucleotide composi-
tion and trinucleotide composition. Various classification 
algorithms are investigated individually and finally their 
predicted outcomes are combined to form ensemble model. 
The ensemble model is formed using majority voting and 
GA. Leave-one-out test was applied to assess the perfor-
mance of proposed model.

Fig. 1   An illustration to show 
the process of meiotic recom-
bination in a DNA system, 
adopted from Akbar et al. 
(2014)
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Methods and materials

Dataset

To construct a promising computational model, there need 
some valid benchmark datasets to train the model effec-
tively. For this purpose, we have used dataset S in this 
study, which has been taken from (Chen et  al. 2013; Qiu 
et al. 2014a). This dataset contains 490 sequences for hot-
spot recombination and 591 sequences for coldspot recom-
bination. The dataset S of both hotspots and coldspot 
sequences of recombination can be formulated by:

where S+ is the subset for the hotspot recombination and 
S− is the subset of coldspot recombination, while the 
symbol “∪” shows union of both hotspot and coldspot 
recombination.

Feature extraction strategies

Feature extraction is considered one of the fundamental 
steps in machine learning process. In feature extraction 
phase, numerical attributes are extracted from biological 
sequences because statistical models require numerical 
descriptors for training. With the explosive growth of bio-
logical sequences generated in the post-genomic age, one 
of the most important but also most difficult problems in 
computational biology is how to formulate a biological 
sequence with a discrete model or a vector, yet still keep 
considerable sequence pattern information. This is because 
all the existing operation engines, such as SVM (Sup-
port Vector Machine) and NN Neural Network), can only 
handle vector but not sequence samples, as elaborated in 
(Chou 2015). However, a vector defined in a discrete model 
may completely lose all the sequence-order information. 
To avoid completely losing the sequence-order or pattern 
information for proteins, the pseudo-amino acid composi-
tion or PseAAC was proposed (Chou 2001a). Ever since the 
concept of pseudo-amino acid composition was proposed, 
it has penetrated into nearly all the areas of computational 
proteomics (Chen et al. 2015). Because of its successes to 
deal with protein/peptide sequences in computational prot-
eomics, the concept of PseAAC has been recently extended 
to dealing with DNA/RNA sequences in computational 
genetics and genomics (Chen et al. 2012, 2014c, d, 2015; 
Feng et al. 2013; Liu et al. 2014, 2015a, b, c, d, e, f). Based 
on the concept of PseAAC, the “pseudo k-tuple nucleotide 
composition (PseKNC)” (Chen et  al. 2014c, d; Liu et  al. 
2015c, e) was proposed in genome analysis. Owing to wide 
usage of PseAAC, recently the PseKNC was proposed and 
demonstrated the effectiveness in predicting nucleosome 
(Guo et  al. 2014), identifying splicing sites (Chen et  al. 

(1)S = S+ ∪ S−

2014b), identifying translation site (Chen et al. 2014a) and 
origin of replication (Li et  al. 2015). Both PseAAC and 
PseKNC achieved very exciting results and have played 
very important roles in relevant fields. In this study, we 
are to use the concept of pseudo-components to predict the 
recombination spot in DNA. In practical applications, par-
ticularly in developing high-throughput tools for predicting 
various important attributes for biomacromolecules, many 
different descriptors to represent biological sequence sam-
ples have been developed and widely used, such as those 
by means of cellular automata image (Xiao et  al. 2009), 
those by complexity measure factor (Xiao et al. 2011), and 
those by grey dynamic model (Lin et al. 2009b, 2012; Qiu 
et al. 2014c; Xiao et al. 2015), as well as a long list of the 
relevant references cited in a recent comprehensive review 
(Chou 2009). Two powerful DNA sequence representation 
approaches are used to extract high discriminative features.

Dinucleotide composition (DNC)

A DNA sequence is a polymer of four nucleotides namely 
adenine (A), cytosine (C), guanine (G) and thymine (T). 
Let us consider the following DNA sequence X with L resi-
dues long, i.e.,

where N1 is first position residue of DNA sequence, N2 the 
second position residue and NL the Lth position residue 
of the DNA sequence. Simple nucleotide composition has 
four values, which represents the occurrence frequency of 
these four nucleotides (Chou et al. 2012). It can be repre-
sented as:

where f(A)represents the occurrence frequency of nucleo-
tide A, f(C) determines the occurrence frequency of nucleo-
tide C, f(G) shows the occurrence frequency of nucleotide 
G and f(T) denotes the occurrence frequency of nucleo-
tide T, whereas symbol T in the superscript represents the 
transpose operator. However, the main drawback of simple 
nucleotide composition is not preserving sequence-order 
information. To amalgamate the occurrence frequency 
along with sequence-order information, dinucleotide com-
position (DNC) was introduced. In DNC, the relative fre-
quency of nucleotide pair is computed (Chen et al. 2014b). 
It can be demonstrated as:

(2)X = [N1N2N3N4N5N6N7 . . .NL],

(3)X =
[

f (A), f (C), f (G), f (T)
]T
,

(4)X =
[

f (AA), f (AC), f (AG), f (AT), . . . , f (TT)
]T

(5)X =
[

f1, f2, f3, f4, . . . , f16
]T
,
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where f(AA) represents the occurrence frequency of AA 
pair, f(AC) represents the occurrence frequency of AC pair 
and f(TT) denotes the occurrence frequency of TT pair. 
As a result, 4 × 4 = 16-D corresponding features are con-
tained in feature space.

Trinucleotide Composition (TNC)

In dinucleotide composition, only two nucleotides are 
paired. In contrast, in trinucleotide composition (TNC), 
three nucleotides are combined. In TNC, the occurrence 
frequency of three nucleotides is calculated. It can be for-
mulated as:

where f(AAA) shows the occurrence frequency of AAA 
in the DNA sequence, f(AAA) shows the occurrence fre-
quency of AAC in the DNA sequence and so forth (Duda 
et al. 2012). It revealed that the corresponding feature space 
will contain 4 × 4 × 4 = 64 pairs of the nucleotides. Equa-
tion (6) is written into generalized form so the correspond-
ing space X having 4k components, i.e.,

The above-mentioned procedure revealed that as the num-
ber of nucleotides in pair is increased the number of tuple 
increased (Chen et al. 2014a). The local or short range of 
sequence-order information is gradually included into 
information but the global order sequence information is 
not reflected by the formulation (Qiu et al. 2014a).

Classification algorithms

Classification is the subfield of data mining and machine 
learning in which the data are categorized into predefined 
classes. In this study, several supervised classification algo-
rithms are utilized to select the best one for identification of 
hotspots and coldspots.

K‑Nearest Neighbor (KNN)

KNN is widely used algorithm in the field of pattern rec-
ognition, machine learning and many other areas. KNN is 
simple but widely used algorithm for classification (Duda 
et  al. 2012). KNN algorithm is also known as instance-
based learning (Lazy learning) algorithm. It does not build 
classifier or model immediately but save all the train-
ing data samples and wait until new observation needs to 

(6)X =

[

f (AAA), f (AAC), f (AAG), f (AAT), . . . , f (TTT)
]T

(7)X =
[

f1, f2, f3, f4, . . . , f64
]T
,

(8)X =
[

f k1 , f
k
2 , f

k
3 , f

k
4 , . . . , f

k
4k

]T

be classified. Lazy learning nature of KNN makes it bet-
ter than eager leaning, which constructs classifier before 
new observation needs to be classified. It is significant for 
dynamic data that change and update rapidly (Han and 
Kamber 2006). KNN algorithm has the following five 
steps;

Step 1: Provide feature space to KNN algorithm to train 
the system.

Step 2: Measure the distance using the Euclidean dis-
tance formula.

Step 3: Sort the Euclidean distance values as di ≤ di + 1, 
where i = 1, 2, 3…k.

Step 4: Apply voting or means according to the data 
nature.

Step 5: Number of nearest neighbor (value of K) depends 
upon the nature and volume of data provided to KNN. For 
huge data, the k value should be large and for small data, k 
value should be small.

Probabilistic neural network (PNN)

The probabilistic neural network (PNN) was first intro-
duced by Specht in 1990 (Specht 1990). It is based on 
Bayes’ theorem. PNN provides an interactive way to inter-
pret the structure of the network in terms of probability 
density function (Georgiou et  al. 2004). PNN has a simi-
lar structure as feed-forward networks but it has four lay-
ers. The first layer in known as input layer, second layer is 
known as pattern layer, third layer is known as summation 
layer and the fourth layer is known as output layer (Khan 
et al. 2015). The first layer contains the input vector, which 
is connected to the input neurons and passed to the pattern 
layer. The dimension of the pattern layer and the number of 
samples presented to the network is equal in number. Pat-
tern and input layers are connected to each other by exactly 
one neuron for each training data sample. The summation 
layer has the same dimension as the number of classes in 
the set of data samples. Finally, the decision layer predicts 
the novel sample into one of the predefined classes.

Random forest

Random forest (RF) is a well-known ensemble technique, 
which was proposed by Breiman (Breiman 2001; Lou et al. 
2014). It is widely used for the pattern classification in the 
field of bioinformatics (Kumar et al. 2009). The prediction 
performance of RF is high (Kumar et al. 2009; Chou et al. 
2012). The information provided by RF is on variable basis 
for classification (Ebina et al. 2011; Boulesteix et al. 2012; 
Touw et al. 2013). RF has a large number of decision trees 

(9)Edis(xi, xj) =
∑n

i=1

√

(xi1− xi2)2
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and every tree produces a classification (Breiman 2001). 
The final result is obtained by combining the results of all 
the decision trees by means of voting (Jiang et al. 2007). In 
addition, RF selects the features randomly. Instead of using 
all the features for one single tree, it splits the features into 
different trees and then combines the result of each tree 
(Jiang et al. 2007).

Support vector machine (SVM)

Support vector machine is an effective method used for the 
classification of supervised pattern recognition process and 
was first introduced by Vapnik in 1995 (Vapnik 2000; Qiu 
et  al. 2009; Gu et  al. 2010). Later on, it was updated by 
Vapnik in 1998 (Hayat and Khan 2011). Originally it was 
developed for two class problems but later it was adopted 
for multiclass problems (Ahmad et al. 2015). In two class 
problems, SVM transfers data to the high-dimensional fea-
ture space and then determines the optimal hyper plane 
(Chen et al. 2014b). It is very good classifier for identify-
ing linear as well as non-linear patterns (Akbar et al. 2014). 
SVM uses different types of kernel functions including but 
not limited to linear, polynomial, Gaussian [RBF] and sig-
moid. In this study, the ‘OVO’ strategy was employed for 
making predictions using the popular radial base function 
(RBF) as a kernel function with parameters γ and ∁ (Qiu 
et  al. 2014a). The regularization parameter ∁ and the ker-
nel width parameter γ were determined via an optimization 
procedure using a grid search approach for identification of 
recombination hotspots and coldspots.

where in the above equation the parameter γ shows the 
width of the Gaussian function. The values for the above 
parameters of RBF are calculated using a grid search dur-
ing the training phase of SVM model. In our work, LIB-
SVM package (Chang and Lin 2011) has been used to 
predict the hotspots and coldspots in the DNA sequence. 
This software is free for download and is available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm .

Generalize regression neural network

Generalize regression neural network (GRNN) is mostly 
used for function approximation. The structure and func-
tionality of GRNN and PNN are similar. It has four layers, 
i.e., input layer, radial base layer, special linear layer and 
the output layer. The total number of neurons in the input 
and output of GRNN is equal to the dimension of the input 
and output vectors. GRNN is a well-suited network for 
small- and medium-sized datasets. The overall process of 

(10)K(xi, xj) = exp
(

−Υ |xi − xj|2
)

,

GRNN is carried out in three steps. In first step, a set of 
training data and target data is created. Next step of GRNN, 
the input data, target data and spread constant value are 
passed to newgrnn as arguments. Finally, the response of 
the network is noted by simulating it according to the data 
provided (Cherian and Sathiyan 2012).

Feed forward neural network

A feed forward neural network (FFBPNN) is an artificial 
neural network (ANN), which consists of N layers. The 
first layer of FFBPNN is connected to the input vector. 
The preceding layer has a connection with each subsequent 
layer. The resultant output is produced by final layer of the 
network. The training of FFBPNN is carried out using the 
following Eq. (11);

where in Eq.  (10), xj(t) shows the input value of j to the 
neuron at time t, wjk(t) the weight that is assigned to input 
value by neuron k and b0 is the bias of k neuron at time 
t. In Eq. (11), Yk(t) is the output of neuron k and ϕ is the 
activation function (ALAllaf 2012). The FFBPNN has two 
special versions of network which are;

Fitting network

Fitting network (FitNet) is a type of FFBPNN. It is used 
to fit an input–output relationship (ALAllaf 2012). Lev-
enberg–Marquardt algorithm is the default algorithm used 
for the training of the system. The algorithm divides the 
feature vector randomly into three sets: (i) the training 
data (ii) the validation set data and (iii) the test data. A fit-
ting network with one hidden layer and enough number 
of neurons can fit any finite number of input and output 
relationship.

Pattern recognition network

The pattern recognition neural network (PatternNet) is also 
a type of FFBPNN. It is used for solving pattern recogni-
tion problems like DNA. It is trained in such a way that it 
takes feature vector and classifies it according to the tar-
get vector. The training of PatternNet is performed using 
Scaled Conjugate Gradient algorithm. At each training 
cycle, the sequences are presented to the network. The Pat-
ternNet divides the data into three groups; (i) the training 
set (ii) the validation set and (iii) the test set. The process 
of training the system through FitNet and PatternNet is 

(11)Uk(t) =
∑n

j=1
wjk(t) × xj(t)+ b0k(t)

(12)Yk(t) = ϕ(Uk(t)),

http://www.csie.ntu.edu.tw/
http://www.csie.ntu.edu.tw/
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same as discussed above but the main difference between 
FitNet and PatternNet is that both networks use different 
algorithms for training the system. FitNet uses Levenberg–
Marquardt algorithm whereas PatternNet uses Scaled Con-
jugate Gradient algorithm for training.

Ensemble classification

Ensemble classification has got a reasonable attention in 
the last decades. It has been successfully used to enhance 
the prediction power and widely applied for predicting pro-
tein subcellular location (Chou and Shen 2007a), predicting 
signal peptide (Chou and Shen 2007c), predicting subcel-
lular location (Chou and Shen 2007b) and enzyme subfam-
ily prediction (Chou 2005). The performance of ensemble 
classification approach is relatively better reported than the 
individual classifiers. The individual classifiers are diverse 
and can make different errors during the classification pro-
cess but when these individual classifiers are combined, the 
errors can be reduced because the classification error of one 
algorithm is compensated by another algorithm (Hayat and 
Khan 2012a). The working of ensemble classification has 
been designed in such a way that it combines the results of 
different classification techniques and reduces the variance 
caused by anomaly in these single classification techniques. 
In this paper, seven different classification techniques have 
been used, which are GRNN, PNN, KNN, SVM, RF, Pat-
ternNet and FitNet. First, the individual classifiers are 
trained and tested. The individual predictions of each clas-
sification algorithm were then combined to form ensemble 
classifier. It can be represented as follows:

where EnsC shows the ensemble classifier and the sym-
bol ⊕   shows the combination operator. The working of 
ensemble classifier EnsC by fusing the seven individual 
classifiers can be explained as: suppose that the predicted 
results of individual classifier for classification of DNA 
recombination hotspots and coldspots are:

where {C1, C2, C3, C4, C5, C6, C7}are the individual clas-
sifiers and {D1, D2} are the two classes of DNA recombi-
nation hotspots and coldspots (Hayat et al. 2012).

where

(13)

EnsC = GRNN⊕ PNN⊕ KNN⊕ SVM⊕ RF

⊕ PatternNet⊕ FitNet,

(14){C1,C2,C3,C4,C5,C6,C7} ∈ {D1,D2},

(15)Yj =
∑7

i=1
δ(CiDi) where (j = 1, 2) ,

(16)δ(CiDi) =

{

1, ifCi ∈ Dj

0, otherwise

}

.

The output of the ensemble classifier using GA is obtained 
as:

where GAEnsC is the classification output of ensemble 
technique GA, Max shows the maximum result and the opti-
mum weight of the individual classifier is w1, w2, w3, … w7.  
Majority voting-based ensemble classifier is a simple 
approach. In this approach, each classifier assigns equal 
weight, which represents all classifiers equally. However, 
the predictions of all classifiers are not in favor of all types 
of classes. Some classifiers are good for one class while 
others are good for other class. In such situation, the suc-
cess rate of majority voting-based ensemble is not consid-
erable. On the other hand, GA-based ensemble technique 
has the ability to automatically determine the appropriate 
weight for each classifier. It effectively finds the proper 
weights of all the eligible classes depending upon the pre-
diction confidence. Initially, random weight assigns to each 
classifier. Further, the weight of the classifier is optimized 
on the basis of prediction confidence. Finally, those clas-
sifier outcomes whose confidence level is high are given 
more importance.

Frame work of proposed model

Looking at the importance of recombination spots, iRSpot-
GAEnsC model is proposed for identification of hotspots 
and coldspots. Two powerful feature extraction methods 
called dinucleotide composition (DNC) and trinucleotide 
composition (TNC) were used to extract features from the 
dataset S. The extracted features were passed to seven dif-
ferent classification algorithms namely; GRNN, KNN, 
PNN, SVM, RF, PatternNet and FitNet. The best results 
of the individual classifiers were noted. The predicted 
results of the individual classifiers were combined to form 
ensemble model. Simple majority voting and optimization 
approach genetic algorithm were used to form ensemble 
model. The proposed model was trained on 64 features of 
TNC. Our model iRSpot-GAEnsC produced higher perfor-
mance compared to the existing methods in the literature so 
far. The proposed model of ensemble classifier is shown in 
Fig. 2.

Performance measures

Several performance measures are applied in classification. 
These performance measures are used to measure the per-
formance of the machine learning algorithms. Confusion 
matrix is used to record both the correct values and incor-
rect values for each class. There are different performance 
measures as given below.

(17)GAEnsC = Max{w1y1,w2y2, . . . ,w7y7}
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I.	 Accuracy

II.	 Sensitivity

III.	 Specificity

IV.	 Mathews correlation coefficient (MCC)

where TP is True Positive, TN is False Negative, TN is 
True Negative and FP is False Positive.

V.	 F-measure

The weighted average of precision and recall is known as 
F-measure. It is used for the evaluation of statistical 
methods. F-measure can be calculated as;

F-measure depends on two things; precision p and recall r, 
where

(18)Acc =
TP+TN

TP+ FP+TN+ FN
× 100%

(19)Sen=
TP

TP+ FN
× 100%

(20)Spe =
TN

TN+ FP
× 100%

(21)MCC =
TP× TN− FP× FN

√
[TP+ FP][TP+ FN][TN+ FP][TN+ FN]

,

(22)F-measure = 2×
Precision × Recall

Precision + Recall

The resultant best value for F-measure is 1 and the worst 
value is 0.

VI.	G-mean

G-mean can be defined by two parameters called sensitivity 
(Sen) and specificity (Spe). G-mean is calculated by:

Sensitivity shows the performance of the positive class 
whereas specificity shows the performance of the negative 
class. G-mean incorporates the balanced performance of the 
learning algorithms between positive and negative class.

VII.	Q-statistics

Q-statistics is used to measure the diversity between two 
classification algorithms. The Q-statistics of any two 
classifiers Cm and Cn can be measured using the fol-
lowing formula:

where c is the correct prediction and w the wrong predic-
tion of both classifiers. Likewise, a is the correct prediction 

(23)Precision =
TP

TP + FP

(24)Recall =
TP

TP + FN

(25)G-mean =
√

Sen × Spe.

(26)Qm, n =
cw− ab

cw+ ab
,

Fig. 2   Framework of iRSpot-
GAEnsC predictor
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of first classifier and b the incorrect prediction of second 
classifier and b the correct prediction of second classifier 
and incorrect prediction of the first classifier.

Although the four metrics (Eqs.  18, 19, 20, 21) were 
often used in literature to measure the prediction quality 
of a prediction method, they are no longer the best ones 
because of lacking intuitiveness and not easy to under-
stand for most biologists, particularly the MCC (the Mat-
thews correlation coefficient). To avoid this problem, we 
have adopted the following formulation proposed in the 
recent publication (Chou 2001b; Chou et al. 2011; Xu et al. 
2013a; Qiu et al. 2014a, c).

The above-mentioned metrics given in Eqs. (27, 28, 29, 30) 
are valid only for single-label system. For multi-label sys-
tems whose existence has become more frequent in system 
biology (Chou et al. 2011) and system medicine (Xiao et al. 
2013b), a completely different set of metrics as defined in 
(Chou 2013) is needed.

Results

Statistical methods are used to evaluate the predication per-
formance of the classifiers. Mostly, three cross-validation 
tests that include independent dataset test, sub-sampling 

(27)Acc = 1−
N+
− + N−

+
N+ + N−

(28)Sp = 1−
N−
+

N−

(29)Sn = 1−
N+
−

N+

(30)Mcc =
1−

(

N+
−+N−

+
N++N−

)

√

((

1+ N−
+−N+

−
N+

))(

1+ N+
−−N−

+
N−

)

.

test and jackknife test are used for examining the perfor-
mance of classifiers. However, among these tests, jackknife 
test is extensively applied because it always produces a 
unique result for a given dataset (Qiu et  al. 2014a; Hayat 
and Tahir 2015). Therefore, the jackknife test has been 
increasingly and widely adopted by investigators to test the 
power of various predictors (Ding et al. 2009, 2012, 2014; 
Hayat and Khan 2012b; Zhang et al. 2012; Lin et al. 2013; 
Yuan et  al. 2013; Lu et  al. 2014). Hence, the jackknife 
cross-validation was utilized to examine the power of our 
method. Performance comparison of two feature spaces is 
discussed below.

Prediction performance of classifiers using DNC

The success rates of individual and ensemble classifiers 
using DNC feature space are listed in Table 1. Among indi-
vidual classifiers, RF achieved the highest accuracy among 
the classification algorithms. SVM and PatternNet obtained 
similar results. Likewise, KNN and PNN also yielded rela-
tively similar accuracies. GRNN has achieved worse results 
compared to other classification algorithms. After that 
the individual classifier prediction are combined through 
majority voting and optimization technique GA. The out-
come of majority voting-based ensemble was not reasona-
ble. On the other hand, GA-based ensemble model obtained 
good results compared to individual and ensemble classi-
fiers. Besides, accuracy, sensitivity, specificity and MCC, 
other performance measures such as F-measure, G-mean 
and Q-statistics are used to show more strength of proposed 
model. Q-statistics will show the diversity between individ-
ual classifiers. The accuracy of iRSpot-GAEnsC is shown 
Fig. 3.

Prediction performance of classifiers using TNC

The success rates of individual and ensemble classi-
fiers using TNC feature space are reported in Table  2. 
Among individual classifiers, RF achieved the highest 

Table 1   Success rate of 
individual and ensemble 
classification algorithms using 
DNC

Methods Acc (%) Sen (%) Spe (%) MCC F-M G-mean Q-statistics

GRNN 62.53 60.54 64.13 0.247 0.61 0.62 0.78

KNN 78.91 74.24 82.75 0.576 0.77 0.78 0.92

PNN 78.26 75.96 80.14 0.562 0.77 0.78 0.92

SVM 81.31 76.87 84.97 0.625 0.80 0.81 0.94

RF 81.59 78.24 84.35 0.630 0.80 0.81 0.92

PatternNet 81.31 78.20 83.87 0.624 0.80 0.81 0.90

FitNet 81.13 77.80 83.86 0.620 0.80 0.81 0.91

MV-EnsC 76.60 76.25 76.85 0.530 0.76 0.77 0.90

GAEnsC 83.44 73.77 79.92 0.540 0.75 0.77 0.90
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accuracy. SVM and PatternNet obtained somewhat com-
parable results. Likewise, KNN and PNN also yield rela-
tively similar accuracies. GRNN has achieved the worse 
results compared to other classification algorithms. Further, 
the predicted outcomes of individual classifiers are com-
bined through majority voting and optimization technique 
GA. The outcome of majority voting-based ensemble was 
not considerable. On the other hand, GA-based ensemble 
model obtained good results compared to individual and 
ensemble classifiers. The outcome of GA-based ensemble 
model is shown in Fig. 4.

Comparison of iRSpot‑GAEnsC with existing methods

Comparison has been drawn between proposed model 
and already existing methods in the literature reported in 
Table 3. The pioneer work on this dataset has been carried 
out by Wei et al. (2013) (Chen et al. 2013) by introducing 
iRSpot-PseDNC predictor for identification of recombina-
tion hotspots and coldspots. Recently, Qiu et al. (2014) has 

developed iRSpot-TNCPseAAC model for the identifica-
tion of recombination hotspots and coldspots (Qiu et  al. 
2014a). In contrast, our proposed model iRSpot-GAEnsC 
has achieved quite promising results compared to exist-
ing methods. The empirical results demonstrated that the 
performance of GA-based ensemble model is quite prom-
ising. This achievement has been ascribed with high vari-
ant features of TNC and optimization-based ensemble 
classification.

Discussion

In this study, a high-throughput computational model has 
been developed for identification of DNA recombination 
hotspots and coldspots. Two feature extraction methods 
including dinucleotide composition and trinucleotide com-
position were used to extract high discriminant features 
from DNA sequences. The performances of both feature 
spaces were evaluated using seven classification algorithms 
of different nature. These include GRNN, KNN, PNN, 
SVM, RF, PatternNet and FitNet. After examining the per-
formance of individual classifiers, the predicted outcomes 
of individual classifiers are combined through simple 
majority voting and optimization approach genetic algo-
rithm. Genetic algorithm-based ensemble model achieved 
quite promising results, which are higher than the perfor-
mance of individual classifiers, and ensemble by major-
ity voting. In addition, its performance is also higher than 
already existing methods reported in the literature so far. 
This remarkable achievement has been ascribed with high 
discriminated features of TNC and the ensemble strength 
of optimization method of GA. It is ascertained that our 
proposed model might be helpful in drug-related applica-
tions. As demonstrated in a series of recent publications 
(Xiao et al. 2013a; Ding et al. 2014; Qiu et al. 2014b; Xu 
et al. 2014b; Jia et al. 2015; Liu et al. 2015e, f) in devel-
oping new prediction methods, user-friendly and publicly 
accessible web servers enhance their impact (Chou 2015), 

Fig. 3   The performance of iRSpot-GAEnsC using DNC

Table 2   Success rate of 
individual and ensemble 
classification algorithms using 
TNC

Methods Acc (%) Sen (%) Spe (%) MCC F-M G-mean Q-statistics

GRNN 61.61 59.26 63.50 0.228 0.59 0.61 0.78

KNN 78.91 72.61 84.11 0.578 0.76 0.78 0.90

PNN 78.35 75.90 80.35 0.564 0.77 0.78 0.91

SVM 81.41 77.43 84.68 0.626 0.80 0.81 0.93

RF 83.26 79.27 86.54 0.664 0.82 0.83 0.92

PatternNet 81.13 78.21 83.52 0.620 0.80 0.81 0.88

FitNet 79.65 76.24 82.44 0.590 0.78 0.79 0.85

MV-EnsC 77.24 74.94 79.12 0.542 0.76 0.77 0.88

GAEnsC 84.46 80.08 88.07 0.689 0.83 0.84 0.88
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we will make efforts in our future work to provide a web 
server for the prediction method of recombination hotspots 
and coldspots.
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