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in each of the last three isolates. Genes known to be associ-
ated with drug resistance and their promoter regions, where 
applicable, were analyzed. The presence of low or no fit-
ness cost mutations for drug resistance and an additional 
L731P SNP in the rpoB gene was observed in all isolates. 
These findings might account for the successful transmis-
sion of this MDR-TB strain.
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Introduction

In spite of immense efforts to overcome it, tuberculosis 
(TB) infection remains a major public health issue with an 
estimated 9 million new cases and 1.5 million deaths from 
TB worldwide in 2013 (The WHO 2014). The emergence 
and rapid spread of multidrug-resistant (MDR) and exten-
sively drug-resistant (XDR) TB pose additional global 
threats to the global TB control programs (Gandhi et  al. 
2010). The World Health Organization (WHO) ranked 
Thailand 18th of the 22 highest TB burdened countries in 
the world. With a population of around 67 million, Thai-
land was reported to have approximately 62,000 new and 
110,000 prevalent TB cases in 2013. These figures were 
further complicated by the growing threat of MDR and 
XDR-TB. According to the WHO report, approximately 
2 % of new TB cases and 19 % of previously treated cases 
were MDR-TB in Thailand (The WHO 2014). However, 
despite this major public health problem, little is known 
about the genetic characteristics of the isolates (Viratyo-
sin et al. 2013; Coker et al. 2014). Therefore, information 
gained from whole genome sequencing (WGS) of MDR 
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M. tuberculosis outbreak isolates could improve our under-
standing about the epidemics in this region.

With a prevalence of about 50 % of all Asian TB cases 
(van Soolingen et  al. 1995; Parwati et  al. 2010) and a 
worldwide dissemination (Bifani et  al. 2002; Glynn et  al. 
2002; European Concerted Action on New Generation 
Genetic Markers and Techniques for the Epidemiology and 
Control of Tuberculosis 2006), the M. tuberculosis Beijing 
family has gained considerable attention. It is considered 
virulent (Parwati et  al. 2010) and is often associated with 
drug resistance (Drobniewski et  al. 2005; Niemann et  al. 
2010; Casali et al. 2012) and large outbreaks (Bifani et al. 
1999; Toungoussova et al. 2002, 2003; Ioerger et al. 2010; 
Golesi et al. 2013). A previous epidemiological study of TB 
in Thailand revealed a large outbreak of MDR-TB in Kan-
chanaburi Province during 2002–2010 (Jiraphongsa et  al. 
2011). The genotyping of 64 isolates from 2003 to 2008 
using spoligotyping and 24-loci mycobacterial interspersed 
repetitive units-variable number of tandem repeats (MIRU-
VNTR) resulted in the clustering of 54 isolates indicating a 
clonal outbreak in the region. The strain was identified as a 
member of the Beijing family (Srilohasin 2013). Although 
these isolates had isogenic genotyping patterns, a discrep-
ancy regarding ethambutol resistance was observed. More-
over, the extensive spread of this strain in the community 
indicated that it might harbor some genetic determinants to 
aid efficient transmission.

A recent study in a TB high-burden setting where the 
M. tuberculosis Beijing family was prevalent suggested a 
threshold of ≤5 single nucleotide polymorphisms (SNPs) 
to define strains in a transmission chain (Luo et al. 2014). 
However, the mutation rates of the M. tuberculosis Beijing 
family remain controversial (Werngren and Hoffner 2003; 
de Steenwinkel et  al. 2012; Ford et  al. 2013). For exam-
ple, an in vivo experimental infection study on non-human 
primates under antibiotics therapy determined that the Bei-
jing family had a higher mutation rate than other lineages 
(Ford et  al. 2013) and a high degree of genetic diversity 
was reported among the serial isolates of the M. tubercu-
losis Beijing family obtained from the patients during the 
course of anti-TB therapy (Sun et  al. 2012). However, 
fluctuation analysis, did not find any difference in muta-
tion rate between Beijing and non-Beijing isolates (Wer-
ngren and Hoffner 2003). Additionally, next generation 
sequencing (NGS) analysis of Beijing family serial isolates 
recently determined that 8–9 SNPs were acquired over a 
period of 3  years suggesting low mutation rate in human 
host (Merker et al. 2013). Considering these controversial 
findings, it would be beneficial to carry out a direct inves-
tigation of the microevolution of clinical isolates in each 
setting.

In this study, therefore, WGS was performed on the first 
isolate (isolated in 2003) and the last three isolates (isolated 

in 2008) of the defined cluster from our culture collection. 
WGS analysis of the isolates also suggested a clonal spread 
of the strain, and that the outbreak might be attributed to 
the presence of drug resistance conferring mutations asso-
ciated with low or no fitness costs in the strain. We also 
determined the acquired SNPs in the isolates accumulated 
over a 5-year period and found that they were genetically 
very stable with a maximum number of three unique SNPs 
compared with the first isolate. To the best of our knowl-
edge, this study represents the first comprehensive analysis 
of MDR-TB isolates involved in a large community out-
break in Thailand.

Materials and methods

Selection of isolates

A retrospective cohort study by an epidemiological team 
identified 148 MDR-TB cases and confirmed a community 
outbreak of MDR-TB during 2002–2010 in Kanchanaburi 
Province, Thailand (Jiraphongsa et  al. 2011). As a refer-
ence laboratory, we obtained the specimens from 2003 to 
2008 for drug susceptibility testing (DST). Spoligotyp-
ing and 24-loci MIRU-VNTR of all 64 isolates were per-
formed (Kamerbeek et al. 1997; Supply et al. 2006; Srilo-
hasin 2013), and clustering of 54 isolates was observed 
suggesting a clonal outbreak of MDR-TB in this cohort. 
Spoligotyping and MIRU-VNTR typing of the isolates cor-
responded to SIT-1, MIT-17, and VIT-70 of the modern 
Beijing sub-lineage in the SITVITWEB database (Demay 
et  al. 2012; Srilohasin 2013). The first isolate (DS-5538; 
isolated in August, 2003) and the last three isolates of the 
cluster (DS-17355, DS-17471, and DS-17472; isolated in 
March 2008) were selected from our culture collection. Iso-
lates DS-5538, DS-17355, and DS-17471 showed identical 
DNA fingerprints and phenotypic DST results, and were 
selected to observe the cumulative genetic changes over 
the 5-year period. Among the 54 clustered isolates, 23 were 
reported to be susceptible to ethambutol. Isolate DS-17472, 
reportedly susceptible to ethambutol, was selected to 
observe whether it belongs to the same clone. All isolates 
were obtained from sputum specimens at the Drug-Resist-
ant TB Laboratory Department of Microbiology, Faculty of 
Medicine Siriraj Hospital, Thailand.

Phenotypic drug susceptibility testing

Testing of the first- and the second-line anti-TB drugs 
was performed by the standard agar proportion method 
(WHO Geneva/IUATLD Paris 1998). Drug concentrations 
of 0.2  mg/l isoniazid, 1.0  mg/l rifampicin and linezolid, 
5.0  mg/l ethambutol and ethionamide, 6.0  mg/l amikacin 
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and kanamycin, and 2.0  mg/l streptomycin, para-amino-
salicylic acid, ofloxacin, ciprofloxacin, levofloxacin, moxi-
floxacin and gatifloxacin were used for drug susceptibility 
testing.

DNA isolation and whole genome sequencing

Selected isolates were subcultured on Lowenstein–Jensen 
medium for 4 weeks at 37 °C. DNA extraction and purifica-
tion were carried out using cetyltrimethylammonium bro-
mide lysozyme method (Larsen et al. 2007). Sequencing of 
the isolates was carried out at Macrogen Inc. (Seoul, South 
Korea). Genomic libraries were prepared according to the 
recommendations of the TrueSeq DNA sample preparation 
kit (Illumina, San Diego, CA). The library pools were sub-
jected to paired-end sequencing on a HiSeq 2000 platform 
(Illumina) generating 100-bp read lengths.

Reads mapping, SNP calling and confirmation

Paired-end raw reads of each isolate were independently 
aligned to the M. tuberculosis H37Rv reference genome 
(GenBank accession number: NC_000962.2) using Bowtie 
2 version 2.2.0 (Langmead and Salzberg 2012). Bedtools 
version 2.20.1 (https://github.com/arq5x/bedtools2) was 
used to determine the reads coverage over the reference 
genome. Aligned reads of each isolate were sorted, indexed 
and combined into an mpileup file using SAMtools (Li 
et al. 2009). Single nucleotide variant (SNV) identification 
was performed using VarScan 2.2.11 (Koboldt et al. 2012). 
To ensure the quality of the SNVs, bases with Phred qual-
ity score of ≤20 and SNVs with coverage of fewer than 10 
reads were discarded. Additionally, heterozygous SNVs 
with allele frequencies of <75 % that were commonly pre-
sent in all four isolates were discarded, as they likely origi-
nated from mapping errors. The remaining variants were 
annotated using H37Rv annotations (GenBank accession 
number: NC_000962.2) and classified as synonymous, 
nonsynonymous, or intergenic.

When analyzing short reads, sequences of repetitive 
regions and paralogous gene families are known to be prob-
lematic because the short reads can be mapped to multiple 

loci. Thus, variants determined in PE, PPE, PE_PGRS, 
integrase, transposase and phage-related genes were dis-
carded (Comas et  al. 2010). Overall filtration processes 
and annotation were performed using in-house software 
written in Ruby code. All candidate SNV positions were 
then carefully observed in Integrative Genomics Viewer 
(Thorvaldsdottir et  al. 2013). Some heterozygous variants 
with allele frequencies just above the borderline (between 
75 and 80 %) in some isolates and <75 % in other isolates 
were curated manually because they were also likely to 
have been created from mapping errors. SNV filtration and 
curation parameters were chosen on the basis of previous 
work carried out in M. tuberculosis (Merker et  al. 2013; 
Perez-Lago et al. 2014). All unique SNVs identified in each 
isolate were further validated by PCR amplification and 
Sanger sequencing.

Ethical approval

Ethical approval was obtained from the Institutional 
Review Board Committee of the Faculty of Medicine 
Siriraj Hospital, Mahidol University, Thailand (Protocol 
No. 811/2556; EC2). This article does not contain any stud-
ies with human participants or animals performed by any of 
the authors.

Results

Whole genome sequencing

All selected isolates were successfully sequenced and the 
data were analyzed as described in "Materials and methods".  
The average number of reads yielded per isolate was 
40,049,303 with a mean sequencing depth of 916X, when 
aligned to the H37Rv reference genome. An average of 
98.99 % of the reads was successfully mapped to the refer-
ence. More than 99 % of the reference genome was shown 
to be covered by at least one aligned read. The gross statis-
tics of alignment and coverage is summarized in Table 1. 
Remaining SNVs after filtration were included for subse-
quent analyses.

Table 1   Gross statistics of whole genome sequencing and mapping of the reads

Strain ID Total reads Reference H37Rv length Gross fold coverage Mapped reads  
with reference (%)

Reference genome 
coverage (%)

DS-5538 46,498,574 4,411,532 1064.56 98.95 99.31

DS-17355 42,813,596 4,411,532 980.2 99.06 99.32

DS-17471 23,765,326 4,411,532 544.1 98.97 99.29

DS-17472 47,119,718 4,411,532 1078.78 99.0 99.3

Average 40,049,303 4,411,532 916.91 98.99 99.3

https://github.com/arq5x/bedtools2
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The resulting Fastq files from the four isolates were 
deposited in the NCBI short read archive (SRA) under 
accession numbers SRX691156, SRX691468, SRX691500, 
and SRX691501 for isolates DS-5538, DS-17355, 
DS-17471, and DS-17472, respectively.

Genetic variations

Compared with the H37Rv reference, 1242 common SNPs 
were identified in all isolates (Online Resource 1, Fig. 1). 
Of these, 162 were intergenic and 1080 were found in pro-
tein coding regions, of which 406 were synonymous and 
674 were nonsynonymous. Comparative SNP analysis 
identified three, three and two unique SNPs in DS-17355, 
DS-17471 and DS-17472, respectively (Fig.  1; Table  2). 
Nonsynonymous mutations were found in 113 of the pre-
viously defined 760 essential genes (Comas et  al. 2010). 
Among the eight unique SNPs, only one nonsynonymous 
SNP was observed in the essential gene pks12 (Table 2).

The genetic background of the isolates was determined 
by WGS data. To characterize the principle genetic group 
(PGG) (Sreevatsan et  al. 1997), allelic determination at 
katG 463 and gyrA 95 positions was performed. The pres-
ence of katG R463L and gyrA S95T alleles in all isolates 
confirmed that they belonged to PGG-1. In silico analysis 
of alignments in Integrated Genomics Viewer to eluci-
date regions of difference (RDs) (Tsolaki et al. 2005; Dou 
et al. 2008) showed that the isolates belonged to RD-type 
4. Furthermore, SNP analysis for the determination of 
sequence type (ST) (Filliol et  al. 2006) revealed that all 
isolates belong to SNP cluster group (SCG)-2, ST-10. All 
findings, including spoligotyping and MIRU-VNTR typ-
ing, were in agreement and confirmed the isolates to be 
clonal and belong to a modern sublineage of the M. tuber-
culosis Beijing genotype.

Drug resistance mutations

The isolates were tested for phenotypic drug susceptibil-
ity to the first- and the second-line drugs (Online Resource 
1). All isolates were resistant to rifampicin, isoniazid and 
streptomycin, and all except DS-17472 were reported to be 
resistant to ethambutol. Well-known polymorphisms that 
correlated with phenotypic drug resistance were observed 
in all isolates (Table 3).

Rifampicin resistance is caused by specific mutations 
in rpoB which encodes the beta subunit of RNA poly-
merase. The presence of the rpoB S450L mutation in all 
strains conferred rifampicin resistance, and a nonsyn-
onymous rpoB L731P mutation was also detected in all 
strains. No mutations were identified in rpoA and rpoC 
in any of the isolates, although mutations in these genes 

could have explained the compensatory role for fitness 
cost. Resistance to isoniazid is a complex process and has 
been explained by mutation in several genes including 
katG, inhA, ahpC, and ndh. The nonsynonymous mutation 
katG S315T was observed in all four isolates studied and 
conferred isoniazid resistance. Resistance to streptomy-
cin can result from mutations in rrs or rspL, with the most 
common mutation being K43R in rspL. All four isolates 
carried the K43R mutation in rspL, conferring streptomy-
cin resistance. Ethambutol resistance is most likely caused 
by the overexpression or structural variations in embB. 
Resistance to ethambutol in the isolates was conferred by 
the presence of the G406D embB mutation. However, the 
isolate DS-17472, which was reported susceptible to eth-
ambutol, was also found to harbor the G406D mutation in 
embB. Those genes and their applicable promotor regions 
known to be associated with resistance to anti-TB drugs, 
and listed in TB drug resistance mutation database (Sand-
gren et al. 2009), were analyzed, but no other well defined 
or novel mutation that could be correlated to drug resist-
ance was found.

It has been suggested that MDR in M. tuberculosis could 
be associated with the constitutive or inducible expression 
of efflux pump-related genes (Calgin et  al. 2013; Black 
et al. 2014). However, the role of mutations in these genes 
in causing drug resistance has been poorly explored (Liu 
et  al. 2014). We suspected that the mutations could have 
a cumulative effect on the formation of drug resistance in 
MDR-TB strains. We therefore investigated mutations in 
41 known or putative drug efflux-related genes (Black et al. 
2014) and identified a total of 10 nonsynonymous SNPs of 
which nine had previously been reported in the pansuscep-
tible M. tuberculosis Beijing strain (Niemann et al. 2009). 
A mutation (H462N) in Rv1877 that encodes a conserved 

Fig. 1   Venn diagram showing overview of SNP distribution among 
the isolates. A total of 1242 SNPs were shared among the isolates. 
Three SNPs were unique to DS-17355 and DS-17471, and two SNPs 
to DS-17472
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membrane protein was observed to be novel in all isolates 
studied.

Discussion

In recent years, rapid WGS using NGS platforms has 
unraveled the genetic make-up of microorganisms at a 
high resolution. In this study, we compared the genetic 
variations in outbreak isolates with the H37Rv reference 
and also identified the genetic background of these out-
break isolates as PGG-1, SCG-2; ST-10 of modern Beijing 
family of M. tuberculosis (Sreevatsan et  al. 1997; Filliol 
et  al. 2006). ST-10 of Beijing family has previously been 
reported to be predominant in many countries (Chen et al. 
2012; Iwamoto et  al. 2012) including Thailand (Faksri 
et al. 2011), although further research is required to explore 
the molecular biology underlying the emergence and rapid 
spread of this genotype.

Predicted genotype susceptibility results were identical 
to phenotype DST results in the present study, except for 
DS-17472. Although this isolate was reported to be suscep-
tible to ethambutol, we observed the presence of the G406D 
embB mutation which confers the drug resistance (Ramas-
wamy et  al. 2000). Phenotypic DST repeated in triplicate 

for this isolate revealed the same result. This could be 
explained by the fact that the G406D mutation has been 
reported to confer only low level resistance to ethambutol 
(3.3–7.6 mg/l) (Safi et al. 2013), and that previous studies 
also reported this mutation in ethambutol-susceptible iso-
lates (Lee et  al. 2004; Park et  al. 2012). Moreover, a re-
evaluation of the current breakpoint for ethambutol (5 mg/l 
for 7H10 medium) has been highly debated (Schon et  al. 
2009; Gumbo 2010), while phenotype DST has been sug-
gested to underreport ethambutol resistance (Johnson et al. 
2006; Ioerger et al. 2010). Overall, the presence of geneti-
cally identical drug resistance conferring SNPs among the 
isolates further illustrates their clonality.

To identify a novel mechanism that could be correlated 
with drug resistance, our analysis revealed the presence of 
classic mutations in all drug resistance related genes stud-
ied except for the L731P mutation in rpoB. This SNP was 
previously reported as unique in the MDR outbreak strain 
X122 from Western Cape, South Africa (Ioerger et  al. 
2010). Recently, de Vos et al. reported that strains harbor-
ing the S450L rpoB mutation with compensatory mutations 
in RNA polymerase genes were associated with ongoing 
transmission of MDR-TB in the community (de Vos et al. 
2013). Hence, a functional study is required to confirm 
whether this mutation enables the strain to tolerate the 

Table 2   Strain-specific SNPs identified in the present study

Syn synonymous
a  Stop codon

Position Base change Amino acid change Locus Gene symbol Annotations Comments Strain

306109 A>G C81R Rv0254c cobU Bifunctional cobalamin biosynthesis protein Nonessential DS-17355

2295057 G>A S3977L Rv2048c pks12 Polyketide synthase Pks12 Essential DS-17355

2374769 T>G M508L Rv2115c ATPase Nonessential DS-17471

3265853 G>A Syn Rv2934 ggtB Gamma-glutamyltranspeptidase precursor Nonessential DS-17471

3889221 T>A R41a Rv3471c Conserved hypothetical protein Nonessential DS-17472

4007219 G>A Syn Rv3565 aspB Aspartate aminotransferase Nonessential DS-17471

4080776 T>C – Intergenic – – – DS-17472

4343282 C>A Y171a Rv3867 Conserved hypothetical protein Nonessential DS-17355

Table 3   DST phenotype and drug resistance-confirming mutations identified in studied isolates

a  Isolate DS-17472 was susceptible to ethambutol

Anti-TB drug Drug concentra-
tions
(mg/l)

DST phenotype Gene symbol Synonym Position Base change Amino acid 
change

References

Rifampicin 1.0 Resistance rpoB Rv0667 761155 C>T S450L (Telenti et al. 1993)

Isoniazid 0.2 Resistance katG Rv1908 2155168 C>G S315T (Zhang et al. 1992)

Streptromycin 2.0 Resistance rspL Rv0682 781687 A>G K43R (Nair et al. 1993)

Ethambutol 5.0 Resistancea embB Rv3795 4247730 G>A G406D (Telenti et al. 1997; 
Ramaswamy 
et al. 2000)
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fitness cost associated with drug resistance, or enhance its 
transmissibility. The analysis of mutations in drug efflux 
pump-related genes revealed the novel mutation H462N 
in Rv1877 which encodes a conserved membrane pro-
tein. The lfrA gene, homolog to Rv1877, was previously 
found to induce resistance to erythromycin in M. smegma-
tis (Li et al. 2004). However, it is not clear how mutations 
in Rv1877 affect susceptibility to ethambutol, so further 
research is necessary to confirm its function in causing 
drug resistance.

Because this MDR-TB strain was successfully trans-
mitted in the community, there was a need to unravel the 
genetic determinants responsible for this transmission. 
Acquired drug resistance in M. tuberculosis strains is 
more often associated with the reduced fitness that might 
affect growth, stability, or transmission (Andersson 2006). 
Unlike other lineages of M. tuberculosis, the Beijing fam-
ily is thought to show more potential in adopting the fit-
ness cost by a genetic-specific capabilities that acquire low 
or no fitness cost mutations for drug resistance (Borrell 
and Gagneux 2009; Gagneux 2009) or by the most favora-
ble epistatic interactions between drug resistance and 
compensatory mutations (Comas et al. 2012; Muller et al. 
2013). Several studies have shown that MDR-TB strains 
harboring low or no fitness costs were better transmitted 
in the community than those with other mutations (van 
Soolingen et al. 2000; Gagneux et al. 2006a; Strauss et al. 
2008; Naidoo and Pillay 2014). Interestingly, the outbreak 
strain in this study was also found to harbor low or no fit-
ness cost mutations in rpoB (S450L), katG (S315T) and 
embB (G406D) which confer drug resistance to rifampicin, 
isoniazid and ethambutol, respectively (Pym et  al. 2002; 
Gagneux et al. 2006b; Safi et al. 2013). Overall, the suc-
cessful transmission of the strain resulting in a large com-
munity outbreak may be attributed to the presence of drug 
resistance conferring mutations associated with low or no 
fitness costs, or the additional effect of the L731P rpoB 
mutation.

SNPs accumulated over a 5-year period in the selected 
isolates of the cluster (Srilohasin 2013) were determined. 
Although the mutation rate of the Beijing family remains 
controversial (Werngren and Hoffner 2003; de Steenwinkel 
et al. 2012; Sun et al. 2012; Ford et al. 2013; Merker et al. 
2013), the outbreak strain was found to be genetically sta-
ble over 5 years, in line with previous findings (Werngren 
and Hoffner 2003; Merker et  al. 2013), because only two 
to three SNPs were found to be acquired by each of the last 
three isolates. This is in agreement with a previous study 
by Schurch et al. in which NGS was applied for the WGS 
of three isolates obtained over 14-year period. A maximum 
of four SNPs were acquired compared with the first iso-
late (Schurch et al. 2010). Recently, a model similar to our 
study was used to determine the genomic variation in a M. 

tuberculosis outbreak strain belonging to the T2 subline-
age. Compared with the index case, the strain demonstrated 
genomic stability over 9  years with only four acquired 
SNPs and a small deletion (Sandegren et al. 2011). Interest-
ingly, the number of SNPs identified in our study is similar 
to that of previous studies despite differences in the genetic 
background of the strain and TB burden settings.

WGS of M. tuberculosis strains among epidemiologi-
cally linked patients in both TB low and high-burden set-
tings revealed that epidemiologically linked TB strains can 
be genetically linked by five or fewer SNPs (Kato-Maeda 
et  al. 2013; Roetzer et  al. 2013; Walker et  al. 2013; Luo 
et al. 2014). In our study, two or three SNPs were identified 
among the isolates studied, which supports these previous 
findings and may be useful in establishing epidemiological 
links among TB patients in high-TB burden settings where 
the M. tuberculosis Beijing family is predominant.

High molecular weight genomic DNA used in this study 
was obtained from isolate subcultures derived from stock 
cultures, which might affect the exact genetic make-up of 
the bacteria. Although, previous studies did not report any 
substantial impact of this phenomenon (Merker et al. 2013; 
Roetzer et al. 2013; Walker et al. 2013), it could be consid-
ered a limitation of the present study. Additionally, SNVs 
in repetitive regions such as PE, PPE, PE_PGRS genes and 
paralogous gene families were excluded from the analysis. 
These genes account for approximately 10 % of the coding 
region of the H37Rv genome, so it is possible that the iso-
lates studied might harbor SNPs in these regions, and that 
the overall variation might be higher than reported.

In conclusion, this study successfully determined the 
genetic polymorphisms in the outbreak isolates of M. 
tuberculosis Beijing, ST-10. The isolates were found to be 
clonally related despite the discrepancy in their DST phe-
notype, and the genome of the outbreak strain was shown 
to be genetically very stable over a 5-year period. We pro-
pose that performing drug susceptibility testing and car-
rying out treatment of MDR-TB or XDR-TB in TB high-
burden settings may not be sufficient to achieve the goal of 
the global TB control program, but the identification and 
rapid screening of genetic determinants in highly transmis-
sible strains could greatly contribute to their eradication. 
Our work also identified possible genetic determinants that 
might be responsible for the efficient transmission of the 
strain in our community. These findings might have impor-
tant implication for confirming the epidemiological links 
among the TB patients in high-TB burden settings or for 
rapid screening of highly transmissible MDR-TB strains to 
prevent their successful spread in the community.
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