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Introduction

Recent molecular and genomic studies suggest that mis-
processing and missorting of intracellular proteins within 
endosomal–lysosomal pathways are key pathological 
mechanism in several age-related neurodegenerative dis-
eases including Alzheimer’s disease (AD), frontotemporal 
lobar degeneration (FTLD) and Parkinson’s disease (PD). 
Numerous genome-wide association studies (GWAS) 
and biochemical studies have identified core components 
of the retromer (VPS35 and VPS26) regulating endoso-
mal sorting, and members of the vacuolar protein sort-
ing-10 (Vps10) family of receptors (i.e., SORT1, SORL1, 
SORCS1, SORCS2 and SORCS3) that are primary cargos of 
the retromer, as risk factors for neurodegenerative diseases 
highly prevalent in the elderly, consistent with the notion 
that dysfunction within these pathways is a major contrib-
uting factor to disease development and progression. This 
article reviews the physiological actions of the retromer 
complex and the Vps10 receptor family in intracellular 
sorting pathways and summarizes the rapidly growing evi-
dence underlying the retromer-based pathogenesis of neu-
rodegenerative disease.

The retromer coat complex

The retromer complex was first identified in the yeast Sac-
charomyces cerevisiae and was shown to mediate retro-
grade endosome-to-Golgi retrieval of the carboxy pepti-
dase Y (CPY) receptor Vps10p. The complex, which sorts 
and traffics cargo from endosomes to the trans-Golgi 
network (TGN) or to the cell surface (Seaman 2012), 
comprises in yeast five proteins that are all encoded by 
vacuole protein sorting (VPS) genes: a trimeric core of 
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VPS proteins, Vps35–Vps29–Vps26 binding a dimer of 
‘sorting nexin’ (SNX) proteins Vps5 and Vps17 (Hor-
azdovsky et al. 1997; Seaman et al. 1997, 1998). The 
Vps5 and Vps17 SNXs contain Bin/Amphiphysin/Rvs 
(BAR) domains (SNX-BAR proteins) that can induce 
and/or sense the formation of membrane tubules (Carlton 
et al. 2004; van Weering et al. 2012). The trimeric com-
plex of Vps26, Vps29 and Vps35 does not have intrinsic 
membrane-binding activity and relies on association with 
the Rab7 ortholog, Ypt7, for recruitment to the vacuole 
membrane (Liu et al. 2012; Vardarajan et al. 2012; Har-
rison et al. 2014). In addition, binding of the core retromer 
to endosomes is also mediated through binding to SNX3 
(Harterink et al. 2011).

While SNX proteins differ significantly between spe-
cies, the Vps35–Vps29–Vps26 heterotrimer is highly 
conserved (Koumandou et al. 2011) and, therefore, con-
sidered to be the core functional component. It has been 
shown to recognize cargo proteins and is, therefore, named 
the cargo-selective complex (CSC) (Seaman et al. 1998). 
Human VPS35 is composed of 17 two-helix repeats 

folding into an α-solenoid typical of vesicle coat pro-
teins (Hierro et al. 2007). Mammals express two Vps26 
orthologs, VPS26A and VPS26B (Kerr et al. 2005) pos-
sessing an arrestin fold and binding to the highly con-
served amino-terminal region of VPS35 (Shi et al. 2006; 
Collins et al. 2008) (Fig. 1). VPS29 possesses a non-
functional metallophosphoesterase fold (Collins et al. 
2005) and binds to the carboxy-terminal portion of VPS35 
(Collins et al. 2008) where it is proposed to scaffold the 
helical solenoid of VPS35. Variably, the mammalian 
Vps35–Vps29–Vps26 core can form a complex with the 
homologues of Vps5p, namely SNX1 or SNX2 forming 
dimers with a Vps17p orthologue (either SNX5 or SNX6). 
In addition, the mammalian retromer complex binds other 
proteins or protein complexes, such as the Wiskott-Aldrich 
protein and SCAR homolog (WASH) complex (Gomez 
and Billadeau 2009; Harbour et al. 2010; Burd and Cullen 
2014), which modifies its precise function in trafficking 
cargo out of endosomes (Fig. 1). Increasing retromer abun-
dance suppresses degenerative phenotypes of mutations 
that affect the endolysosomal system (Wang et al. 2014).

Fig. 1  SNX-BAR-retromer-mediated cargo exit from lysosomal-
mediated degradation. The VPS26:VPS29: VPS35 CSC engages 
cargo in a signal-dependent manner. Through WASH-mediated actin 
polymerization a cargo-enriched endosome subdomain is assembled 
thereby avoiding ESCRT-mediated sorting into forming intraluminal 
vesicles (Strochlic et al. 2008). Subsequent transport into recycling 
pathways back to the plasma membrane or retrograde transport to the 

TGN is mediated through retromer SNX-BAR-mediated tubule for-
mation. Actin polymerization may aid further membrane remodeling 
and the efficiency of tubule scission to form a cargo-enriched tubular 
transport carrier. [ESCRT = endosomal sorting complexes required 
for transport (ESCRT) machinery]. Figure adapted from Burd et al. 
(2014), with permission from Society for Neuroscience
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Cargo recognition

The mechanisms by which the CSC recognizes cargo are 
largely unclear. Some retromer cargoes possess at least 
one simple hydrophobic motif, F/W-L-M/V, required for 
retromer-dependent sorting (Seaman 2007). Vps35 has 
long been thought to provide the only site for cargo rec-
ognition. However, in recent years, VPS26 was shown to 
bind a FANSHY sorting signal in the cytoplasmic domain 
of sorLA, (Fjorback et al. 2012) and several additional 
proteins binding to CSC including SNX1, SNX2, SNX5 
and SNX6 forming the SNX-BAR sub-complex as well as 
SNX3 and SNX27 have also been implicated in cargo rec-
ognition, (Parks et al. 2001; Heydorn et al. 2004; Strochlic 
et al. 2007, 2008; Harterink et al. 2011; Temkin et al. 2011; 
Steinberg et al. 2013) suggesting that there are various 
direct and indirect mechanisms by which CSC recognizes 
cargo.

The SNX-BAR sub-complex

Sorting nexins SNX1, SNX2, SNX5 and SNX6 form-
ing the SNX-BAR sub-complex are recruited to cargo-
containing endosomes through a phosphatidylinositol 
3-monophosphate (PtdIns(3)P)-binding Phox homology 
(PX) domain, and use the carboxy-terminal Bin-amphiphy-
sin-Rvs (BAR) domain to drive membrane deformation and 
to generate membrane tubules (Cullen 2008). In recruiting 
the cargo-selective sub-complex to the forming tubules, the 
SNX-BAR coat complex is thought to mediate retrograde 
transport between endosomes and the trans-Golgi network 
(TGN) through tubular-based endosomal trafficking (Cul-
len 2008).

Additional cargo-specific sub-complexes

Over the past 2 years, additional cargo-specific adaptors 
have been identified that mediate recycling by capitalizing 
on the SNX-BAR-retromer pathway. In yeast, the sorting 
nexin Grd19/Snx3p9 sub-complex recycles the Fet3p-Ftr1p 
reductive iron transporter through recognition of the cyto-
plasmic domain of Ftr1p and binding to the SNX-BAR-
retromer allowing recycling of the Fet3p-Ftr1p back to the 
plasma membrane via the Golgi apparatus (Strochlic et al. 
2007). In addition, two novel WD-40 domain proteins, 
Ere1 and Ere2 (Endosomal Recycling proteins) appear to 
function as adaptors for SNX-BAR-retromer-mediated 
sorting. In mammalian cells SNX27, a PDZ domain-con-
taining SNX, functions as an adaptor for recycling of the 
β2-adrenergic receptor (β2AR) through SNX-BAR-ret-
romer decorated tubules (Temkin et al. 2011). SNX27 asso-
ciates with the SNX-BAR-retromer through binding to the 
WASH complex and mediates recycling of β2AR through 

a direct Rab4-dependent endosome-to-plasma membrane 
pathway (Lauffer et al. 2010; Temkin et al. 2011). SNX27 
also regulates the endosomal sorting of other PDZ ligand-
containing transmembrane spanning proteins including 
5-hydroxytryptamine type 4 receptor (5-HT4R), (Joubert 
et al. 2004) the G protein-gated inward rectifying potas-
sium (GIRK, or Kir3) channels, (Lunn et al. 2007; Balana 
et al. 2011) and the NMDA receptor subunit NR2C (Cai 
et al. 2011). As SNX27 also contains a FERM-like domain, 
it may further act as an adaptor for NPxY motif-containing 
cargoes.

Accessory proteins for SNX-BAR-retromer

In addition to cargo-specific adaptors, the CSC and SNX-
BAR binding sites recruit a number of accessory proteins 
that further stabilize the growth and formation of retromer 
tubules. Among these is EHD1 belonging to the carboxy-
terminal Eps15 homology domain (EHD) family (Gokool 
et al. 2007) showing similarities to dynamin GTPases 
(Daumke et al. 2007) and capable of assembling into oligo-
meric structures, inducing liposome tubulation in vitro, and 
hydrolyzing ATP (not GTP) (Naslavsky and Caplan 2011). 
Binding of EHD1 to SNX-BAR-retromer is required to sta-
bilize tubule formation possibly by assisting further sculp-
turing of the maturing tubule (Gokool et al. 2007). In addi-
tion, ATP hydrolysis may induce conformation changes that 
lead to scission of SNX-BAR-retromer tubules (Daumke 
et al. 2007). As EHD proteins also associate with proteins 
containing the tripeptide NPF motif, EHD1 may recruit 
additional proteins required for further cargo capture and/or 
processing of the SNX-BAR-retromer tubules (Naslavsky 
and Caplan 2011).

For the SNX-BAR-retromer further membrane remod-
eling including membrane scission is connected to the 
underlying actin and microtubule cytoskeleton. SNX5 
and SNX6 bind to the p150glued component of dynactin 
thereby coupling to the microtubule motor dynein (Hong 
et al. 2009; Wassmer et al. 2009). Through a decrease in 
the efficiency of tubule scission, uncoupling from dynein 
leads to extended SNX-BAR-retromer tubules (Wassmer 
et al. 2009).

A link with actin polymerization is provided through the 
association of the CSC to the WASH complex (Gomez and 
Billadeau 2009). WASH is a member of the WASP family 
regulating actin-nucleating properties of the Arp2/3 com-
plex (Campellone and Welch 2010) and is associated with a 
regulatory complex composed of FAM21, SWIP, strumpel-
lin and CCDC53. It interacts with the VPS26-VPS29-
VPS35 CSC sub-complex through binding of VPS35 to 
FAM21 and additional interactions between VPS35 and 
SNX1/SNX2 to WASH and FAM21 (Gomez and Billadeau 
2009). Knock down of WASH leads to the formation of 
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elongated SNX-BAR-retromer tubules. The WASH com-
plex also associates with the scission factor dynamin- II, 
and CAPZ, a capping protein for the barbed ends of actin 
filaments. This leads to the generation of longitudinal force 
by promoting branching (Gomez and Billadeau 2009; Jia 
et al. 2010). Thus, the SNX-BAR-retromer assembles a 
motor-dependent pulling force on the tubule and a pushing 
force on the endosomal vacuole generated by a localized 
burst of actin polymerization. These two opposing forces 
appear to combine to enhance the efficiency of mem-
brane scission by increasing membrane tension. For fusion 
with the recipient compartment, the carrier must undergo 
uncoating. In the SNX-BAR-retromer pathway, this may be 
achieved by binding of VPS26-VPS29-VPS35 to TBC1D5 
(Seaman et al. 2009).

The role of retromer in neurodegenerative disease

Over the past couple of years evidence accumulated that 
disturbed CSC function is causally involved in several neu-
rodegenerative disorders highly prevalent in the elderly. 
The retromer was first linked to neurodegenerative disease 
by model-guided microarray analysis of the dentate gyrus 
and entorhinal cortex from AD tissue (Small et al. 2005) 
which showed that protein levels of the CSC components 
Vps35 and Vps26 are reduced within the entorhinal cortex 
subregion which is particularly vulnerable to AD (Small 
et al. 2005). In addition, a recent study suggests SNX1, 
SNX3 and RAB7A, which are essential for membrane asso-
ciation of the retromer, as possible AD risk genes and a role 
of SNX3 and RAB7A in membrane association of the ret-
romer through interaction with the CSC (Vardarajan et al. 
2012). There is evidence from some in vitro and in vivo 
models that the retromer negatively regulates Aβ produc-
tion, with Vps35-deficient mice exhibiting increased Aβ40 
and Aβ42 production (Muhammad et al. 2008; Wen et al. 
2011). However, other models have suggested that retro-
grade trafficking is required for efficient Aβ40 production 
(Sullivan et al. 2011; Choy et al. 2012). Interestingly, Sulli-
van et al. (2011) observed increased secretion of APP CTFs 
via exosomes, suggesting that retromer dysfunction might 
redirect trafficking of APP CTFs into exosomes leading 
to an alternative pathway for secretion of APP fragments 
and a potential source of extracellular Aβ. Several muta-
tions in retromer assembly and associated genes have also 
been associated with late-onset PD. A mutation in VPS35 
(D620 N (c.1858G > A)) showing incomplete, age-associ-
ated penetrance disrupts the trafficking of cathepsin D, a 
CI-M6PR ligand and protease responsible for degradation 
of α-synuclein, (Follett et al. 2014) and leads to poor asso-
ciation with the WASH complex impairing WASH recruit-
ment to endosomes leading to abnormal trafficking of the 

autophagy protein ATG9A and thereby autophagy dysfunc-
tion (Zavodszky et al. 2014). In a viral-mediated gene trans-
fer rat model, (Tsika et al. 2014) the expression of VPS35 
D620N induced the marked degeneration of substantia 
nigra dopaminergic neurons and axonal pathology, cardi-
nal pathological hallmarks of PD. A recent experimental 
study further demonstrated that loss of SNX27 contributes 
to excitatory synaptic dysfunction by modulating glutamate 
receptor recycling in Down’s syndrome (Wang et al. 2013). 
A mutation in the receptor-mediated endocytosis 8 gene 
(RME8), DNAJC13 (p.Asn855Ser) regulating the dynamics 
of clathrin coats on early endosomes confers a toxic gain-
of-function and impairs endosomal transport (Vilarino-
Guell et al. 2014). PD-associated mutations in RAB7L1 or 
LRRK2 lead to endolysosomal and Golgi apparatus sorting 
defects and deficiency of the VPS35 component of the ret-
romer complex (MacLeod et al. 2013). Expression of wild-
type VPS35, but not a familial PD-associated mutant form, 
rescues these defects. Additional mutations that have been 
reported, but are at present not considered established risk 
or susceptibility variants for late-onset PD include R524W, 
P316S and p.E787 K in VPS35 (Nuytemans et al. 2013), 
p.K93E in VPS26A and p.N72H in VPS29 (Table 1) (Vila-
rino-Guell et al. 2011; Zimprich et al. 2011; Lesage et al. 
2012; Chen et al. 2013; Shannon et al. 2014). The locus for 
human VPS26A has also been genetically associated with 
type 2 diabetes (T2D) in South Asians (Kooner et al. 2011). 
T2D is a confirmed risk factor for AD (Ott et al. 1996; 
Luchsinger et al. 2001).

The vps10 receptor family

Yeast VPS10p, the first retromer cargo identified, has five 
mammalian homologs. These five members of the Vps10 
receptor family are type 1 transmembrane proteins charac-
terized by a Vps10 homology domain within the N termi-
nus acting as a site for ligand binding and canonical inter-
nalization, and sorting motifs within the cytoplasmic tails 
mediating rapid internalization and intracellular sorting of 
ligands (Jacobsen et al. 2001; Nielsen et al. 2001). They are 
abundantly expressed in the brain with differential distribu-
tion in hippocampal subregions, and are induced by neu-
ronal activity (Hermey et al. 2001, 2004).

Sorl1

SORL1 was the first Vps10 receptor identified as genetically 
associated with sporadic late-onset AD (Table 2), (Rogaeva 
et al. 2007) and over the past 2 years SORL1 mutations have 
also been implicated in familial AD (Pottier et al. 2012). 
Numerous studies have replicated the association of SORL1 
with AD in different datasets, and a recent comprehensive 
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meta-analysis of the performed candidate gene studies 
(Reitz et al. 2011a) as well as a GWAS by the International 
Genomics of Alzheimer’s Project (IGAP) in over 75,000 
subjects (Lambert et al. 2013) confirmed that multiple 
SORL1 variants are associated with AD. Consistent with 
this notion, SORL1 transcripts are decreased in the brains of 
patients with mild cognitive impairment (Sager et al. 2007) 
and AD, (Dodson et al. 2006) and genetic variants in SORL1 
have also been associated with AD endophenotypes includ-
ing age of onset of AD, white matter hyperintensities, hip-
pocampal atrophy, CSF Aβ42 levels, cognitive function and 
SORL1 expression in the brain (Seshadri et al. 2007; Kolsch 
et al. 2008, 2009; Grear et al. 2009).

In vitro and in vivo studies have demonstrated that 
SorL1 is required for endosome-to-TGN trafficking of APP 
(Vieira et al. 2010; Fjorback et al. 2012) (Fig. 2). Disrup-
tion of the Vps26 binding motif within the SorL1 cytoplas-
mic tail results in increased localization of APP to endoso-
mal compartments and increased amyloidogenic processing 
of APP to produce Aβ (Fjorback et al. 2012). SorL1 has 
also been demonstrated to regulate exit of APP from the 
TGN, (Schmidt et al. 2007) exit of APP from early endo-
somal compartments (Offe et al. 2006) and oligomerization 
of APP which regulates its affinity for the secretases (Lao 
et al. 2012; Schmidt et al. 2012).

The neuronal retromer, while not present within long-
range moving vesicles, is nonetheless required for long-
range retrograde transport of APP I-containing vesicles 
(Bhalla et al. 2012). Using cultured hippocampal neurons, 
it has been demonstrated that the CSC components Vps35 
and Vps26, partially colocalize with SorL1 and APP to 
distinct puncta that are positive for early endosome mark-
ers and are localized within neuronal processes (Bhalla 
et al. 2012). Under Vps35 knockdown conditions, APP 
long-range transport is reduced, resulting in a more static 

behavior of APP-positive vesicles, indicating that Vps35 
may also be required for the regulated exit of APP from 
early endosomes in distal processes. This block of APP 
exit from early endosomes parallels an increase in endo-
somal size and Aβ production (Bhalla et al. 2012), poten-
tially consistent with previous observations of enlarged 
endosomes during the earliest stages of AD before amyloid 
deposition (Cataldo et al. 1997, 2000, 2004) and in patient-
derived stem cells (Qiang et al. 2011; Israel et al. 2012). 
In summary, disruption of the retromer-SorL1 interac-
tion seems to impact APP metabolism and Aβ production 
by affecting endosome-to-TGN trafficking of APP, (Vieira 
et al. 2010; Fjorback et al. 2012) exit of APP from the 
TGN, exit of APP from early endosomal compartments and 
oligomerization of APP; (Muhammad et al. 2008; Vieira 
et al. 2010; Fjorback et al. 2012) and retromer dysfunction 
seems to increase clustering of APP and Aβ production in 
early endosomes.

SorLA also binds glial cell line-derived neurotrophic 
factor (GDNF) in complex with its receptor GFRalpha1, 
mediates their uptake and subsequent intracellular sorting, 
and may therefore play a crucial role in the regulation of 
GDNF activity (Glerup et al. 2013).

Sorcs1

Also SORCS1 was identified as a potential risk factor for AD 
(Liang et al. 2009) and implicated in retromer-related regula-
tion of APP metabolism and Aβ generation (Lane et al. 2010; 
Reitz et al. 2011c). Several groups reported genetic asso-
ciations of SORCS1 SNPs with LOAD (Liang et al. 2009; 
Laumet et al. 2010; Reitz et al. 2011c; He et al. 2012; Wang 
et al. 2012; Xu et al. 2013) or changes in memory reten-
tion in various ethnic groups (Table 2) (Reitz et al. 2011b). 
In several of these studies, the associations were strongest 

Table 1  Genetic association 
studies reporting genetic 
variants in genes encoding 
retromer assembly components 
in neurodegenerative disease

Author (year) Gene Polymorphism/haplotype Phenotype

Vilarino-Guell et al. (2011) VPS35 p.Asp620Asn (D620N) Familial PD

Zimprich et al. (2011) VPS35 p.Asp620Asn (D620N) Familial PD

Sheerin et al. (2012) VPS35 p.Asp620Asn (D620N) Familial PD

Lesage et al. (2012) VPS35 p.Asp620Asn (D620N) PD

Kumar et al. (2012) VPS35 p.Asp620Asn (D620N) PD

Ando et al. (2012) VPS35 p.Asp620Asn (D620 N) PD

Sharma et al. (2012) VPS35 p.Asp620Asn (D620N) Familial and sporadic PD

Nuytemans et al. (2013) VPS35 possibly p.P316S, p.Y507F, p.E787K PD

Gagliardi et al. (2014) VPS35 p.Asp620Asn (D620N) Familial PD

Shannon et al. (2014) VPS26A possibly p.K93E PD

Shannon et al. (2014) VPS29 possibly p.N72H PD

Vardarajan et al. (2012) KIAA Gene-based analyses AD

Vardarajan et al. (2012) SNX1 Gene-based analyses AD

Vardarajan et al. (2012) SNX3 Gene-based analyses AD
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in females. Complexes containing SorCS1, APP, Vps35 and 
SorL1 were isolated from mouse brain tissue, and Vps35 and 
SorL1 protein levels were reduced in the brains of Sorcs1-
deficient mice, suggesting disruption of the retromer in the 
absence of SorCS1 (Lane et al. 2010). Analysis of APP 
metabolites and Aβ in the brains of female Sorcs1-deficient 
mice revealed increased processing of endogenous APP 

as shown by elevated levels of α/β CTF and Aβ production 
(Lane et al. 2010). In cultured cells, SorCS1 interacts with 
APP and regulates Aβ generation, (Lane et al. 2010; Reitz 
et al. 2011c) potentially through an impact on γ-secretase 
processing of APP (Reitz et al. 2011c).

Interestingly, SORCS1 was also identified as a quantita-
tive trait locus for T2DM in rats and mice (Clee et al. 2006; 

Table 2  Genetic association studies reporting genetic variants in genes encoding VPS10 receptor proteins in neurodegenerative disease

Author (year) Gene Polymorphism/haplotype Phenotype

Rogaeva et al. (2007) SORL1 2 haplotypes (SNPs 8–10, 23–25) AD

Lee et al. (2007) SORL1 2 haplotypes (SNPs 8–10, 23–25) AD

Meng et al. (2007) SORL1 haplotype (SNPs 23–25) AD

Seshadri et al. (2007) SORL1 SNP 24 AD endophenotypes

Bettens et al. (2008) SORL1 haplotype (SNPs 8–10) AD

Webster et al. (2008) SORL1 SNPs 8–9 AD

Li et al. (2008) SORL1 SNP 24 AD

Lee et al. (2008) SORL1 SNPs 8, 24 AD

Cellini et al. (2009) SORL1 SNPs 4, 7–10 AD

Kolsch et al. (2009) SORL1 SNPs 19, 21, 23 AD, CSF biomarkers

Kimura et al. (2009) SORL1 SNPs 19, 23–25 AD

Tan et al. (2009) SORL1 SNPs 19, 22–24 AD

Reynolds et al. (2010) SORL1 SNPs 8, 9, 10, 19, 22, 23, 24 AD

Alexopoulos et al. (2012) SORL1 SNPs 23, 24 AD CSF biomarkers

Caglayan et al. (2012) SORL1 SNPs 19–22 Receptor expression in the brain  
of patients with AD

Guo et al. (2012) SORL1 SNPs 4, 8–10, 19–23 AD CSF biomarkers

Ning et al. (2010) SORL1 SNPs 19–24 AD

Wen et al. (2013) SORL1 rs985421, SNP 7, rs4598682, rs3781834, rs378183 AD

Elias-Sonnenschein et al. (2013) SORL1 rs73595277 p-tau

Miyashita et al. (2013) SORL1 rs3781834, rs11218343 AD

Izzo et al. (2013) SORL1 SNP 10 AD

Olgiati et al. (2012) SORL1 haplotype (SNPs 8–10) AD

Jin et al. (2014) SORL1 rs985421 MCI, AD

Xue et al. (2014) SORL1 SNP 19 AD

Liang et al. (2009) SORCS1 rs17277986 AD

Reitz et al. (2011c) SORCS1 rs4918274, rs2900717, rs11193137, rs12571141, 
rs17277986, rs6584777

AD

Reitz et al. (2011c) SORCS1 rs10884402, rs7078098, rs950809 Memory retention

He et al. (2012) SORCS1 haplotype (rs601883/rs7907690/rs600879/rs17277986/ 
rs2900717/rs10884399/rs11193170/rs4918280)

AD

Wang et al. (2012) SORCS1 rs12571141, rs17277986, rs6584777 AD

Xu et al. (2013) SORCS1 haplotype (rs17277986, rs6584777, rs10884402, 
rs7078098, rs950809)

AD

Reitz et al. (2013) SORCS2 various SNPs in introns 1, 2, 3, 7, 23 AD

Lionel et al. (2011) SORCS3 CNV ADHD

Reitz et al. (2013) SORCS3 various SNPs in introns 12, 5, 20, 23 and UTR-3 AD

Carrasquillo et al. (2010) SORT1 rs646776 Progranulin levels

Nicholson et al. (2014a) SORT1 rs646776 Plasma PRGN levels

McMillan et al. (2014) SORT1 rs646776 FTD neuroanatomic endophenotypes
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Granhall et al. 2006) and identified in GWAS as a risk fac-
tor for type 1 diabetes (Paterson et al. 2010) and T2DM 
(Goodarzi et al. 2007). While the mechanism through 
which SORCS1 contributes to T2DM remains uncharac-
terized, the interaction with the retromer provides a poten-
tial point of junction between AD and T2DM, not only for 
SorCS1 but also for other Vps10 receptors including sorti-
lin and SorL1. Sortilin is involved in trafficking of Glut4-
containing, insulin-responsive vesicles (IRVs), and a screen 
to identify additional components of IRVs identified both 
SorL1 and Vps35 in rat adipocytes (Jedrychowski et al. 
2010). Recycling of Glut4-containing IRVs from endoso-
mal compartments to the TGN is dependent on retrograde 
trafficking pathways and is essential for correct Glut4 traf-
ficking in response to insulin (Vassilopoulos et al. 2009). 
As described above, genetic data now also point toward 
the retromer in T2DM with VPS26a recently identified as 

a novel susceptibility locus (Kooner et al. 2011). Finally, 
genetic variation in SORCS1 has also been associated with 
attention deficit hyperactivity disorder (ADHD) (Lionel 
et al. 2011).

SORCS2 and SORCS3

There is evidence from candidate gene studies that also 
genetic variation in SORCS2 and SORCS3 is associated 
with AD (Table 2) (Rogaeva et al. 2007; Reitz et al. 2013). 
A recent study by Reitz et al. (2013) further suggests that 
there may be additive epistatic effects of genetic variants 
in SORCS1, SORCS2 and SORCS3 on AD risk. These 
observations are in line with the notion that knockdown 
of these genes using short hairpin RNAs in HEK293 cells 
causes a significant increase in APP processing (Reitz et al. 
2013). Variation in SORCS2 has also been associated with 

Fig. 2  APP sorting and processing. i From the TGN, APP is—
dependent on the AP4 adaptor protein complex—either sorted to the 
plasma membrane (secretory pathway) or into clathrin-coated vesi-
cles entering the endosomal pathway. Within the secretory pathway, 
APP is cleaved at the plasma membrane by the α-secretases into 
soluble APPα (sAPPα) and a membrane-bound αCTF. The αCTF is 
subsequently cleaved by γ-secretase generating the p3 fragment and 
the APP intracellular domain (AICD). ii At the plasma membrane, 
some unprocessed APP escapes α-secretase cleavage and is internal-

ized into the endosomal pathway. Within low pH endosomal com-
partments, APP is cleaved by β-secretase resulting in generation of 
sAPPβ and the βCTF. Cleavage of the βCTF by γ-secretase gener-
ates Aβ peptides of varying lengths and the AICD. iii, iv. Via the ret-
romer complex and its receptors, the Vps10 family members, APP is 
recycled from the early endosomal compartments to the TGN. Figure 
adapted from Lane et al. (2012) with permission from Society for 
Neuroscience
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changes in temporal brain structure, (Kohannim et al. 2012) 
bipolar disorder and schizophrenia (Christoforou et al. 
2011) and body mass index, (Wei et al. 2012) and variation 
in SorCS3 is associated with ADHD (Lionel et al. 2011).

The mechanisms by which SORCS2 and SORCS3 exert 
its effects remain poorly understood. Hippocampal expres-
sion of SorCS3 is induced by neuronal activity (Hermey 
et al. 2004, 2013). This activity-dependent transcriptional 
induction is transient and independent of new protein syn-
thesis, a characteristic of immediate early genes (Loebrich 
and Nedivi 2009). Therefore, SorCS3 may play a role in 
plasticity-related events in the nervous system. This notion 
is supported by additional studies. Expression of a constitu-
tively active form of cAMP response element-binding pro-
tein (CREB), a transcription factor with established func-
tion in synaptic plasticity, results in upregulation of Npas4 
and SorCS3 transcripts (Benito et al. 2011). Moreover, 
SorCS3 expression is misregulated in the absence of Npas4, 
(Lin et al. 2008) a transcription factor that regulates the for-
mation and maintenance of inhibitory γ-aminobutyric acid 
(GABA)ergic synapses in response to excitatory synaptic 
activity on hippocampal neurons (Lin et al. 2008; Coutel-
lier et al. 2012). Recently, it has been reported that long-
term depression (LTD), i.e., a longlasting reduction in syn-
aptic transmission, is impaired in SorCS3 knockout mice 
and that these mice display defects in spatial learning and 
memory and show increased fear extinction (Breiderhoff 
et al. 2013).

Sortilin

Sortilin has been implicated in AD (Mufson et al. 2010; 
Finan et al. 2011), FTD (Hu et al. 2010), several psychiatric 
disorders including depression and bipolar disorder (Dube 
et al. 2011; Nykjaer and Willnow 2012) and cardiovascu-
lar (Musunuru et al. 2010) and aortic anorysmal (Saratzis 
and Bown 2014) disease. In the AD brain, increased sortilin 
expression (Finan et al. 2011) together with a positive cor-
relation between temporal cortex sortilin levels and sever-
ity of pathology has been reported (Mufson et al. 2010). In 
vitro, sortilin interacts with BACE1 and appears to posi-
tively regulate BACE1 cleavage of APP and Aβ production. 
Deletion of the sortilin intracellular domain possessing 
the putative retromer binding domain results in increased 
endosomal localization of sortilin and BACE1 (Finan et al. 
2011).

Sortilin is causally liked to FTD as a receptor for pro-
granulin in neurons affecting the uptake and targeted deliv-
ery of progranulin to the endosomal–lysosomal pathway 
(Hu et al. 2010). In line with this notion, candidate gene 
and GWA studies identified SORT1 as a regulator of plasma 
progranulin levels (Carrasquillo et al. 2010; Nicholson 
et al. 2014b). Progranulin localizes extensively with sortilin 

at the plasma membrane with binding dependent on the 
sortilin β-propeller domain (Hu et al. 2010). In vitro and in 
vivo models demonstrated that sortilin regulates extracel-
lular progranulin levels through endocytosis and lysosomal 
accumulation of progranulin (Hu et al. 2010). Deletion of 
sortilin results in a 2.5- to 5-fold increase in progranulin 
levels and reversal of progranulin deficiency in the GRN+/− 
FTD model.

Role of vps10 receptors in proneurotrophin signaling

In addition to their abovementioned actions, several of 
the VPS10 receptors are also involved in the regulation of 
proneurotrophin signaling. The outgrowth of dendrites and 
axons and thereby the formation of neuronal networks in 
the developing nervous system are influenced by several 
factors (McAllister et al. 1995; Cohen-Cory et al. 2010). 
Among these are neurotrophins, which include nerve 
growth factor (NGF), brain-derived neurotrophic fac-
tor (BDNF), neurotrophin 3 (NT-3), and NT-4, which are 
required for neuronal survival and differentiative, synapse 
formation, and synaptic plasticity (Snider 1994). These 
secreted proteins act through two classes of receptors: the 
tropomyosin-related kinase (Trk) receptor and the p75 neu-
rotrophin (p75NTR)–sortilin receptor. Neurotrophins includ-
ing NGF and BDNF are synthesized as precursor proteins 
(proneurotrophins) that are cleaved of their prodomains 
during maturation. However, following injury, or in neu-
rodegenerative disease, pro-NGF is induced. Numerous 
studies have indicated that pro-NTs (NGF and BDNF) bind 
the p75NTR–sortilin complex to signal proapoptotic path-
ways while mature NTs bind the Trk receptor complexes 
to signal growth cone tuning, extension, and neuronal sur-
vival (Teng et al. 2010). While sortilin functions directly 
in apoptotic signaling pathways when complexed with 
p75NTR, it is also involved in anterograde trafficking of the 
Trk receptors from the soma to the nerve terminal thereby 
positively regulating neurotrophin signaling and cell sur-
vival (Vaegter et al. 2011), and regulation of BDNF levels 
through influencing both anterograde and lysosomal traf-
ficking (Chen et al. 2005; Evans et al. 2011). Disruptions in 
NGF and BDNF signaling have been demonstrated to con-
tribute to AD pathology. Aberrant processing of pro-NGF 
and/or altered axonal trafficking resulting in an imbalance 
of pro-NGF to mature NGF has been implicated in disease 
progression and decreased BDNF has been reported in AD.

Also SorCS2 binds to pro-NGF, thereby mediating acute 
collapse of growth cones of hippocampal neurons (Dein-
hardt et al. 2011). This retraction is initiated by an inter-
action between the p75 neurotrophin receptor (p75NTR) 
and SorCS2. Binding of pro-NGF to the p75NTR–SorCS2 
complex induces growth cone retraction by initiating the 
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dissociation of the guanine nucleotide exchange factor Trio 
from the p75NTR–SorCS2 complex, resulting in decreased 
Rac activity and, consequently, growth cone collapse. The 
actin-bundling protein fascin is also inactivated, contribut-
ing to the destabilization and collapse of actin filaments. 
Collectively, these results suggest dual synchronized mech-
anisms by which pro-NGF mediates acute neuronal remod-
eling. This increase in p75NTR in injured neurons and the 
increase in pro-NGF in AD suggest that SorCS2/p75NTR 
may play a role in disease pathogenesis. SorCS3 has also 
been reported to bind NGF (Westergaard et al. 2005), but 
this interaction remains to be further characterized.

SorLA binds glial cell line-derived neurotrophic fac-
tor (GDNF) in complex with its receptor GFRalpha1, and 
mediates their uptake and subsequent intracellular sorting. 
It may, therefore, play a crucial role in the regulation of 
GDNF activity (Glerup et al. 2013).

Conclusions

Over the past few years, significant evidence from genetic 
and cell biology studies has accumulated implicating 
intracellular trafficking as a key mechanism in the genera-
tion of toxic protein species involved in a number of age-
related neurodegenerative diseases. In addition to these 
“end-stage” phenotypes, genetic and cell biology stud-
ies have now also correlated retromer function and pro-
teins involved in intracellular trafficking with intermediate 
disease endophenotypes highly prevalent in the elderly, 
including hippocampal atrophy, memory retention or white 
matter hyperintensities. Evidence suggests that the Vps10 
family of receptors regulates trafficking of proteins central 
to several neurodegenerative diseases within endosomal–
lysosomal compartments through their interaction with the 
retromer complex which itself is implicated in AD, PD, and 
T2DM. Importantly, several of the Vps10 family members 
additionally regulate neurotrophic survival and apoptotic 
signaling pathways.

In considering retromer assembly or accessory pro-
teins as targets for drug discovery, the exact mechanisms 
by which these pathways lead to age-related neurode-
generation need to be clarified. While there are several 
potential scenarios, studies showing that increasing ret-
romer levels and interaction between individual retromer 
proteins stabilize the retromer core complex and enhance 
retromer-mediated trafficking and transport (Small et al. 
2005; MacLeod et al. 2013), suggest that retromer func-
tion is especially important in clearing ‘toxic proteins’ 
from the cell. In line with this notion, a recent study 
seeking to identify potential pharmacological chaper-
ones stabilizing retromer to limit APP processing identi-
fied a molecule that stabilized retromer against thermal 

denaturation, increased the levels of retromer proteins, 
shifted APP away from the endosome, and decreased 
the pathogenic processing of APP (Mecozzi et al. 2014). 
These findings suggest that retromer stability affects its 
function and that pharmacological chaperones can sta-
bilize this function and may have potential therapeutic 
implications (Mecozzi et al. 2014).
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