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Abstract Upland cotton plays a critical role not only in
the textile industry, but also in the production of impor-
tant secondary metabolites, such as oil and proteins.
Construction of a high-density linkage map and identi-
fying yield and seed trait quantitative trail loci (QTL)
are prerequisites for molecular marker-assisted selec-
tive breeding projects. Here, we update a high-density
upland cotton genetic map from recombinant inbred
lines. A total of 25,313 SSR primer pairs were screened
for polymorphism between Yumian 1 and T586, and
1712 SSR primer pairs were used to genotype the map-
ping population and construct a map. An additional 1166
loci have been added to our previously published map
with 509 SSR markers. The updated genetic map spans
a total recombinant length of 3338.2 cM and contains
1675 SSR loci and nine morphological markers, with an
average interval of 1.98 cM between adjacent markers.
Green lint (Lg) mapped on chromosome 15 in a previous
report is mapped in an interval of 2.6 cM on chromosome
21. Based on the map and phenotypic data from multi-
ple environments, 79 lint percentage and seed nutrient
trait QTL are detected. These include 8 lint percentage,
13 crude protein, 15 crude oil, 8 linoleic, 10 oleic, 13
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palmitic, and 12 stearic acid content QTL. They explain
3.5-62.7 % of the phenotypic variation observed. Four
morphological markers identified have a major impact
on lint percentage and cottonseed nutrients traits. In this
study, our genetic map provides new sights into the tetra-
ploid cotton genome. Furthermore, the stable QTL and
morphological markers could be used for fine-mapping
and map-based cloning.
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Introduction

As a leading global fiber crop, cotton provides most of the
natural fiber for the textile industry. Furthermore, the cot-
tonseed by-product is also a good natural source of oil and
protein, and plays important roles in world oil and livestock
feed product markets. Four species of the Gossypium genus
are cultivated, including two diploid species, G. arboreum
and G. herbaceum, and two allotetraploid species, G. bar-
badense and G. hirsutum (Wendel and Cronn 2003). G. hir-
sutum (upland cotton) is the most widely grown worldwide,
accounting for 95 % of both acreage and fiber production
(Chen et al. 2007).

Cotton fiber, the most important product of the cotton
plant, is a highly elongated single cell derived from the
ovule epidermis; its development synchronizes with and
depends on seed development. Cottonseed development is
a highly programmed and regulated process, shaping cot-
ton fiber yield, quality, and seed nutrients. Lint percentage
(LP), a component of lint yield and a critical economic
index for cotton cultivars, is closely related to lint yield
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improvement (Culp and Harrell 1975; Meredith, 1984;
Zeng and Meredith 2009). Previous research has demon-
strated that lint percentage is a quantitative, stably inher-
ited trait (Meredith 1984). Many quantitative trait loci
(QTL) conferring lint percentage have been identified and
mapped with molecular markers in different populations
(Zhang et al. 2005; Shen et al. 2007; Wang et al. 2007; Qin
et al. 2008; Wu et al. 2009; An et al. 2010; Yu et al. 2013;
Zhe et al. 2014). Although the QTL identified have helped
reveal the landscape of genetic factors controlling lint per-
centage, these QTL, which are either only detected in a sin-
gle environment or have small effects, exhibit low reliabil-
ity and stability, thus limiting their application.

Although cottonseed nutrients are not as important as
fiber yield or quality traits, they are of interest to research-
ers. The major concerns in terms of cottonseed nutri-
ent traits are oil and protein content. Generally, cotton-
seed has an oil content ranging from 13.6 to 24.7 % and
a protein content ranging from 12 to 23 % (Lukonge et al.
2007; Dowd et al. 2010). Significant relationships have
been detected between cotton fiber yield and seed nutrient
traits (Dani and Pundarikakshudu 1986; Ashokkumar and
Ravikesavan 2013). The relationship of most concern is
the negative relationship between seed oil content and fiber
yield (Turner et al. 1976), which indicates competition for
carbohydrates made from photosynthesis. However, cotton-
seed oil content is also negatively related to seed protein
content (Hanny et al. 1978; Kohel and Cherry 1983; Sun
et al. 1987). Cottonseed nutrient traits are also quantitative
and mainly affected by genotype (Anderson and Worthing-
ton 1971; Dowd et al. 2010). However, few studies on QTL
mapping for cottonseed nutrient traits have been reported to
date (Song and Zhang 2007; Liu et al. 2010; Yu et al. 2012).

In this study, we aimed to comprehensively map the
loci associated with lint percentage and cottonseed nutrient
traits based on a recombinant inbred line mapping popula-
tion. The results will help us further understand the genetic
mechanism of lint percentage and cottonseed nutrient traits
and the relationship between them. The QTL identified as
particularly stable, and co-located QTL will further facili-
tate mining of the genetic factors underlying lint percent-
age and cottonseed nutrient traits and provide a means for
molecular marker-assisted selective breeding.

Materials and methods

Mapping population

Cultivar Yumian 1, bred by our laboratory, is characterized
by high lint yield and high fiber strength. T586, known as

the multiple dominant gene line, has nine morphological
markers (R;, red plant; T,, pubescent; L,, okra leaf; R,,
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petal spot; Y, yellow flower; P,, yellow pollen; Lc;, brown
fiber; N, naked seed; Lg, green lint) (Endrizzi et al. 1984).
The population was developed from the two parent cultivars
in summer 2000 in Southwest University (SWU), Chong-
qing, China. F; individual plants were self-pollinated, and
F, seeds were harvested in winter 2000 in Hainan Island
(Zhang et al. 2005). Two hundred and seventy F, individu-
als were hand-harvested randomly and planted to obtain
F,.; family lines. One individual of each F,.; family line
was randomly selected to produce the next generation. This
procedure was continued in the following generations until
an F,.; recombinant inbred line population was obtained.
A completely randomized design was used to arrange the
lines in the field. Parents and recombination inbred lines
were planted in single-row plots 0.7 m wide and 5 m long,
planted in April and harvested in October in Chongqing
from 2004 to 2012.

Trait examination

All naturally opened bolls were hand-harvested to gin fiber.
Delinted seeds were dried at 105 °C for 2 h in a forced-air
oven, and then deshelled and ground into powder to detect
the crude oil (CO) and crude protein (CP) content. CO and
CP content (on a dry weight of kernel powder basis) was
measured following the methods described by Ye et al.
(2003). A GC 2010 gas chromatography system (Shimadzu
Co., Ltd., Tokyo, Japan) was used to analyze fatty acid
components, as described by Dowd et al. (2010). LP of a
given line was measured by the weight ratio of lint to cot-
tonseed. CO and CP percentages were determined by divid-
ing delinted seed CO or CP percentage by embryo per-
centage. Cottonseed oil consists of four major fatty acids,
which were expressed as a percentage (%) of CO; these
include linolenic acid (18:3, LA), stearic acid (18:0, SA),
oleic acid (18:1, OA) and palmitic acid content (16:0, PA).

SSR analysis and genetic map construction

Genomic DNA from the parents and the RIL population
was isolated from leaf tissue by the CTAB method (Zhang
et al. 2005). PCR was conducted in a total volume of
10 pl with 50 ng of cotton DNA, 1 x PCR buffer, 2.0 mM
MgCl,, 0.2 mM dNTPs, 0.5 pM concentrations of each
primer, and 0.5 units of Tagase (Shanghai Sangon, China).
The PCR conditions were as follows: 94 °C for 5 min; 35
cycles of 94 °C for 30 s, 55 °C for 30 s, 72 °C for 1 min;
72 °C for 10 min; 4 °C for preservation. After amplifica-
tion, the PCR products were mixed with loading buffer
(2.5 mg/ml bromophenol blue, 2.5 mg/ml diphenylamine
blue) and then kept at 4 °C. The PCR products were sepa-
rated on 10 % (w/v) polyacrylamide gels and visualized by
silver staining.
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A total of 25,313 pairs of microsatellite marker prim-
ers, including 18,358 pairs from the cotton marker database
(http://www.cottonmarker.org/) and 6955 pairs from our
laboratory (Tang et al. 2015), were synthesized by Shang-
hai Invitrogen and Shanghai Sangon. The primer pairs
showing polymorphism between the mapping parents were
used to genotype 270 recombinant inbred lines. Marker
nomenclature was the same as the primer name. For mul-
tiple polymorphic loci revealed by the same primer pair,
marker nomenclature consisted of the primer name and a
letter a/b/c indicating the polymorphic fragment size from
the smallest to the largest.

JoinMap 4.0 (Van Ooijen 2006) was used to group and
order loci with a log of odds (LOD) threshold range of 4-8.
Locus localization derived from previous maps (Zhang
et al. 2009; Yu et al. 2011; Blenda et al. 2012) was used
to assign linkage groups to putative chromosomes. Linkage
groups known to a given chromosome were then treated
as separate data sets and grouped and ordered at LOD val-
ues between 1 and 4. Map distances were calculated using
Kosambi’s mapping function.

QTL analysis

MapQTL 6.0 (Van Ooijen 2009) was used to identify
QTL for LP and seed nutrient traits. LOD >2.0 was used
to declare suggestive QTL, as suggested by Lander and
Kruglyak (1995), which has been used previously in cot-
ton QTL identification (Shen et al. 2007; Qin et al. 2008).
Graphic representation of the linkage groups and QTL was
created in MapChart 2.2. QTL names start with “q”, fol-
lowed by the trait abbreviation (e.g., LP for lint percent-
age), the name of the chromosome and then the number of
QTL affecting the trait on the same chromosome.

Results
Phenotypic data analysis

Descriptive statistics for LP data across ten environments
and seed nutrient trait data across three environments
are summarized in Table 1. Significant differences were
observed between parents for all of the traits, except for
stearic acid content. For the recombinant inbred line popu-
lation, all of the traits presented transgressive segregation
in different environments and the skewness and kurtosis
values revealed that these traits were all approximately
normally distributed. The correlation analysis based on
data from three environments for the recombinant inbred
line population for the tested traits is shown in Table 2.
The most obvious and stable relationship was that for all
the three environments. First of all, LP was significantly

positively correlated with CP content but negatively corre-
lated with CO content. In addition, CP content was signifi-
cantly negatively correlated with CO content and oil com-
ponents. At the last, linoleic acid content was significantly
negatively correlated with oleic acid and palmitic acid con-
tent. All other correlations were neither significant nor sta-
ble, showing low reliability.

Updated genetic map

A total of 25,313 microsatellite marker primer pairs were
employed to screen for polymorphisms between the par-
ents and 1712 primer pairs revealed clear polymorphism,
accounting for 6.8 % of the total primers. The polymor-
phic primers were used to genotype the recombinant inbred
line population, and 1792 loci were obtained, including
509 SSR (Zhang et al. 2009) and 32 SSR from transcrip-
tion factors (Li et al. 2012). Among the polymorphic prim-
ers, 70 primer pairs amplified two loci, two amplified three
loci, and two amplified four loci. Among the 1801 loci,
320 (17.7 %) exhibited segregation distortion (P < 0.05)
with 226 (70.6 %) favoring the Yumian 1 alleles and 94
(29.4 %) favoring the T586 alleles. All of the 1801 loci and
nine morphological marker loci were applied to construct
the genetic map. We mapped 1675 SSR and nine morpho-
logical marker loci onto 26 upland cotton chromosomes.
Generally, all of the loci were evenly distributed along
the genome, but some chromosomes had more markers
than others, for example ChrO8 had 120 loci while Chr04
only had 27. The total recombinant length of this map was
3338.2 cM with an average of 1.98 cM between adjacent
markers (Table 3; Fig. 1). The average chromosome recom-
binant length was 128.39 cM, with the longest chromo-
some (Chr19) spanning 172.6 cM and the shortest (Chr01)
spanning 90.9 cM. Loci on Chr06 were densest, being
0.6 cM between adjacent markers, while the scarcest was
Chr04, being 2.94 cM apart. The At-subgenome spanned
1446.7 cM, containing 726 markers with an average
marker interval of 2.02 cM. The Dt-subgenome spanned
1871.5 cM, containing 958 markers with an average marker
interval of 1.95 cM. There were 13 gaps (marker interval
>10 cM) on this genetic map, with eight on At-subgenome
and five on Dt-subgenome. The largest gap on Chrll
spanned 22.9 cM. More detailed information of the genetic
map is depicted in Table 3 and Fig. 1.

A total of 279 segregation-distorted loci, accounting
for 16.6 % of the mapped loci, were unevenly distributed
on the 26 cotton chromosomes with 2-27 loci on each
chromosome. More distorted loci were located on the At-
subgenome than on the Dt-subgenome (163 versus 116)
(Table 3). A total of 19 segregation distortion regions
(SDRs) were found on the 14 cotton chromosomes with
12 SDRs on the At-subgenome and seven SDRs on the
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Table 1 Phenotypic variation in

X . Years Parents Recombinant inbred line population
lint percentage and seed nutrient
traits in the recombinant inbred T586 Yumian 1 Mean Max. Min. Skewness kurtosis
line population
LP 2004 6.28 42.52 22.64 43.76 0 —-0.33 —0.99
2005 5.46 41.53 24.92 47.97 0.48 —-0.23 —1.13
2005H 7.88 42.30 26.68 49.5 0.26 —0.04 —1.12
2006 6.42 43.46 19.4 43.71 0 0.07 —1.38
2007 7.41 42.57 21.93 48.26 0.28 0.09 —-1.22
2008 5.85 41.49 21.1 47.23 0.94 0.16 —1.29
2009 6.24 4291 22.96 4243 1.3 —0.26 —1.13
2010 5.6 41.29 24.4 47.52 0.64 —0.07 —1.13
2011 7.73 41.87 21.45 43.27 1.48 0.03 —0.98
2012 6.62 43.54 21.11 45.5 0.81 —0.11 —1.13
Average 6.55 42.22 22.68 46.15 0.69 —0.04 —1.17
CP 2006 36.83 50.36 45.33 51.6 39.2 0.01 -0.73
2007 36.02 50.19 45.47 51.47 38.09 -0.19 —0.49
2011 44.49 50.37 46.66 53.12 41.29 0.06 0.71
Average 39.11 50.31 45.82 52.06 39.53 —0.04 —0.17
CO 2006 35.82 24.45 27.9 34.1 234 0.13 —0.65
2007 37.87 24.34 28.38 34.49 23.82 0.27 —0.44
2011 30.64 25.76 29.81 33.49 25.3 —0.16 0.01
Average 34.78 24.85 28.7 34.03 24.17 0.08 —-0.36
LA 2006 49.52 52.2 50.57 60.62 38.95 —0.24 10.4
2007 53.05 54.52 55.64 63.28 48.44 —0.30 0.76
2011 45.94 49.95 49.43 55.36 39.2 —0.75 0.29
Average 49.5 52.22 51.88 59.75 422 —0.43 3.82
OA 2006 19.43 16.58 18.91 30.05 13.57 1.50 3.48
2007 19.32 18.41 17.65 30.37 12.94 0.14 0.26
2011 24.72 18.60 19.69 30.37 15.28 0.93 0.84
Average 21.16 17.86 18.75 30.26 13.93 0.86 1.53
PA 2006 23.68 26.99 26.27 29.33 21.21 -0.57 —0.04
2007 25.24 27.82 24.04 28.5 20.22 0.23 0.02
2011 26.70 28.6 28.1 31.44 2547 0.24 —-0.35
Average 25.21 27.8 26.14 29.76 22.3 —0.03 —0.12
SA 2006 2.12 2.76 2.64 3.84 1.64 0.17 —0.20
2007 241 2.8 2.61 5.56 1.82 1.85 6.68
2011 2.67 2.81 2.76 3.58 2.1 0.13 —0.66
Average 2.40 2.61 2.67 4.33 1.85 0.72 1.94

Dt-subgenome (Fig. 1). Chr05 had the most distorted loci
with the highest proportion, forming the largest SDRs.

LP QTL

Eight QTL, explaining 3.4-63.4 % of the total phenotypic
variation, were detected across 10 environments. The near-
est loci and confidence interval of these QTL are shown
in Table 4 and Fig. 1. Among the eight non-over lapping
QTL, qLP06.1, qLP07.1, qLP09.1, qLP12.1, qLP21.1,
and qLP26.1, detected in 6-10 environments were stable.
Four QTL, qLP06.1, qLP07.1, qLP12.1, and qLP21.1, were
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associated with the dominant morphological markers T,
Lcl, Ny, and Lg, respectively. Three major QTL, qLP07.1,
qLP21.1, and qLP12.1, explained >10 % variation; all of
the favorable QTL effects were conferred by Yumian 1
alleles. Parent Yumian 1 alleles confer favorable effects for
most QTL, except qLP06.1 and qLP26.1, which is consist-
ent with parental LP.

Seed nutrient trait QTL

Sixty-four significant QTL for six seed nutrient traits were
identified, including four detected in three environments
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Table2 Correlation Trait ~ Years  LP cp co LA 0A PA
coefficients among all traits
CP 2006 0.74%*
2007 0.67%*
2011 0.537%:*
CcO 2006 —0.74%* —0.89%*
2007 —0.70%* —0.91%**
2011 —0.53%* —0.74%*
LA 2006 0.12 0.10 —0.14*
2007 0.01 0.00 0.02
2011 —0.04 —0.03 —0.09
OA 2006 0.30%* —0.24%* 0.24%* —0.81%*
2007 0.10 —0.19%* 0.18% —0.70%*
2011 0.00 —0.05 0.16 —0.93**
PA 2006 0.17%%* 0.13%* —0.07 —0.66%** 0.21%%*
2007 0.10 0.227%* —0.20%* —0.53%** —0.15*
2011 0.10 0.17 —0.13 —0.46%* 0.14
SA 2006 0.15% 0.09 0.02 —0.23%* -0.07 0.39%*
2007 —0.06 —0.10 0.06 —0.30%* 0.17* —0.13
2011 0.06 0.10 —0.16 0.20 —0.25* —0.15

* ** Indicate significance differences with a probability level of 0.05 and 0.01, respectively

and four detected in two environments. These QTL were
mapped on different chromosomes (Fig. 1).

For the CP content, 13 QTL were identified and located
on 13 chromosomes, explaining 5.2-48.1 % of the phe-
notypic variation (Table 5). Of these, 12 Yumian 1 alleles
increased coarse protein content. qCP07.1 (at locus Lc,)
and qCP12.1 (at locus N,) were identified in three environ-
ments, had large additive effects, and explained a lot of the
phenotypic variation; these are major QTL. With the excep-
tion of QTL qCPOl1.1 identified in two environments, all
the other ten QTL were identified only in one environment.

For the CO content, 15 QTL were identified and mapped
on 15 chromosomes, explaining 2.0-39.8 % of the pheno-
typic variation. Of these, 11 alleles from T586 increased
coarse oil content. qCO07.1 (at locus Lc;) and qCO12.1
(at locus N;) were detected in three environments and
qCO21.1 (at locus Lg) and qCO23.1 were detected in
two. All of the other 11 QTL were detected in only one
environment.

For the LA content, eight QTL were identified and
located on seven chromosomes, explaining 2.2-8.0 % of
the phenotypic variation, and no QTL was identified in two
or three environments. Four alleles from T586 and four
alleles from Yumian 1 increased the LA content

For the OA content, 10 QTL were identified and located
on ten chromosomes, explaining between 2.0 and 15.4 %
of the phenotypic variation. qOA18.1 was detected in 2006
and 2007, and the other nine QTL were detected in only
one environment. Five alleles from T586 and five alleles
from Yumian 1 increased the OA content.

For the PA content, 13 QTL were detected on 12 chro-
mosomes, explaining between 4.2 and 13.3 % of the phe-
notypic variation. All of the QTL were detected in only one
environment. Three alleles from T586 and nine alleles from
Yumian 1 increased the PA content.

For the SA content, 12 QTL were detected on 10 chro-
mosomes, which explained between 4.4 and 22.7 % of the
phenotypic variation. qSA14.1 was detected in 2006 and
2011, and the other nine QTL were detected in only one
enviroment. Eight alleles from T586 and four from Yumian
1 increased the SA content.

Co-localization QTL

A number of QTL controlling different traits were found
to co-localize to the same region of the chromosomes. For
example, eight regions (on Chr06, Chr07, Chrl12, Chrl4,
Chrl5, Chrl16, Chr21, and Chr26) controlling three or more
traits were detected in the RIL population. QTLs for LP,
CP, and CO content were identified and mapped in the
same confidence intervals on Chr06, ChrQ7, Chr12, Chr21,
and Chr26. CO content had an opposite additive effect with
LP and CP content, but LP and CP content had positive
additive effects. QTL for CO and OA content were identi-
fied at the Lc1 loci on Chr0O7 with positive additive effects.
QTL for CO and SA content identified on Chr06, Chr07
and Chr14 had opposite additive effects. QTL for CO and
PA content identified on Chrl5 and Chr26 had opposite
additive effects. QTL for LA and OA content identified on
Chr12 and Chr18 had opposite additive effects.
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The co-localization QTL may serve to explain some cor-
relations and the common genetic basis among the involved
traits. Meanwhile, this result indicated that increasing LP
may increase the CP content but reduces the CO content
in cottonseed. Furthermore, it appeared that the four major
fatty acids could not be simultaneously increased because
of the different biochemical synthesis pathways of seed
fatty acids.

Discussion
Genetic map

The updated genetic map contained 1675 SSR and nine mor-
phological loci spanning 3338.2 cM with an average inter-
val of 1.98 cM between adjacent loci. Because of the nar-
row genetic background (Linos et al. 2002; Lacape et al.
2007; Zhang et al. 2009), this is the densest intraspecific

Fig. 1 QTL for lint percentage, seed protein, oil, and fatty acid com- p
ponents in upland cotton (T586 x Yumianl) recombinant inbred line
population. Morphological loci are shown in bold and italics. Map
distances are given in centimorgans (cM). Markers showing segre-
gation distortion are indicated by asterisks ("P < 0.05; P < 0.01;
P < 0.001) for markers skewed toward the Yumian 1 alleles or plus
signs (P < 0.05; TTP < 0.01; TP < 0.001) for markers skewed
toward the T586 alleles. Bars along the linkage groups indicate
1-LOD likelihood intervals for QTL. QTL are shown as lint percent-
age (LP), crude protein content (CP), crude oil content (CO), linoleic
acid content (LA), oleic acid content (OA), palmitic acid content (PA),
and stearic acid content (SA). Favorable QTL alleles contributed by
Yumian 1 are represented by black bars, and those contributed by
T586 are represented by empty bars. Segregation distortion regions
(SDRs) are named as “chromosome + no”. For example, SDRO1.1
refers to the first SDR on Chr01

upland cotton genetic map to date. Compared with the tetra-
ploid cotton interspecific genetic map (Rong et al. 2004;
Yu et al. 2011; Zhao et al. 2012), this map is still far from
being saturated. We had used 25,313 SSR primer pairs,
including almost all of the publicly available ones. We only

Table 3 Marker distribution

; Chromosome Loci Length (cM) Gap>10cM  Distorted loci  Distorted rate (%)  Interval

on chromosomes in the map

developed from the recombinant ChrO1 46 90.9 0 17 37.0 201

inbred line population Chr02 41 1412 2 12 29.3 2.49
Chr03 42 125.6 1 6 14.3 2.46
Chr04 27 92.7 0 10 37.0 2.94
Chr05 74 114.8 0 27 36.5 2.54
Chr06 116 156.4 0 15 12.9 0.6
Chr07 47 161.3 1 13 27.7 2.93
Chr08 120 120.2 0 20 16.7 0.77
Chr09 52 118.3 1 4 7.7 2.63
Chrl10 46 118.5 1 10 21.7 2.28
Chrl1 62 121.9 2 6 9.7 2.38
Chrl2 53 104.9 0 16 30.2 1.87
Chr13 67 123.4 0 7 10.4 1.04
A subgenome 726  1466.7 8 163 22.5 2.02
Chr14 65 149.9 0 11 16.9 1.59
Chrl5 64 123.9 0 11 17.2 1.95
Chrl16 63 116.1 0 5 7.9 1.8
Chr17 36 126.9 3 10 27.8 2.31
Chr18 65 105.5 0 5 7.7 1.85
Chr19 89 172.6 0 6.7 1.72
Chr20 108 171.3 0 15 13.9 1.63
Chr21 97 170.1 1 20 20.6 1.8
Chr22 41 122.7 1 11 26.8 1.98
Chr23 85 101.8 0 9 10.6 1.09
Chr24 55 169.8 0 7 12.7 2.86
Chr25 65 99.7 0 2 3.1 1.39
Chr26 58 117.8 0 4 6.9 2.58
D subgenome 958  1871.5 5 116 12.1 1.95
Total 1684  3338.2 13 279 16.6 1.98
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map construction, development of new markers from the
genome databases, such as the G. arboreum and G. raimon-
dii genomes, is necessary (Paterson et al. 2012; Wang et al.
2012; Li et al. 2014). However, the large number of SSR loci

obtained 1712 primers with a polymorphism rate of 6.8 %,
indicating that the potential of the publicly available SSR
loci to construct a saturated upland cotton genetic map is
very limited. Therefore, for saturated upland cotton genetic
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Fig. 1 continued

and even loci distribution make ours a good skeleton map to
understand and exploit the tetraploid Gossypium genome.

Relationship between LP and cottonseed nutrient traits

The correlation analysis in this study presents the over-
all network of relationships between LP and cottonseed
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nutrient traits. The most important correlations were
detected between LP, CO, and CP content, which revealed
the proportion of carbohydrates flowing to different
molecular types and how cottonseed nutrient traits have
impacted on fiber yield. LP was positively correlated with
CP content, whereas it was negatively correlated with
CO content, which is consistent with previous reports
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Fig. 1 continued

(Bechere et al. 2009; An et al. 2010). A negative correla-
tion between CO and CP content had also been reported by
other researchers (Song and Zhang 2007; Yu et al. 2012).
Our study provides further evidence that it is impossible
to increase all three in breeding projects. However, there
were no significant unfavorable correlations between LP
and fatty acid content; similar correlations were observed
between CP content and fatty acid components, except for
oleic acid content. This means that breeders could increase
a given fatty acid component content while increasing LP
and CP content. Among the fatty acid components, the
correlations were very complicated and the most signifi-
cant were the negative correlations between linoleic acid
and other fatty acid component content. Considering the
high linoleic acid content in crude fatty acid content, it is
obvious that the linoleic acid biosynthetic pathway is far
more competitive.
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Major QTL identified at morphological loci

Endrizzi et al. (1984) reported that T586 includes R,
T,, L,, R,, Y, P;, Lc;, Ny, and Lg, which were mapped
on seven genetic linkage groups (Kohel et al. 1965). All
nine morphological markers located in the present report
were consistent with previous genetic maps, expect for
Lg (Kohel et al. 1965; Guo et al. 2006). Green fiber (Lg)
controlled by an incomplete dominance gene was located
on Chrl5 in previous studies (Stephens 1955; Kohel et al.
1965; Kohel 1985). In the present study, Lg is mapped on
the end of Chr21 flanked by loci C2-0120 and CGR5015.
Based on the G. raimondii reference genome (Paterson
et al. 2012), the loci (C2-120, NAU3415, and DC340316)
closely linked to Lg are physically aligned to ChrO7 (cor-
responding to Chrll and Chr21 of tetraploid cotton)
rather than Chr02 (corresponding to ChrOl and Chrl5 of
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Table 4 Fiber lint percentage QTL Chr Years Locus LOD Additive % Expl.
QTL identified
qLPOL.1 Chr01 2005 PGML1273 2.1 —325 53
Chr01 2006 PGML1273 2.4 327 5.7
gLP17.1 Chrl7 2005H NAU2649 23 268 40
Chrl7 2006 NBRI1837 2.6 290 5.1
Chrl7 2009 NAU2649 22 ~2.15 3.7
Chrl7 2010 NAU2649 2.4 ~2.66 4.0
qLP06.1 Chr06 2004 T, 3.6 +2.94 6.0
Chr06 2005 T, 3.2 317 5.7
Chr06 2005H T, 47 43.89 8.6
Chr06 2009 T, 27 4246 49
Chr06 2010 T, 4.1 +3.71 7.6
Chr06 2012 T, 22 42.39 42
qLP07.1 Chr07 2004 Lel 5.9 ~3.80 9.6
Chr07 2005 Lel 8.4 —4.98 13.5
Chr07 2005H Lel 20.9 ~8.33 36.7
Chr07 2006 Lel 13.8 —6.03 211
Chr07 2007 Lel 17.1 ~7.13 29.2
Chr07 2008 Lel 6.3 ~7.53 103
Chr07 2009 Lel 11.0 —475 17.4
Chr07 2010 Lel 16.4 ~7.30 283
Chr07 2012 Lel 11.7 —4.98 183
Chr07 2011 Lel 15.4 534 23.6
qLP09.1 Chr09 2004 CGR5707 2.1 224 3.5
Chr09 2005 CGR5707 2.6 276 4.4
Chr09 2005H CGR5707 2.4 —2.66 40
Chr09 2006 CGR5707 2.6 —2.68 44
Chr09 2009 CGR5707 25 —230 43
Chr09 2010 CGR5707 27 279 45
Chr09 2012 CGR5707 23 201 3.8
qLP21.1 Chr21 2004 Le 1.5 ~5.17 18.3
Chr21 2005 Le 12.6 ~5.99 19.9
Chr21 2005H Le 15.6 ~6.63 243
Chr21 2006 Le 133 ~5.93 21.0
Chr21 2007 Le 14.8 —6.17 23.0
Chr21 2008 Lg 5.0 —6.70 8.3
Chr21 2009 Lg 14.0 —528 22.0
Chr21 2010 Le 123 —6.25 212
Chr21 2011 Le 12.0 —478 19.4
Chr21 2012 Le 13.4 ~5.26 21.0
qLP12.1 Chrl2 2004 N, 57.3 —991 62.7
Chrl2 2005 N, 58.2 ~11.04 63.4
Chrl2 2005H N, 30.3 —8.91 41.0
Chrl2 2006 N, 54.4 ~10.45 60.9
Chrl2 2007 N, 473 —991 55.7
Chrl2 2008 N, 122 ~10.48 19.2
Chrl2 2009 N, 52.0 —9.02 59.4
Chrl2 2012 N, 43.4 —8.64 527
Chrl2 2011 N, 333 —7.53 442
qLP26.1 Chr26 2004 NAU5164 3.0 42,98 5.7
Chr26 2005 NAU5164 3.0 4331 5.7
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Table 4 continued QTL Chr Years Locus LOD Additive % Expl.
Chr26 2005H HAU1738 3.9 13.89 8.0
Chr26 2006 NAUS164 2.4 42,90 47
Chr26 2007 HAU1738 2.5 42,97 5.1
Chr26 2009 HAU1738 25 42,59 5.1
Chr26 2010 HAU1738 2.6 43.25 5.7
Chr26 2011 NAU5164 22 2.8 42
Chr26 2012 NAUS 164 22 12.43 42

— Indicates T586 allele and + indicates Yumian 1 allele; both increase the phenotype value

tetraploid cotton), which further confirms that our result is
reliable.

In this and our previous studies (Zhang et al. 2009),
some of the major morphological markers (N, Lc;, T, and
Lg) exhibited pleiotropic effects on fiber yield, fiber qual-
ity, and CO and CP content. Three of the morphological
markers (N, Lc;, and Lg) significantly impacted LP with
very high phenotypic variation; in particular, QTL on loci
N, accounted for >60 %. N, were fuzzless and had a sig-
nificantly negative effect on LP. Abdurakhmonov (2007)
detected two highly significant fiber percentage QTL that
explained approximately 23-59 % of phenotypic varia-
tion around the regions TMB0471 and MGHES-31 on
Chr12, and one parent was L-70 (fuzzless/lintless with 0 %
lint percentage on cottonseed). Rong et al. (2005) reported
that a major QTL, which explain 33.6 % of LP variation
(LOD = 7.50), were mapped at the region where N, is
located. N, as a dominant gene, could have pleiotropic
effects on fiber development inhibition, in terms of both
fuzz and lint. N; may also be associated with a major gene
affecting fiber development.

Both brown and green fibers were negatively corre-
lated with fiber yield and quality (Richmond 1943). Zhang
et al. (2005, 2009) reported that stable QTL affecting fiber
length, uniformity, fineness, and strength were identified
at locus Lc, and that T586 alleles decrease the phenotypic
value of traits. In this study, major QTL for LP, CP content,
and CO content are identified at loci N, Lc;, and Lg, which
indicates that these loci affect multiple traits. Meanwhile,
the T586 alleles at these loci decrease LP and CP content
but increase CO content. This result shows that these loci
are very important for cottonseed development, and partly
explains the correlations among LP, CP, and CO content.

Simpson (1947) first reported that pilose (T,) produced
short dense trichomes on the vegetative parts of upland cot-
ton plants. Yi et al. (2001) and Guo et al. (2006) reported
that T, was associated with an LP QTL and with the
favorable from T586 allele, which was further confirmed in
this study. Zhang et al. (2005, 2009) and Wan et al. (2007)
reported that the T locus might contain the candidate
gene underlying QTL controlling fiber length, uniformity,
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strength, and fineness. The T, region on Chr06 may carry
a QTL with pleiotropic effects or a QTL cluster controlling
plant trichomes and seed fibers (Said et al. 2014). In sum-
mary, the T, locus in T586 increases LP and fiber micro-
naire but decreases fiber length and strength. QTL identi-
fied at locus T, provide further evidence that trichomes and
cotton fiber likely share common regulatory mechanisms
(Suo et al. 2003; Lee et al. 2007).

Common QTL across populations

In the present study, eight LP QTL were detected, but only
gLP26.1 was found near locus NAU5164 on Chr26 (Yu
et al. 2013) in previous studies, except for the QTL com-
mon to the morphological markers. Among the 71 seed
nutrient trait QTL in this study, three were also reported
in other studies on different populations; these included
gCO07.1 sharing a common marker NAU1302 (Song and
Zhang 2007), qCO12.1, and qCP12.1 closely linked to
marker BNL3867 (Yu et al. 2012). The reason that a few of
the QTL identified in the present study were also detected
in other populations are inferred as following. First, par-
ent T586 has several morphological loci that contribute to
most of the phenotypic variation. The other population, in
which T856 was not a parent, did not contain the alleles
that T586 had at the morphological loci. Therefore, the
QTL identified at these loci were not detected. Second,
most of the QTL have little effect and are mainly affected
by environmental factors, so they are not easy to detect
across populations planted under different environments.
Third, not a lot of QTL mapping work has been carried out
on cottonseed nutrient traits to date. Only 29 protein- and
16 oil-related QTL have been identified, which is far fewer
than the number of fiber quality QTL (Said et al. 2013).
Last, less common markers were found in the upland cot-
ton genetic map because of relatively low levels of DNA
marker polymorphism.

Knowledge on fiber growth and development at
the molecular level and its integration with QTL map-
ping is essential in designing next-generation breeding
strategies. The present map will provide a highly dense
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Table 5 QTL affecting seed Trait QTL Chr Years  Locus LOD Additive PV (%)
protein content, oil, and fatty
acid component percentage CP q CPO1.1 Chr01 2006 PGML1273 2.3 —0.61 53
2007 HAU1001 2.1 —0.78 6.9
qCPI15.1 Chrl5 2006 PGML3018 2.8 —0.65 6.5
qCP15.2 Chrl5 2011 NAU2437 2.2 —0.64 10.2
q CP14.1 Chrl4 2006 BNL2651 2.4 +0.58 53
q CP22.1 Chr22 2007 PGML1657 2.8 -0.79 7.4
q CP06.1 Chr06 2007 BNL3295 4.1 +1.01 11.9
q CP07.1 Chr07 2006 Lcl 4.6 -0.71 7.7
2007 Lcl 5.9 —1.03 12.8
2011 Lcl 2.2 —0.76 13.5
qCP23.1 Chr23 2007 NBRI1517b 2.6 -0.77 73
qCPI1.1 Chrll 2007 HAU0639 2.2 —0.67 5.2
qCP21.1 Chr21 2006 Lg 9.8 —1.02 16.2
q CP12.1 Chrl12 2006 N, 37.3 —1.82 48.1
2007 N, 13.2 —1.67 34.1
2011 N, 7.3 —1.16 30.5
q CP26.1 Chr26 2011 NBRI1566 3 —0.94 20.2
qCP13.1 Chrl3 2011 NAU3148 2.3 —0.66 10.8
co qCo15.1 Chrl5 2006 PGMLO0726 2.2 +0.49 4.8
qCO015.2 Chrl5 2011 NAU2437 2.5 +0.54 11.8
qC002.1 Chr02 2007 NAU2858 35 —0.70 8
qCOo14.1 Chrl4 2011 BNL3502 2.1 —0.51 9.5
qC022.1 Chr22 2007 PGML4620 2.6 +0.65 7.2
qCO019.1 Chr19 2006 NAU6406 2.8 +0.52 5.6
qCO006.1 Chr06 2007 T, 3 —0.62 6.7
qC0o07.1 Chr07 2006 Lcl 2.5 +0.45 43
2007 Lcl 5.5 +0.92 14.8
2011 Lcl 2.8 +0.58 12.7
qCol16.1 Chrl6 2007 R, 2.3 —0.57 5.1
qCO008.1 Chr08 2006 NAU1302 2.7 +0.50 52
qC023.1 Chr23 2007 NBRI1517b 2.1 +0.58 6.1
2011 MUCS133 2.2 +0.52 10.2
qCO021.1 Chr21 2006 Lg 12.7 +0.97 20.3
2007 Lg 2.5 +0.70 8.9
qCo12.1 Chrl2 2006 N, 32.1 +1.46 42.8
2007 N, 16 +1.41 359
2011 N, 4.1 +0.70 18.5
qC026.1 Chr26 2007 HAU1738 2.4 —0.60 6.1
qCO18.1 Chrl8 2006 MUSS306 23 —0.43 39
LA gLA14.1 Chri4 2007 BNL2651 23 —0.52 5.4
qLA04.1 Chr04 2007 NBRI1178 2.2 +0.76 11.3
qLA19.1 Chr19 2011 HAU3098 3.3 —1.33 15.1
qLA16.1 Chrl6 2006 R, 35 +0.96 7.7
qLA24.1 Chr24 2011 NBRI1290 2.1 —1.13 11.5
qLA24.2 Chr24 2007 PGML3707 2.1 +0.52 55
gLA13.1 Chrl3 2011 PGML2477 2.8 —-1.22 12.9
qLA18.1 Chrl8 2007 HAU2631 2.7 +0.66 8.4
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Table 5 continued Trait QTL Chr Years  Locus LOD Additive PV (%)
0A qOA19.1 Chr19 2011 HAU3098 3.6 11.28 16.6
qOA06.1 Chr06 2011 TMBO154 2.1 ~0.99 9.8
qOAO07.1 Chr07 2006 Lel 5.8 10.82 10.5
qOAO8.1 Chr08 2006 HAU1432 22 ~0.65 6.9
qOA24.1 Chr24 2011 MUSS033 27 —L13 14.6
qOA10.1 Chrl0 2011 SHINO0613 2.1 ~0.98 9.9
qOA11.1 Chrl 1 2007 DPL0475 22 +0.41 5.7
qOAI12.1 Chrl2 2006 N, 3.4 10.64 6.5
qOAI13.1 Chrl3 2011 PGMI2477 23 +1.02 10.8
qOAI18.1 Chrl8 2006 NBRI0395 2.8 —0.67 73
2007 NBRI0395 48 ~0.66 153
PA gPAOL.1 Chr01 2011 DC40052 2.1 ~0.39 10
gPA15.1 Chrl5 2011 TMB1152a 2.1 10.40 10
gPA15.2 Chrl5 2007 SWU00058 22 40.39 6.8
gPA02.1 Chr02 2007 HAU0040 2.4 ~0.39 6.4
qPA22.1 Chr22 2006 PGML3672 2.7 ~0.38 55
qPA19.1 Chrl9 2011 NAU2756 2.1 10.45 133
qPA06.1 Chr06 2007 SWU06-120 23 10.41 7.1
qPAO7.1 Chr07 2006 PGML3784 2.1 ~033 42
qPA16.1 Chrl6 2006 SHIN1405 238 —042 6.8
qPA23.1 Chr23 2011 MUCS269 3.2 —0.49 14.8
gPA10.1 Chrl0 2011 PGML0692 22 —0.41 10.6
gPAI2.1 Chr12 2007 PGMLI312 33 ~0.53 12.3
qPA26.1 Chr26 2006 NAU1738 2.9 —0.48 8.6
SA gSAI15.1 Chrl5 2006 CIR234 23 ~0.09 45
qSA14.1 Chrl4 2006 BNL3033 55 +0.13 9.2
2011 NBRI2228 2.6 40.12 12.8
gSA14.2 Chrl4 2011 NAU0998 25 10.12 11.6
qSA22.1 Chr22 2011 NBRI0728 2.1 10.11 10.2
qSA05.1 Chr05 2006 PGML2856 2.9 10.11 6.8
qSA05.2 Chr05 2006 MUSB0410 25 +0.09 44
GSA06.1 Chr06 2011 NBRI0OS1 23 40.12 115
qSA07.1 Chr07 2006 Lel 3.7 ~0.12 7.7
qSA07.2 Chr07 2011 SWU00808 2.1 —0.11 115
qSA24.1 Chr24 2011 Gh325 2.1 +0.12 12.1
gSA21.1 Chr21 2006 NAU5436 3.7 —0.12 75
gSA12.1 Chrl2 2011 MUSB0860 2.4 ~0.16 27
qSA07.1 Chr07 2006 Lel 3.7 —0.12 77
qSA07.2 Chr07 2011 SWU00808 2.1 —0.11 1.5
qSA24.1 Chr24 2011 Gh325 2.1 10.12 12.1
qSA21.1 Chr21 2006 NAU5436 3.7 ~0.12 75
qSAI12.1 Chrl2 2011 MUSB0860 2.4 ~0.16 2.7

LOD was larger than the significant LOD threshold calculated by permutation test. — Indicates T586
alleles and + indicates Yumian 1 alleles; both increase the phenotype value. PV indicates the percentage of
phenotypic variation explained

genetic linkage map for molecular marker-assisted selec-
tion. The QTL identified for LP and seed nutrient traits
at loci T, N}, Lc¢,, and Lg provide a means for further
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study on the molecular mechanisms of fiber and cotton-
seed development through map-based cloning and func-
tional analysis.



Mol Genet Genomics (2015 ) 290:1683-1700

1699

Acknowledgments This study was financially supported by
the Natural Science Foundation of China (31270037, 31271305,
30971827) and the “111” Project (B12006).

References

An CF, Jenkins JN, Wu JX, Guo YF, Mccarty JC (2010) Use of fiber
and fuzz mutants to detect QTL for yield components, seed, and
fiber traits of upland cotton. Euphytica 172:21-34

Anderson OE, Worthington RE (1971) Boron and manganese effects
on protein, oil content, and fatty acid composition of cottonseed.
Agron J 63:566-569

Ashokkumar K, Ravikesavan R (2013) Genetic variation and heterotic
effects for seed oil, seed protein and yield attributing traits in upland
cotton (Gossypium hirsutum L.). Afr J Biotechnol 12:5183-5191

Bechere E, Auld DL, Hequet E (2009) Development of ‘naked-tufted’
seed coat mutants for potential use in cotton production. Euphyt-
ica 167:333-339

Blenda A, Fang DD, Rami JF, Garsmeur O, Luo F, Lacape JM (2012)
A high density consensus genetic map of tetraploid cotton that
integrates multiple component maps through molecular marker
redundancy check. PLoS One 7:e45739

Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang TZ, Guo WZ,
Chen XY, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Bru-
baker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR,
Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Deynze
AV, Zhu YX, Yu SX, Abdurakhmonov I, Katageri I, Kumar PA,
Rahman M, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH
(2007) Toward sequencing cotton (Gossypium) genomes. Plant
Physiol 145:1303-1310

Culp TW, Harrell W (1975) Influence of lint percentage, boll size, and
seed size on lint yield of upland cotton with high fiber strength.
Crop Sci 15:741-746

Dani RG, Pundarikakshudu R (1986) Cotton seed protein and oil with
repeated harvests. Curr Sci India 55:795-796

Dowd MK, Boykin DL, Meredith WR, Campbell BT, Bourland FM,
Gannaway JR, Glass KM, Zhang JF (2010) Fatty acid profiles
of cottonseed genotypes from the national cotton variety trials. J
Cotton Sci 14:64-73

Endrizzi JE, Turcotte EL, Kohel RJ (1984) Qualitative genetics, cytol-
ogy, and cytogenetics. In: Kohel RJ, Lewis CF (eds) Cotton.
Agronomy Society of America, Madison, pp p81-p119

Guo WZ, Ma GJ, Zhu YC, Yi CX, Zhang TZ (2006) Molecular tag-
ging and mapping of quantitative trait loci for lint percentage and
morphological marker genes in upland cotton. J Integr Plant Biol
48:320-326

Hanny BW, Meredith WR, Bailey JC, Harvey AJ (1978) Genetic rela-
tionships among chemical constituents in seeds, flower buds, ter-
minals, and mature leaves of cotton. Crop Sci 18:1071-1074

Kohel RJ (1985) Genetic analysis of fiber color variants in cotton.
Crop Sci 25:793-797

Kohel RJ, Cherry JP (1983) Variation of cottonseed quality with strat-
ified harvests. Crop Sci 23:1119-1124

Kohel RJ, Lewis CF, Richmond TR (1965) Linkage tests in upland
cotton, Gossypium birsutum L. Crop Sci 5:582-585

Lacape JM, Dessauw D, Rajab M, Noyer JL, Hau B (2007) Microsatellite
diversity in tetraploid Gossypium germplasm: assembling a highly
informative genotyping set of cotton SSRs. Mol Breed 19:45-58

Lander E, Kruglya kL (1995) Genetic dissection of complex traits-
guidelines for interpreting and reporting linkage results. Nat
Genet 11:241-247

Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes
and early events in cotton fibre development. Ann Bot
100:1391-1401

Li FG, Fan GY, Wang KB, Sun FM, Yuan YL, Song GL, Li Q, Ma ZY,
Lu CR, Zou CS, Chen WB, Liang XM, Shang HH, Liu WQ, Shi
CC, Xiao GH, Gou CY, Ye WW, Xu X, Zhang XY, Wei HL, Li
ZF, Zhang GY, Wang JY, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu
YX, Wang J, Yu SX (2014) Genome sequence of the cultivated
cotton Gossypium arboretum. Nat Genet 46:567-572

Li L, Wang SF, Liu F, Tang SY, Tan ZY, Zhang J, Teng ZH, Liu DJ,
Zhang ZS (2012) Chromosomal localization of transcription fac-
tors in Gossypium hirsutum. Acta Agron Sin 38:1361-1368 (in
Chinese with English abstract)

Linos AA, Bebeli PJ, Kaltsikes PJ (2002) Cultivar identification Wca-
tion in upland cotton using RAPD markers. Aust J Agric Res
53:637-642

Liu DJ, Zhang J, Zhang K, Wang W, Zhang ZS (2010) Mapping QTL
for physical traits of seed in upland cotton (Gossypium hirsutum
L.). Acta Agrono Sin 36:1-8

Lukonge E, Labuschagne MT, Hugo A (2007) The evaluation of oil
and fatty acid composition in seed of cotton accessions from var-
ious countries. J Sci Food Agric 87:340-347

Meredith WR (1984) Quantitative genetics. In: Kohel RJ, Lewis CF (eds)
Cotton. Agronomy Society of America, Madison, pp p131-p150

Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin DC,
Llewellyn D, Showmaker KC, Shu SQ, Udall J, Yoo MJ, Byers
R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grim-
wood J, Grover C, Grupp K, Hu GJ, Lee TH, Li JP, Lin LF, Liu
T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS,
Szadkowski E, Tan X, Tang HB, Xu CM, Wang JP, Wang ZN,
Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker
CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoff-
mann LV, Hovav R, Jones DC, Lemke C, Mansoor S, Rahman
MU, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga
Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Dey-
nze A, Vaslin MFS, Waghmare VN, Walford SA, Wright RJ, Zaki
EA, Zhang TZ, Dennis ES, Mayer KFX, Peterson DG, Rokhsar
DS, Wang XY, Schmutz J (2012) Repeated polyploidization of
Gossypium genomes and the evolution of spinnable cotton fibres.
Nature 492:423-428

Qin HD, Guo WZ, Zhang YM, Zhang TZ (2008) QTL mapping of
yield and fiber traits based on a four-way cross population in
Gossypium hirsutum L. Theor Appl Genet 117:883-894

Richmond TR (1943) Inheritance of green and brown lint in upland
cotton. ] Am Soc Agron 35:967-975

Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Del-
monte TA, Ding X, Garza JJ, Marler BS, Park CH, Pierce GJ,
Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF,
Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X,
Zhu L, Paterson AH (2004) A 3347-locus genetic recombination
map of sequence-tagged sites reveals features of genome organi-
zation, transmission and evolution of cotton (Gossypium). Genet-
ics 166:389-417

Rong J, Pierce GJ, Waghmare VN, Rogers CJ, Desai A, Chee PW,
May OL, Gannaway JR, Wendel JF, Wilkins TA, Paterson AH
(2005) Genetic mapping and comparative analysis of seven
mutants related to seed fiber development in cotton. Theor Appl
Genet 111(6):1137-1146

Said JI, Lin ZH, Zhang XL, Song MZ, Zhang JF (2013) A compre-
hensive meta QTL analysis for fiber quality, yield, yield related
and morphological traits, drought tolerance, and disease resist-
ance in tetraploid cotton. BMC Genome 14:776

Said JI, Song MZ, Wang HT, Lin ZH, Zhang XL, Fang DD, Zhang JF
(2014) A comparative meta-analysis of QTL between intraspe-
cific Gossypium hirsutum and interspecific G. hirsutum x G.
barbadense populations. Mol Genet Genomics. doi:10.1007/
s00438-014-0963-9

Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ
(2007) Genetic mapping of quantitative trait loci for fiber

@ Springer


http://dx.doi.org/10.1007/s00438-014-0963-9
http://dx.doi.org/10.1007/s00438-014-0963-9

1700

Mol Genet Genomics (2015 ) 290:1683-1700

quality and yield trait by RIL approach in upland cotton. Euphyt-
ica 155:371-380

Simpson DM (1947) Fuzzy leaf in cotton and its association with
short lint. J Hered 38:153-156

Song XL, Zhang TZ (2007) Identification of quantitative trait loci
controlling seed physical and nutrient traits in cotton. Seed Sci
Res 17:243-251

Stephens SG (1955) Linkage in upland cotton. Genetics 40:903-917

Sun SK, Chen JH, Xian SK, Wei SJ (1987) Study on the nutritional
quality of cotton seeds. Sci Agric Sinica 5:12-16

Suo J, Liang X, Pu L, Zhang Y, Xue Y (2003) Identification of
GhMYBI109 encoding a R2R3MYB transcription factor that
expressed specifically in 37 fibre initials and elongating fib-
ers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta
1630:25-34

Tang SY, Teng ZH, Zhai TF, Fang XM, Liu F, Liu DJ, Zhang J, Liu
DX, Wang SF, Zhang K, Shao QS, Tan ZY, Paterson AH, Zhang
ZS (2015) Construction of genetic map and QTL analysis of
fiber quality traits for upland cotton (Gossypium hirsutum L.).
Euphytica 201:195-213

Turner JH, Ramey HH, Worley S (1976) Relationship of yield,
seed quality, and fiber properties in Upland cotton. Crop Sci
16:578-580

Van Ooijen JW (2006) JoinMap® 4, software for the calculation of
genetic linkage maps in experimental populations. Kyazma BV,
Wageningen

Van Ooijen JW (2009) MapQTL 6: Software for the mapping of
quantitative trait loci in experimental populations of diploid spe-
cies. Plant Research International, Wageningen

Wan Q, Zhang Z, Hu M, Chen L, Liu D, Chen X, Wang W, Zheng
J (2007) T, locus in cotton is the candidate gene affecting lint
percentage, fiber quality and spiny bollworm (Earias spp.) resist-
ance. Euphytica 158:241-247

Wang BH, Guo WZ, Zhu XF, Wu YT, Huang NT, Zhang TZ (2007)
QTL mapping of yield and yield components for elite hybrid
derived-RILs in upland cotton. J Genet Genomics 34:34—45

Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang
H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z,
Yin'Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy
RG, YuJZ, Zhu Y-X, Wang J, Yu SX (2012) The draft genome of
a diploid cotton Gossypium raimondii. Nat Genet 44:1098-1103

Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history
of cotton. Adv Agron 78:139-186

@ Springer

Wu JX, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J (2009) Quan-
titative analysis and QTL mapping for agronomic and fiber traits
in an RI population of upland cotton. Euphytica 165:231-245

Ye ZH, Lu ZZ, Zhu J (2003) Genetic analysis for developmental
behavior of some seed quality traits in upland cotton (Gossypum
hirsutum L.). Euphytica 129:183-191

Yi CX, Zhang TZ, Guo WZ (2001) Morphological and molecular
tagging of lint percent QTL in upland cotton. Acta Agron Sin
27:781-786

Yu Y, Yuan D, Liang S, Li X, Wang X et al (2011) Genome struc-
ture of cotton revealed by a genome-wide SSR genetic map con-
structed from a BCI population between Gossypium hirsutum
and G. barbadense. BMC Genom 12:15

Yu JW, Yu SX, Fan SL, Song MZ, Zhai HH, Li XL, Zhang JF
(2012) Mapping quantitative trait loci for cottonseed oil, pro-
tein and gossypol content in a Gossypium hirsutum x Gossyp-
ium barbadense backcross inbred line population. Euphytica
187:191-201

Yu JW, Yu SX, Gore M, Wu M, Zhai HH, Li XL, Fan SL, Song MZ,
Zhang JF (2013) Identification of quantitative trait loci across
interspecific F,, F,.; and testcross populations for agronomic and
fiber traits in tetraploid cotton. Euphytica 191:375-389

Zeng L, Meredith WR (2009) Associations among Lint yield, yield
components, and fiber properties in an introgressed population of
cotton. Crop Sci 49:1647-1654

Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Li DM, Pei Y
(2005) Construction of a genetic linkage map and QTL analysis
of fiber-related traits in upland cotton (Gossypium hirsutum L.).
Euphytica 144:91-99

Zhang ZS, Hu MC, Zhang J, Liu DJ, Zhang K, Wang W, Wan Q
(2009) Construction of a comprehensive PCR-based marker link-
age map and QTL mapping for fiber quality traits in upland cot-
ton (Gossypium hirsutum L.). Mol Breed 24:49-61

Zhao L, Lv YD, Cai CP, Tong XC, Chen XD, Zhang W, Du H, Guo
XH, Guo WZ (2012) Toward allotetraploid cotton genome
assembly: integration of a high-density molecular genetic link-
age map with DNA sequence information. BMC Genom 13:539

Zhe X, Zhang X, Liu YY, Zhao HH, Li CQ (2014) Major gene iden-
tification and quantitative trait locus mapping for yield-related
traits in upland cotton (Gossypium hirsutum L.). J Integr Agr
13:299-309



	Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.)
	Abstract 
	Introduction
	Materials and methods
	Mapping population
	Trait examination
	SSR analysis and genetic map construction
	QTL analysis

	Results
	Phenotypic data analysis
	Updated genetic map
	LP QTL
	Seed nutrient trait QTL
	Co-localization QTL

	Discussion
	Genetic map
	Relationship between LP and cottonseed nutrient traits
	Major QTL identified at morphological loci
	Common QTL across populations

	Acknowledgments 
	References




