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NASH transition were found. Further characterization of 
these modules defined 13 highly connected hub genes in 
NAFLD progression network. Interestingly, 11 signifi-
cantly changed miRNAs were predicted to target 10 of the 
13 hub genes. Characterization of modules and hub genes 
that may be regulated by miRNAs could facilitate the iden-
tification of candidate genes and pathways responsible for 
NAFL/NASH transition and lead to a better understand-
ing of NAFLD pathogenesis. The identified modules and 
hub genes may point to potential targets for therapeutic 
interventions.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) represents 
a wide spectrum of disorders, the prevalence of which 
may be as high as 24 % of the population of the United 
States (Parekh and Anania 2007). NAFLD encompasses not 
only simple steatosis (also called nonalcoholic fatty liver 
or NAFL) but also includes nonalcoholic steatohepatitis 
(NASH), advanced fibrosis, or cirrhosis. Hepatic steatosis 
can progress to NASH, which can be distinguished from 
simple steatosis by the presence of ballooning hepatocytes, 
apoptotic cells, inflammatory infiltrate and/or collagen 
deposition (fibrosis) (Cohen et al. 2011). Currently, oxida-
tive stress and inflammation are recognized as important 
contributors to NASH (Fujimoto et al. 2008; Podrini et al. 
2013). However, mechanisms of the transition from NAFL 
to NASH are still largely unknown (Cohen et al. 2011). 
Mouse models of NAFLD have provided insights into 
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possible pathological mechanisms contributing to its devel-
opment, but the relative roles of these pathways in humans 
have not been conclusively determined due to species dif-
ferences (Yu et al. 2010; Hebbard and George 2011). 
Some human-based studies integrate metabolism network 
and gene expression profiling to find potential metabolite 
biomarkers (Sookoian and Pirola 2012, 2013). Some use 
the protein interaction network or gene expression to find 
potential NAFLD drugs and mechanisms (Sookoian et al. 
2011; Sookoian and Pirola 2012). However, a gene coex-
pression network-based analysis is still vacuum. Therefore, 
network approaches for investigation of human NAFLD 
pathogenesis and progression are required. Better under-
standing of the pathogenesis of liver steatosis and its pro-
gression to NASH will have a major impact on the prog-
nosis and therapy of NAFLD patients. This is particularly 
important for individuals affected by NASH given the 
greater association of NASH than simple steatosis with cir-
rhosis and hepatocellular carcinoma (Koutsari and Laza-
ridis 2010).

Microarray gene expression profiling is a high-through-
put method for genome-scale, quantitative examination of 
liver disease by simultaneously measuring expression lev-
els for thousands of genes (Shackel et al. 2002). The tech-
nology has been applied to NAFLD gene expression (You-
nossi et al. 2005a; Yoneda et al. 2007; Greco et al. 2008) 
and provides insights into molecular aspects of NAFLD 
progression (Younossi et al. 2005b; Yoneda et al. 2008; 
Bertola et al. 2010; Gawrieh et al. 2010; Ahrens et al. 2013; 
Lopez-Vicario et al. 2014; Moylan et al. 2014). However, 
traditional differential expression analysis methods are 
biased against genes with large changes in expression, 
results of which are varied across different analytical meth-
ods and threshold selection without considering the rela-
tionship between changing genes, which, in turn, cause 
much useful information lost. The use of co-expression 
networks can surmount this problem because it allows for 
the examination of gene expression from a systematic per-
spective (Lee et al. 2004). Weighted gene co-expression 
network analysis (WGCNA) groups functionally related 
genes into modules based on the variability in microar-
ray data among biological samples. The modularity of the 
biological system allows us to look into its components 
independently, and the relationships between genes within 
modules can be delineated. It is believed that modules are 
stable units in systems biology because the overall func-
tion of a module can remain the same while individual gene 
expression can be changed or replaced by other genes with 
similar redundant functions. Therefore, functional modules 
can more effectively reveal consistent differences during 
NAFLD progression.

Herein, we first applied WGCNA to publicly avail-
able microarray data covering normal control, NAFL and 

NASH. Genome-scale modules of co-expressed genes with 
clear functional annotations were identified. The analy-
sis revealed the commonplace and characteristic between 
transcriptional networks of NAFL and NASH. Our results 
also suggested a functional link between differential micro-
RNAs (miRNA) and hub genes during NAFL/NASH 
transition.

Materials and methods

Data acquisition

Microarray dataset from a previous study was used in this 
analysis: microarrays representing three clinically defined 
pathological groups; normal, NAFL and NASH. The raw 
data (.cel files) were obtained from the ArrayExpress data-
base with accession number E-MEXP-3291. Briefly, 19 
normal, 10 steatotic and 16 NASH livers were used for 
microarray analysis. All these samples were clinically char-
acterized as previously described (Lake et al. 2011) (Sup-
porting Table 1).

Microarray data analysis

Microarray data analysis was performed using the R soft-
ware and Bioconductor affy package. Raw expression data 
were log2 transformed and normalized by quantile nor-
malization. Differential expression was detected using the 
SAM package (significance analysis of microarrays, http://
www-stat.stanford.edu/~tibs/SAM/) and the significance 
threshold was FDR <0.01 and fold changes >1.3. (Details 
of the gene expression analysis are given in Supporting 
Information)

Weighted gene co‑expression network analysis 
(WGCNA)

Unsigned co-expression networks were constructed on 
the basis of 5000 genes with highest expression variance 
using the WGCNA package in R (Langfelder and Hor-
vath 2008). For each set of genes a pairwise Pearson cor-
relation coefficient matrix is computed, and an adjacency 
matrix is calculated by raising the correlation matrix to a 
power (Zhang and Horvath 2005). The power of 14 was 
chosen using the scale-free topology criterion and was 
used for all three networks: the network built using control 
versus NAFL samples, controls versus NASH samples or 
NAFL versus NASH samples. The weighted network was 
transformed into a network of topological overlap (TO)—
an advanced co-expression measurement that considers not 
only the correlation of 2 genes with each other, but also 
the extent of their shared correlations across the weighted 

http://www-stat.stanford.edu/~tibs/SAM/
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network (Zhang and Horvath 2005). Genes were hierarchi-
cally clustered on the basis of their TO. Finally, modules 
were identified on the dendrogram using the Dynamic Tree 
Cut algorithm (Langfelder et al. 2008). Each module was 
summarized using singular value decomposition so that 
each module eigengene (ME) represented the first principal 
component of module expression profiles (Zhang and Hor-
vath 2005). Thus, ME explains the maximum amount of 
variation of the module expression levels and is considered 
the most representative gene expression in a module. The 
resulting MEs were used to extend the modules’ gene com-
position from 5000 network genes up to the genome scale 
(19,742 genes). For each module, kME is defined as the 
correlation between gene expression values and the mod-
ule eigengene. Genes were assigned to a module accord-
ing to the best matching ME according to its kME values. 
To avoid capturing weak associations, it was additionally 
required that the |kME| value is not less than 0.7. Genes 
weakly correlated with all of the MEs (|kME| <0.7) were 
assigned to none of the modules. To visualize the pairwise 
relationships between genes, VisAnt (Hu et al. 2009) was 
used. About 100 pairs of genes with the highest intramodu-
lar TO value were depicted (Supporting Information).

The disease status was correlated with module eigen-
gene by Pearson correlation.

Functional annotation of the modules

Gene ontology (GO) enrichment and KEGG pathway anal-
ysis for network modules were performed using the Data-
base for Annotation, Visualization and Integrated Discov-
ery (DAVID) (Huang da et al. 2009) with the background 
list of all genes on the array. Association of modules with 
genomic aberration was detected using DAVID on the 
basis of overrepresentation of genes encoded at neighbor-
ing chromosomal locations. To discover potential common 
transcription factors that may control transcription of genes 
in a module, transcription factor binding site (TFBS) infor-
mation was retrieved. In DAVID, an overrepresentation of 
a term is defined as a modified Fisher’s exact P value with 
an adjustment for multiple tests using Benjamini method. 
In addition, we related modules to biological processes in 
NAFLD on the basis of the literature data.

Identification of potential miRNA gene targets

Gene expression can be regulated by miRNA (Lim et al. 
2005). Analysis of 3′-UTR sequences of co-expressed 
genes can provide evidence of miRNA regulation. Pre-
dicted gene targets of all differentially expressed miRNAs 
were identified using several databases, including micro-
rna.org, MicroCosm and TargetScan. For genes that were 
not available from these resources, a PubMed literature 

search was performed. To associate miRNA with predicted 
target gene, correlation in expression level for each of these 
miRNA-gene pairs were calculated using SPSS 17.0.

Results

Neither age nor gender is a major driver of gene 
expression differences between the NAFL and NASH 
groups

Owing to the relatively small number of array samples 
used in this analysis (n = 46), we assessed if individual 
variation, age or gender contributes to expression dif-
ferences. We found that the overall gene expression vari-
ation between individuals of normal, NAFL and NASH 
were 5.5 ± 3.1 %, 5.2 ± 3.1 % and 5.4 ± 3.2 %, respec-
tively. We also applied linear regression of expression val-
ues against age and gender and then assessed differential 
expression between the NAFL and NASH groups using the 
residual values. We observed an over 95 % overlap between 
differentially expressed genes using either the residual val-
ues or the raw data, indicating that neither age nor gender 
was a major driver of gene expression differences between 
the control and NAFLD groups (Supporting Fig. 1). In 
addition, supervised hierarchical clustering based on the 
top 200 variant expressed genes showed distinct clustering 
of all NASH samples (Supporting Fig. 2). The inter-array 
correlation was also calculated and clustered to ensure that 
no aberrant gene expression existed (Supporting Fig. 3).

Network of NAFL versus control

Thirteen modules were identified from WGCNA of con-
trol and NAFL group. No modules were significantly 
associated with the disease status (Supporting Table 2). 
Interestingly, DAVID analysis revealed that module S1, 
which was enriched in proteins involved in sterol biosyn-
thetic process (P = 6.3E−29), contained 4 genes bearing 
loci contribute to polygenic dyslipidemia (P = 2.2E−2). 
And module S7 was enriched in genes located on Y chro-
mosome (P = 2.9E−21). Other eleven modules were also 
significantly associated with specific biological processes: 
oxidation reduction, fatty acid metabolic process, ion 
homeostasis, DNA replication, M phase, protein transport, 
RNA processing, immune response and negative regula-
tion of ubiquitin-protein ligase activity during mitotic cell 
cycle. Although some modules are similar in function, 
they are from different cellular compartments. For exam-
ple, microsomal module S2 and mitochondrial module 
S3 both perform oxidative reduction. It has been demon-
strated that DNA methylation of liver mitochondrion is 
associated with histological severity of NAFLD and insulin 
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resistance (Sookoian et al. 2010; Pirola et al. 2013a). These 
results indicate that WGCNA can group genes by function 
in a robust manner.

Network of NASH versus control

WGCNA identified fourteen modules between NASH and 
control group, including three modules (N1, N8, N14) 
significantly correlated with disease status (Supporting 
Table 3). DAVID analysis indicated three disease-related 
modules are significantly enriched with genes in the fol-
lowing biological processes: proteasomal protein catabolic 
process, immune response and chromosome organiza-
tion. Module N5 contained 6 genes bearing loci contrib-
ute to polygenic dyslipidemia (P = 8.4E−4). Also, two 
KEGG pathways were represented in modules N8 and 
N14, including proteasome (P = 6.3E−16) and cell adhe-
sion molecules (P = 1.1E−4). Results of DAVID analy-
sis for other modules are presented in Supporting Table 3. 
The heat-map of module genes illustrated these modules 
are differentially expressed and are correlated with disease 
status. These significant module networks were visualized 
(Supporting Fig. 4).

Network for NASH versus NAFL

To understand the molecular mechanisms responsible for 
NAFL to NASH transition, network of NAFLD progression 
was also analyzed. Fourteen modules were identified in 
progression network, including nine modules significantly 
associated with disease status. DAVID analysis results of 
these nine modules are shown in Table 1. The heat-map of 
module genes illustrated these modules are differentially 
expressed and are correlated with disease status. These 
significant module networks were visualized (Supporting 
Fig. 5).

It has been demonstrated that WGCNA modules gener-
ated from small sample sizes (n < 30) are still robust (Far-
ber 2010). However, owing to the relatively small number 
of array samples used in this group (n = 26), we wanted 
to quantitatively assess the modules’ stability. For each 
module, intramodular connectivity in 1000 module gene 
sets generated by sampling 13 of the 26 array samples 
were calculated. Then, correlations between the true mod-
ule gene connectivity values and those from the 1000 ran-
domly selected sets were calculated. The correlations of 
each module were higher than 0.7 and the average correla-
tion was 0.8 (Supporting Fig. 6). The result proved that the 
modules are robust to a 50 % sample exclusion.

Furthermore, two recently published NAFLD datasets 
GSE48452 (Ahrens et al. 2013) and GSE61620 (Hor-
vath et al. 2014) were used for validation. The module 

preservation analysis results suggested that all modules 
were preserved in these two datasets. All modules have a 
Zsummary statics greater than 2, which is the threshold for 
module preservation. The lowest preservation is the module 
2. The detailed module preservation statistics is provided in 
Table 2.

Two modules function in protein degradation and cell 
adhesion in progression network, respectively

After viewing the global properties of the three networks, 
we next examined details of particular modules. In pro-
gression network, the most significantly altered module 
P4 (P = 9.73E−8) was down-regulated in NASH and 
was also the second largest module in terms of gene num-
ber (Fig. 1a; Table 1). Module P4 was associated with 
protein degradation, and contained endoplasmic reticu-
lum and proteasome (Fig. 1a). Genes in this module were 
enriched with target genes of transcription factor includ-
ing MECOM (P = 3.4E−5), POU2F1 (P = 9.5E−4), 
MEF2 (P = 1.2E−3), NRF2 (P = 1.4E−3) and CEBP 
(P = 3.9E−2). The module was centered at SRPRB and 
was strongly connected with other components (Fig. 1a). 
SRPRB strongly interacts with ABCB6, a membrane 
transport protein important for cadmium ion transmem-
brane transport and heme transport. SRPRB is a subunit of 
the signal recognition particle receptor, involved in small 
GTPase-mediated signal transduction. The largest module 
P8 (Fig. 1b) includes mainly extracellular matrix compo-
nent playing a role in cell adhesion (P = 3.8E−21). The 
module was up-regulated in NASH and is also the second 
most significant module.

We next focus on the three smallest modules (P1, P2 and 
P7, Supporting Table 4) in progression network. Cadmium 
ion binding proteins were significantly enriched in module 
P1. Hub genes in this module were from metallothionein 
family (Supporting Fig. 5A). Genes in this module were 
down-regulated, indicating ion dysregulation during transi-
tion of NAFL to NASH. Modules P2 and P7 were partici-
pating in ribosome biogenesis and immune response. The 
ribosome biogenesis complex contains 58 genes centered 
around SNORD44 and SNORD75 (Supporting Fig. 5B), 
while immune response complex consists of 55 genes 
centered around IGKC and IGHG1 (Supporting Fig. 5D). 
Interestingly, module P7 also enriched ribosome proteins 
indicating elevated protein synthesis. Together, our module 
data suggest the differences in protein degradation, riboso-
mal biogenesis and immune response between NAFL and 
NASH can be used as molecular features distinguishing 
these two disease stages.

To decide which of these nine modules in the pro-
gression network is associated with NAFLD phenotype, 
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an independent genetic validation was performed. We 
directly used a list of genes with significant SNP loci from 
a recently published paper (Chalasani et al. 2010). These 
genes were identified to be associated with NAFLD phe-
notype as described in the original work. These genes were 
mapped to nine progression modules (Supporting Table 5). 
The mean intramodular connectivity of the associated ver-
sus non-associated genes were calculated in all modules. 
Module P8 had a maximum 15 genes bearing SNPs geno-
typed in the study. These 15 genes indeed had a higher con-
nectivity than other genes in the module (P = 0.009). The 
results indicate that module P8 may be involved in NAFLD 
progression.

Identification of key hub genes and overrepresentation 
of TFBS in NAFLD progression network

Highly connected intramodular “hub” genes play pivotal 
role in maintaining the module structure (Barabasi et al. 
2011). Evidence suggests that a gene’s network position 
has significant functional implications, with more cen-
tralized genes in the network more likely to be vital to 
proper cellular function than peripheral genes (nodes). It 
has previously been shown that hubs play important roles 
in yeast protein networks (Jeong et al. 2001) and in glio-
blastoma gene networks (Ivliev et al. 2010), where hubs 
have been shown to be therapeutic targets or signatures for 

Table 1  Functional annotation of the modules in progression network

a Functional terms overrepresented with highest statistical significance in the given module (Benjamini–Hochberg corrected P values are given 
in brackets)
b Genes that are the top 3 most connected in the given module

Module (no. genes) GOa Overrepresented KEGG pathwaya Overrepresented TFBSa Hubsb

P1 (22) Cadmium ion binding (4.0E−17)
Copper ion binding (1.4E−10)

MYB (3.1E−2)
USF (2.1E−2)

MT1IP,
MT1DP,
MT1X

P2 (58) Ribosome biogenesis (1.5E−6)
Nucleolus (7.1E−10)
RNA binding (3.4E−4)

SNORD44,
SNORD75,
SNORD30

P4 (711) Proteasomal protein catabolic process 
(6.2E−19)

Endoplasmic reticulum (2.5E−19)
Proteasome complex (8.4E−19)
Oligosaccharyl transferase activity 

(1.6E−7)
Unfolded protein binding (7.0E−5)

Proteasome (1.0E−20)
N-Glycan biosynthesis (6.1E−8)
Alanine, aspartate and glutamate metabo-

lism (1.8E−2)

MECOM (3.4E−5)
OCT1 (9.5E−4)
MEF2 (1.2E−3)
NRF2 (1.4E−3)
CEBP (3.9E−2)

SRPRB,
NANS,
PDIA6

P5 (104) Translational elongation (4.8E−10)
Cytosolic ribosome (6.8E−9)
Structural constituent of ribosome 

(7.2E−8)

Ribosome (5.0E−9) RPL18,
RPL28,
RPL8

P7 (55) Immune response (4.0E−2)
Antigen binding (4.7E−8)

Ribosome (3.4E−4) IGKC,
IGHG1,
IGKV4-1

P8 (1435) Cell adhesion (1.7E−8)
Extracellular matrix (1.7E−7)
Growth factor binding (4.0E−3)

Focal adhesion (6.8E−13)
ECM-receptor interaction (1.1E−8)

FOXO1 (2.2E−32)
SOX5 (2.6E−31)
SRY (2.1E−30)
STAT5B (3.0E−30)
FOXO4 (1.2E−29)
HFH3 (2.6E−29)

TCF4,
ANTXR1,
VIM

P9 (109) Response to molecule of bacterial origin 
(1.0E−4)

Cell surface (1.9E−2)

T cell receptor signaling pathway 
(4.1E−3)

Toll-like receptor signaling pathway 
(1.2E−2)

NFKB (4.8E−4)
CREL (6.2E−3)
STAT (1.4E−2)
FREAC7 (2.8E−2)

PTGS2,
LCP2,
DOCK10

P13 (416) mRNA processing (2.2E−6)
Ribonucleoprotein complex (1.4E−6)
RNA binding (5.4E−4)

Spliceosome (6.0E−4)
Oxidative phosphorylation (3.5E−2)

YY1 (2.1E−5)
AML1 (1.2E−5)
E2F (1.6E−5)
ELK1 (1.6E−5)

STOML2,
PAN3,
YIF1A

P14 (251) Protein transport (6.8E−5)
Nuclear lumen (8.0E−3)

SP1 (5.7E−3) SRRM2,
CCT4,
SNRNP70
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prognosis. Also, co-expressed genes in some modules may 
be co-regulated by one or more common transcription fac-
tor (TF) (Segal et al. 2003). In progression network, top 
three hub genes within each module and overrepresenta-
tion of TFBS for TFs of the module are listed in Table 1. 
For example, MT1IP, MT1DP and MT1X are hub genes in 
module P1, and all belong to metallothionein family. Small 
nucleolar RNAs SNORD44, SNORD75 and SNORD30 are 
hub genes in module P2 involved in ribosome biogenesis. 
Common TFs overrepresented in in modules are also sum-
marized in Table 1.

Hub genes or TFs as miRNA targets

A cell’s activity is organized as a network of functionally 
related modules: sets of genes co-regulated to respond to 
different conditions. Genes that are highly connected are 
referred to as hubs and have been proven to be important 
in disease and in controlling module behavior (Miller 
et al. 2008). NAFLD is not a consequence of an abnor-
mality in a specific gene, but reflects the perturbations of 
the complex network formed by connected genes or mod-
ules. We have characterized NAFLD progression network 
mentioned above. So, we next want to explore which 
differentially expressed miRNAs may regulate NAFLD 
progression through module hub genes or modular regu-
latory TFs. Differential expression of 193 miRNA probe 
sets present on the chip was calculated using SAM pack-
age (Tusher et al. 2001). We focused our search on the 27 

hub genes and the 15 differential miRNAs. We found that 
12 of the 20 hub genes were the predicted targets for 13 
differentially expressed miRNAs (Table 3). 6 of the 12 
hub genes MT1DP, MT1X, SRPRB, PDIA6, NANS and 
YIF1A were significantly down-regulated, and the other 
6 hub genes IGHG1, TCF4, VIM, PTGS2, PAN3 and 
SRRM2 were significantly up-regulated in NAFL/NASH 
transition (Table 4). Also, 7 of the module regulatory 
TFs are predicted to be targets of 9 differential miRNAs 
(Table 3). To provide further evidence that these genes are 
the targets of differential miRNAs, significant correlation 
in expression level for each of these miRNA-gene pairs 
was shown (Supporting Table 6). The most significant 
of miRNAs:hub gene pairs is miR-30e:NANS (r = 0.69, 
P = 9.20E−5). miR-30e also negatively regulates VIM 
(r = −0.62, P = 5.88E−4), which is important in lym-
phocyte adhesion and transmigration (Nieminen et al. 
2006) during inflammation. miR-192, significantly down 
regulated in NAFLD, was predicted to positively regulate 
MT1X (r = 0.53, P = 4.85E−3), which is a hub gene 
involved in cadmium ion homeostasis. The significantly 
down regulated miR-15a was predicted to positively regu-
late PDIA6 (r = 0.53, P = 5.34E−3), which is a hub gene 
involved in unfolded protein binding within endoplasmic 
reticulum lumen.

Because miRNAs can target hub genes, we hypoth-
esized that modules may be controlled by miRNAs. To 
this end, we correlated modular gene expression with 
those significantly altered miRNAs to test the hypothesis. 
Interestingly, several modules showed a significant cor-
relation with expression levels of miRNAs (Supporting 
Fig. 7). For example, the highest correlation was between 
miR-192 and module P8 (r = 0.82, P = 3.13E−7). Mod-
ule P8 was enriched with genes involved in cell adhesion 
(1.7E−8) and inflammatory response (1.2E−2).  Module 
P8 expression was also associated with miR-122 expres-
sion (r = 0.64, P = 4.62E−4) and miR-24-2 expression 
(r = 0.65, P = 3.41E−4).

Candidate key target genes selection for NAFL/NASH 
pathogenesis

As nine modules correlated with NAFLD disease status, 
a panel of candidate genes based on modules P1, P2, P4, 
P5, P7, P8, P9, P13 and P14 for distinguishing NASH from 
NAFL subjects are listed in Table 4. These genes showed 
significant differential expression as indicated by the P val-
ues, and they were important components of the NASH-
related modules as reflected by their strongly positive or 
negative values of module membership (kME). The expres-
sion of these genes in individual patient was shown (Sup-
porting Fig. 8).

Table 2  Gene network modules from E-MEXP-3291 are well pre-
served in GSE48452 and GSE61620

Zsummary<2 implies no evidence for module preservation, 2<Zsum-
mary<10 implies weak to moderate evidence, and Zsummary>10 
implies strong evidence for module preservation

Module Zsummary in GSE48452 Zsummary in GSE61620

1 17.0 13.0

2 2.3 4.5

3 25.0 22.0

4 4.2 10.0

5 16.0 20.0

6 58.0 49.0

7 6.4 4.7

8 26.0 24.0

9 15.0 14.0

10 11.0 8.7

11 11.0 5.5

12 16.0 11.0

13 15.0 14.0

14 23.0 19.0
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Discussion

Currently, only a few human NAFLD transcriptome stud-
ies have been reported, due to clinic sample availability and 
microarray data accessibility. NAFLD animal model tran-
scriptome (Hebbard and George 2011) results are not con-
sistent with human due to species divergence (Odom et al. 
2007). Furthermore, most of these studies are focused on 
just one stage, ignoring the property of disease progression. 
Here, we re-analyze this NAFLD progression microar-
ray dataset. However, a big challenge in microarray stud-
ies is how to interpret gene lists into function, especially 
when the focus is on gene-by-gene analysis of differential 
expression. Because individual gene signatures distinguish-
ing NAFL and NASH may not be stable across patients or 
studies, we turned to gene network analysis to examine 

consistent functional module differences between NAFL 
and NASH by employing WGCNA. WGCNA provides a 
framework based on the intrinsic transcriptome organiza-
tion measured in a given study and allows identification of 
hub genes that play central roles in a specific context. As 
an alternative to traditional differential expression analy-
ses which centered on most significant genes, WGCNA 
groups co-expressed genes that are biologically related on 
a genome-wide scale in an unbiased manner, which may 
shed light on key therapeutic targets discovery and mecha-
nisms of disease.

Another advantage of WGCNA approach is that it 
facilitates annotation of disease-related genes by allow-
ing assertion of a biological role for the module. The bio-
logical role of a module is based on the genes contained 
within the module that have known biological functions or 

Fig. 1  Modules of P4 and P8 in progression network are the two 
most significant ones. Expression within both modules is shown in 
the heat-map and summarized with the module eigengene (below 
columns). The two modules were visualized using VisANT to plot 
the 100 strongest connections within each module. Red lines denote 

positive correlation between two genes, while blue denotes negative 
correlation. a The P4 module contains genes co-regulated in protea-
some pathway. b The P8 module is enriched for genes involved in 
focal adhesion pathway. Both pathways are related to inflammatory 
responses (color figure online)
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are associated with a particular functional property. This 
approach can shed light on the function of novel genes 
or genetic findings on the basis of guilt-by-association. 
For example, Kruppel-like factor 6 (KLF6) belongs to 
the Kruppel-like family of transcription factors known 
to play diverse roles in differentiation, development, cell 
growth, apoptosis and angiogenesis. KLF6 expression was 
increased in association with increased steatosis, inflam-
mation and fibrosis in NAFLD livers (Miele et al. 2008; 
Ray 2013). A functional polymorphism in the KLF6 
(rs3750861) is associated with advanced NAFLD (Miele 
et al. 2008). In our analysis, KLF6 was up regulated 2.35-
fold in NASH compared with NAFL. KLF6 resides in 

module P4 whose primary function is proteasome pro-
tein degradation. Expression of KLF6 (kME = −0.83) is 
negatively correlated with protein degradation. Interest-
ingly, ubiquitin–proteasome degradation is involved in the 
development of inflammation through multiple pathways, 
including MHC-mediated antigen presentation, cytokine 
and cell cycle regulation and apoptosis (Wang and Mal-
donado 2006). The association between nonsynonymous 
gene variants and NAFLD histologic severity has been 
previously reported (Romeo et al. 2008). Recently iden-
tified genetic variants of MSRA (rs17151287), RBMS3 
(rs9878305) and GCKR (rs780094), which are members 
of the module P8, are associated with histologic NAFLD 

Table 3  miRNA-gene pairs as predicted from database

The significance of miRNA-gene pairs was calculated by Pearson correlation

* P < 0.05
† P < 0.01
‡ P < 0.001

Module miRNA:hub gene pairs miRNA:TF pairs

P1 miR-29c:MT1DP, miR-192:MT1X†

P4 miR-23b:PDIA6, miR-15a:SRPRB*, miR-15a:PDIA6†, let-
7f:PDIA6†, miR-30e:NANS‡

miR-122:MECOM, let-7d:POU2F1, let-7f-1:POU2F1*, let-
7g:POU2F1, miR-23b:POU2F1, miR-122:POU2F1

P5 miR-148b:RPL8*

P7 miR-29c:IGHG1

P8 miR-101-2:TCF4*, miR-105-2:TCF4*, miR-122:VIM‡, miR-
30e:VIM‡

miR-148b:SOX5*, miR-23b:STAT5B

P9 miR-101-2: PTGS2 let-7d:FOXL1, let-7f-1:FOXL1, miR-192:SOAT1

P13 miR-27b:PAN3, miR-105-2:PAN3*, miR-148b:YIF1A†, miR-
30e:YIF1A†

miR-29c:YY1

P14 let-7f-1:SRRM2*, let-7d:SRRM2, let-7g:SRRM2*

Table 4  Module membership and Log2 (NASH/NAFL) ratio of 12 selected hub genes

Module membership (kME) was measured by correlating its gene expression profile with the module eigengene of a given module. P value was 
calculated by correlation test. Fold change and q value were calculated by SAM

Symbol Gene name Module kME P value Fold change q value (%)

MT1DP Metallothionein 1D, pseudogene P1 0.95 9.29E−14 0.62 0.23

MT1X Metallothionein 1X P1 0.89 7.33E−10 0.37 0

PDIA6 Protein disulfide isomerase family A, member 6 P4 0.95 2.76E−14 0.46 0

SRPRB Signal recognition particle receptor, B subunit P4 0.93 2.14E−12 0.45 0

NANS N-Acetylneuraminic acid synthase P4 0.96 8.96E−15 0.40 0

RPL8 Ribosomal protein L8 P5 0.93 2.86E−12 NA NA

IGHG1 Immunoglobulin heavy constant gamma 1 P7 0.94 7.02E−13 3.30 0.03

TCF4 Transcription factor 4 P8 0.97 1.34E−16 2.35 0

VIM Vimentin P8 0.96 5.46E−16 3.12 0

PTGS2 Prostaglandin-endoperoxide synthase 2 P9 0.95 1.79E−14 2.03 0.18

PAN3 Poly(A) specific ribonuclease subunit homolog P13 0.88 2.86E−09 1.68 0

YIF1A Yip1 interacting factor homolog A P13 −0.89 4.54E−10 0.54 0

SRRM2 Serine/arginine repetitive matrix 2 P14 0.92 9.92E−12 1.35 0.45
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severity (Speliotes et al. 2011). Functions associated with 
module P8 include cell adhesion and growth factor bind-
ing (see Supplemental Table 4), thereby implicating these 
pathways in NAFLD. Moreover, genetic variants of PELI2 
(rs9323291) and EFCAB4B (rs887304) in module P13 
were associated with histologic NAFLD (Speliotes et al. 
2011) and lobular inflammation of NAFLD (Chalasani 
et al. 2010), respectively.

Here, we present for the first time a systematic WGCNA 
of NAFL and NASH. Several lines of evidence suggest that 
the networks constructed are biologically significant. First, 
most of the identified modules are enriched for specific GO 
terms, KEGG terms or TFBS. Second, hub genes in several 
modules are key players in NAFLD as reported by pub-
lished literature. Finally, multiple network modules execute 
similar functions between NAFL and NASH, including S1 
and N5, S2 and N6, S4 and N7, S6 and N13, S9 and N11, 
S10 and N14, S13 and N8 as shown in Supporting Fig. 9. 
Besides, we identified nine modules that may play roles in 
NAFLD progression. These biological processes, including 
ion homeostasis, ribosome biogenesis, immune response, 
proteasomal protein degradation, translational elonga-
tion, cell adhesion, response to endotoxin, RNA splicing 
and protein transport, may possibly play in NAFL/NASH 
transition.

Recently, the NAFLD dataset we used has also been 
analyzed by other groups. The data was integrated with 
metabolic profile and network to identify metabolites 
for NASH diagnosis (Mardinoglu et al. 2014; Lake et al. 
2015). These studies showed that non-essential amino acids 
serine, glycine, glutamate, glutamine, aspartate and ala-
nine, and the essential amino acids valine and methionine 
seem to be involved in the appearance of NASH. In our 
analysis, we observed significant modules associated with 
amino acid metabolism and lipid metabolism in both stea-
tosis (S1, S2, S3) and NASH (N5, N6) network. The result 
was represented in supplementary Tables 2 and 3. However, 
only amino acid metabolism was presented in module P4 
of the progressive network, which suggests the continuous 
amino acid metabolic stress during NASH pathogenesis. 
One of the NASH associated modules, P4, was identified 
with enriched genes in alanine, aspartate and glutamate 
metabolism pathway. Module P4 is enriched with genes 
involved in proteasomal protein degradation, which sug-
gests the potential origin of these up-regulated amino acids. 
Mardinoglu et al. also showed that blood concentrations of 
chondroitin and heparan sulfates are suitable for diagnos-
ing NASH. In our analysis, we found that NASH associ-
ated module P8 (enriched with extracellular matrix genes) 
is involved in cell adhension. The module P8 gene HSPG2 
encodes a core protein of chondroitin and heparan sulfates, 
whose role in cell adhesion and inflammation has been 
reported (O’Boyle et al. 2009).

On the other hand, miRNAs are important regulators of 
gene expression and affect mRNA stability and function. 
Interestingly, 193 probe sets presented on the chip with 
miRNA gene annotation resulted in 15 differential miR-
NAs. Many of these miRNAs have been reported to play 
roles in NAFLD. For example, miR-122, the most abun-
dant miRNA in the liver, was down regulated in NASH 
and has been shown to be involved in lipid and choles-
terol metabolism, which are at the core of fatty liver dis-
ease (Cheung et al. 2008). It has been shown that miR-
122 is decreased in the liver but increased in circulating 
forms and serves as potential biomarkers for predicting 
NAFLD progression (Pirola et al. 2013b). According to 
our analysis, miR-122 is 6.1-fold down-regulated, which 
is the most significantly changed miR. According to target 
gene prediction, miR-122 targets module P4 through sev-
eral regulatory TFs of this module, and P8 through its hub 
gene VIM. Two recent studies show that miR-122 indeed 
can regulate cell adhesion (Tsai et al. 2009) and protea-
somal ubiquitin-dependent protein degradation (Yang 
et al. 2011a) in hepatocellular carcinoma. In down-reg-
ulated module P4, two cellular components, endoplas-
mic reticulum (P = 1.3E−27) and proteasome complex 
(P = 1.4E−22), were significantly enriched, while this 
module was involved in proteasomal ubiquitin-dependent 
protein catabolic process (P = 1.5E−23) and unfolded pro-
tein binding (P = 9.0E−9). These results suggest that P4 
may participate in endoplasmic reticulum-associated deg-
radation (ERAD) pathway. Furthermore, miR-122 can tar-
get several module P4 regulatory TFs, including MECOM, 
POU2F1 and CUX1, which can regulate most of genes 
in this module (Table 3). One of P4 module hub genes is 
PDIA6, which is regulated by several other miRNAs such 
as miR-23b, miR-15a and let-7f. In case of module P8, its 
hub gene TCF4 is a transcription factor and is negatively 
regulated by both miR-105-2 (Yang et al. 2011b) and miR-
101-2. Compared to NAFL, TCF4 overexpressed 2.3-fold 
in NASH. However, its role in NAFL/NASH transition has 
not yet been reported.

To demonstrate the usefulness of our modules in the 
development of efficient NAFLD treatment strategies, 
another large-scale analysis was performed for drug reposi-
tioning. The Connectivity Map (Lamb et al. 2006) microar-
ray data were projected to the NASH network, and module 
eigengene was calculated for the 6,100 chemical molecules. 
According to the two most significant modules P4 and P8 
in the network, we found the top 2 molecules (sulconazole 
and doxazosin) for these two modules. Interestingly, we 
found that the roles of doxazosin not only include treating 
hypertension but also include preventing hepatic steato-
sis (Menacho-Marquez et al. 2013), even alleviating insu-
lin resistance (Shen et al. 2009). The drug is widely used 
to treat hypertension, but its roles in NASH are limited to 
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animal experiment. However, the validated pathogenetic 
link between the NAFLD and altered blood pressure status 
may suggest NAFLD as one of the possible pathogenesis 
mechanisms of hypertension (Latea et al. 2013).

However, our results are concluded from a limited num-
ber of samples, the power of the study should be improved 
by enrolling more samples and considering related clinic 
parameters such as BMI and serum enzymes in the future.

Although systems biology has been applied before to 
establish new gene networks implying even miRNAs in not 
only NAFLD but also AFLD (Sookoian and Pirola 2013), 
our comparative gene co-expression network analysis dem-
onstrates that NAFL/NASH transition is associated with 
interaction between gene network and miRNA. miRNA 
may affect NAFLD transition through hub genes in mod-
ules, as well as transcription factors. The transcription fac-
tor TCF4 may be negatively regulated by miR-101-2 and 
miR-105-2, through which gene expression of cell adhesion 
module is affected during NAFLD progression. Finally, 
our approach can provide unique insights into the different 
regulatory mechanisms associated with NAFLD and will 
aid in identifying specific transcriptional networks and key 
genes that may involve in the development and progression 
of NASH. When validated, these candidate genes can pro-
vide molecular targets for diagnosis and therapy.
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