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Abstract
Malaria poses a significant threat to global health, with particular severity in Nigeria. Understanding key factors influencing 
health outcomes is crucial for addressing health disparities. Disease mapping plays a vital role in assessing the geographical 
distribution of diseases and has been instrumental in epidemiological research. By delving into the spatiotemporal dynam-
ics of malaria trends, valuable insights can be gained into population dynamics, leading to more informed spatial manage-
ment decisions. This study focused on examining the evolution of malaria in Nigeria over twenty years (2000–2020) and 
exploring the impact of environmental factors on this variation. A 5-year-period raster map was developed using malaria 
indicator survey data for Nigeria’s six geopolitical zones. Various spatial analysis techniques, such as point density, spatial 
autocorrelation, and hotspot analysis, were employed to analyze spatial patterns. Additionally, statistical methods, including 
Principal Component Analysis, Spearman correlation, and Ordinary Least Squares (OLS) regression, were used to inves-
tigate relationships between indicators and develop a predictive model. The study revealed regional variations in malaria 
prevalence over time, with the highest number of cases concentrated in northern Nigeria. The raster map illustrated a shift 
in the distribution of malaria cases over the five years. Environmental factors such as the Enhanced Vegetation Index, annual 
land surface temperature, and precipitation exhibited a strong positive association with malaria cases in the OLS model. 
Conversely, insecticide-treated bed net coverage and mean temperature negatively correlated with malaria cases in the same 
model. The findings from this research provide valuable insights into the spatiotemporal patterns of malaria in Nigeria and 
highlight the significant role of environmental drivers in influencing disease transmission. This scientific knowledge can 
inform policymakers and aid in developing targeted interventions to combat malaria effectively.

Keywords  Malaria · Environmental indicators · Geographic information systems · Spatial pattern analysis · Spatial 
statistics analysis · Spearman correlation · Ordinary least squares · Demographic and health surveys

Background

Malaria, a significant global health threat, causes exten-
sive illness and death worldwide, with a particularly severe 
impact on the African continent (Sankineni et al. 2023; 
Simon-Oke et al. 2023; Rodríguez et al. 2023). This dis-
ease has posed a persistent challenge to public health on a 
global scale for many years, especially in tropical regions. 
The primary Plasmodium species responsible for malaria are 
Plasmodium falciparum, Plasmodium vivax, Plasmodium 
ovale, and Plasmodium malaria, with P. falciparum being 
the deadliest and accounting for up to 95% of malaria impli-
cated deaths in Africa (Sankineni et al. 2023; Simon-Oke 
et al. 2023). Despite a modest decrease in malaria preva-
lence in recent years, as indicated by past research, many 
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individuals globally, particularly in Africa, continue to grap-
ple with malaria due to insufficient socio-economic status 
and access to treatment resources. (Das et al. 2023; Mac 
et al. 2023; Sarfo et al. 2023; Taiwo et al. 2023).

Similarly, the World Malaria Report highlighted a stag-
gering 247 million malaria cases in 2021, resulting in over 
600,000 fatalities during the same year (World Health 
Organization 2023), with only four African countries 
accounting for more than half of all malaria deaths world-
wide; Nigeria alone accounting for about 31.3%. These 
statistics made Nigeria the leading country with the high-
est proportion of malaria deaths in 2021. Despite numer-
ous studies on malaria prevention in Nigeria, high malaria 
prevalence persists in many regions (Kanmiki et al. 2019). 
Strengthening prevention efforts remains crucial. Under-
standing transmission variations can aid in developing effec-
tive control strategies and resource allocation.

Despite government efforts at different levels to combat 
malaria, high prevalence persists in regions with heavy rain-
fall and warm temperatures (Oviedo et al. 2023). Rainfall 
creates breeding sites for mosquitoes, the vectors of malaria, 
while warmer temperatures accelerate the malaria parasite’s 
growth and prolong the mosquito’s lifespan. Consequently, 
malaria is particularly prevalent in areas with heavy rainfall 
and warm temperatures. Malaria prevalence in Nigeria dif-
fers across geopolitical regions because of the varying envi-
ronmental and seasonal settings that affect the reproductive 
patterns of mosquito vectors. The prevalence of malaria is 
primarily a function of its underlying transmission intensity 
(Alegana et al. 2013), which in turn is propelled by indica-
tors such as interventions (García et al. 2023), environmental 
and climatic factors (Ekpa et al. 2023; Rivera and Gutiérrez 
2023), and socio-economic and demographic characteristics 
(Ogunsakin and Chen 2020; Pourtois et al. 2023; Rivera 
and Gutiérrez 2023). In malaria prevalence research, authors 
have linked malaria rates to environmental and socio-eco-
nomic factors like population density and potential evapo-
transpiration (PET) (Yang et al. 2012, 2005). Since the indi-
cators affecting malaria are diverse, those considered in this 
study were selected based on previous studies, as acknowl-
edged above. Hence, using malaria indicator survey data, the 
current research employed time-based spatial mapping of the 
prevalence of Plasmodium falciparum malaria.

Besides, these cross-sectional surveys are aimed at being 
comprehensive and nationally representative, where infor-
mation on several indicators affecting the prevalence of 
Plasmodium falciparum is gathered. The essence of this 
survey is to provide recent estimates of fundamental demo-
graphic-related and health-related malaria indicators. It is 
intended to provide estimates at the national level, as well 
as in urban and rural areas and six geopolitical regions. They 
are conducted with a standardized methodology. Unlike 
other data types, nationally representative cross-sectional 

data is invulnerable to incompleteness or standards for clini-
cal diagnosis (Arambepola et al. 2020; Uwemedimo et al. 
2018). This explains why prevalence information from 
national health surveys is the primary source of data for 
mapping malaria risk in many countries has always been, 
particularly in Africa (Weiss et al. 2019; Battle et al. 2019).

This study aimed to determine the spatiotemporal trends 
of malaria distribution in Nigeria and to determine potential 
relationships between malaria prevalence and environmental 
indicators. Disease mapping is widely used in public health 
surveillance since it describes the spatiotemporal variation 
of the disease, identifies areas with unusually high risk, and 
formulates etiological hypotheses (Lawson 2018). Therefore, 
probing the spatiotemporal dynamics of malaria by linking 
GPS data to external covariates can lead to new intuitions in 
population processes and foster a track toward enhanced spa-
tial management decisions. Environmental indicators were 
selected to establish a spatiotemporal distribution model 
using a geographical information system (GIS). GIS has 
proven to be a powerful technique for public health surveil-
lance across various geographical areas (Musa et al. 2013; 
Kamel Boulos and Geraghty 2020).

Method

Data

The study was conducted in Nigeria, a sub-Saharan African 
country, between latitudes 4º16’ and 13º53’ N and longi-
tudes 2º40’ and 14º41’ E. It shares borders with the Niger 
Republic in the north, the Republic of Chad in the northeast, 
the Republic of Cameroon in the east, and the Republic of 
Benin in the west. The climate and topography of Nigeria 
are diverse, encompassing highlands (600 to 1300 m in the 
North Central Zone), eastern highlands, and lowlands (less 
than 20 m in coastal areas). Two seasons in one year are wet 
and dry. The dry season runs from October to March, with 
a wave of freshness accompanied by the dry and dusty wind 
of Harmattan, mainly experienced in the north in December 
and January. The wet season begins in April and ends in 
September. The country is divided into 36 states and a Fed-
eral Capital Territory [FCT], consisting of six geopolitical 
zones (Fig. 1), and covers an area of about 923,769 square 
kilometres. The states are categorized into six geopolitical 
zones with 774 constitutionally recognized local govern-
ment areas (LGAs). The country has a total surface area of 
approximately 910,770 square kilometers (351,650 square 
miles) and a population density of 246 per Km2 (636 people 
per mi2) (https://​www.​world​omete​rs.​info/​world-​popul​ation/​
niger​ia-​popul​ation/). About 53.8 percent lived in urban cen-
tres, while 46.2 percent lived in rural areas (https://​count​
rymet​ers.​info/​en/​Niger​ia). Administrative boundaries were 

https://www.worldometers.info/world-population/nigeria-population/
https://www.worldometers.info/world-population/nigeria-population/
https://countrymeters.info/en/Nigeria
https://countrymeters.info/en/Nigeria
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also consulted through the Demographic and Health Sur-
vey (DHS) Spatial Data Repository (https://​spati​aldata.​dhspr​
ogram.​com/). Administrative boundaries are subnational 
regions, usually administrative level 1, and vary between 
survey years and countries.

Sampling procedures

The 2021 Nigeria Malaria Indicator Surveys (NMIS), made 
available on the DHS Program website, were used in this 
study. The DHS is the primary source of benchmarking 
information on women’s and young children’s health in 
most developing countries. It has been established that it is 
also helpful in investigating the connection between envi-
ronmental factors and health (Boyle et al. 2020). The 2021 
NMIS utilized a two-staged sampling procedure. In the first 
stage, 568 enumeration areas (EAs) were chosen with prob-
ability proportional to the EA size. In the second stage, 25 
households per urban and 25 per rural cluster were selected. 
The size of the EA is the number of families resident in the 
EA. The selection of the sample was carried out to be repre-
sentative of each state. This resulted in the selection of 568 

clusters in the country: 195 in urban areas and 373 in rural 
areas. The geospatial covariates of 2021 NMIS used for the 
study contained data on malaria prevalence and environ-
mental indicators. This geospatial data was measured with 
remote sensing within two kilometres in urban areas and 10 
kms in rural areas around the site of the DHS survey clus-
ter for 568 clusters across the country for five years (2000, 
2005, 2010, 2015, and 2020).

Data sources for malaria prevalence

The Demography and Health Survey remains a valuable 
source that, combined with complementary information, 
may provide the evidence base to understand better human 
health resources and resource allocation (Ogunsakin and 
Ginindza 2022). This study uses secondary DHS data and 
is available upon request for download from the DHS Web-
site. Geospatial covariate data from DHS and Geographic 
Position System (GPS) cluster points were obtained from the 
GDPS spatial repository. DHS spatial cluster data (n = 568) 
are GPS points captured with survey data. Most DHS 
surveys are now geocoded, whereas a GPS coordinate is 

Fig. 1   Geographical setting of the study area mapping

https://spatialdata.dhsprogram.com/
https://spatialdata.dhsprogram.com/
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recorded in the approximate centre of each primary sampling 
unit. To keep participants confidential, GPS coordinates 
were moved to protect the confidentiality of participants 
by grouping households into groups and replacing them 
by up to 0–2 kms for urban areas and 0–10 kms for rural 
regions (Bennett and Smith 2017), geospatial covariates 
often accompany the data, and it is frequently challenging 
to link the data with the DHS programmer’s data to deter-
mine the impact of location on health outcomes. To mitigate 
this challenge, the DHS geospatial team developed a set of 
standard geospatial covariate files that have already been 
used for the dataset. The covariate indicators were obtained 
from raster and vector data. Raster data, like images and pat-
terned areas, are based on pixels or cells to transmit data val-
ues. On the other hand, vector data, such as dots, lines, and 

polygons, show a characteristic’s location or discrete limit. A 
full description of the DHS geospatial covariate dataset and 
methodology is available (Bennett and Smith 2017).

Data collection and preparation

Environmental indicators (Table  1)  related to malaria 
prevalence were compiled from the Nigeria Demographic 
Health Survey (NDHS). They included the Aridity Index 
(AI), Enhanced Vegetation Index (EVI), insecticide-treated 
bed net (ITN) coverage, Maximum Temperature (MT), 
precipitation, rainfall, daytime and night-time land surface 
temperatures, and Mean annual Potential Evapotranspira-
tion (PET). Additionally, Nigeria shape files from DIVAS-
GIS (https://​www.​diva-​gis.​org/​gdata) were utilized. These 

Table 1   Spatial and temporal resolution of geospatial datasets covariates included in the model

MODIS moderate resolution imaging spectroradiometer, CHIRPS climate hazards group infrared precipitation with station data

Geospatial 
dataset

Descriptions Units Spatial 
resolu-
tion

Temporal 
resolution

Source Format Type Covariate 
Spatial detail

Temporal 
coverage

Aridity Mean annual 
aridity

% − − − Raster Continuous DHS sub- 
national area

2000–2020

EVI Enhanced 
vegetation 
index

Index 1km Monthly MODIS Raster Continuous DHS sub- 
national area

2000–2020

LST Annual Land 
Surface Tem-
perature

0C 1km 1 day MODIS Raster Continuous DHS sub- 
national area

2000–2020

ITNC Insecticide-
treated bed 
nets coverage

Proportion of 
the popula-
tion

− − − Raster Continuous DHS sub- 
national area

2000–2020

MT Maximum 
Temperature

0C 1km Monthly MODIS Raster Continuous DHS sub- 
national area

2000–2020

Precipitation Average Pre-
cipitation

Millimeters 5km Monthly CHIRPS Raster DHS sub- 
national area

2000–2020

Rainfall Climate haz-
ards group 
infrared 
precipitation 
with station 
data

Millimeters 5km Monthly CHIRPS Raster Continuous DHS sub- 
national area

2000–2020

LSTday Land surface 
temperature 
in the day-
time

0C 1km Monthly MODIS Raster Continuous DHS sub- 
national area

2000–2020

LSTnight Land surface 
temperature 
in the night-
time

0C 1km Monthly MODIS Raster Continuous DHS sub- 
national area

2000–2020

PET Mean annual 
Potential 
Evapotran-
spiration

Millimeters 1km Monthly MODIS Raster Continuous DHS sub- 
national area

2000–2020

Wet days Millimeters 1km Monthly MODIS Raster Continuous DHS sub- 
national area

2000–2020

https://www.diva-gis.org/gdata
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indicators were selected to establish a spatiotemporal distri-
bution model and use a Geographical Information System 
(GIS). These data often come with geospatial covariates, 
and it is frequently challenging to link them with the DHS 
Programmer’s data to determine the impact of location on 
health outcomes. To alleviate the difficulty, the DHS Pro-
gramme Geospatial Team developed a set of standardized 
files of the most used geospatial covariates already linked 
with the dataset. The prevalence of malaria was measured in 
the NDHS using the average Plasmodium falciparum para-
site rate (PfPR). This study obtained the DHS malaria sur-
vey year from the DHS spatial data repository site (https://​
spati​aldata.​dhspr​ogram.​com/). The prevalence of malaria 
depends first and foremost on its underlying transmission 
intensity (Alegana et al. 2013), which is driven by indica-
tors such as interventions and environmental/climatic, socio-
economic, and demographic factors.

Statistical analysis and spatial analysis models

To increase our insight into how malaria spreads through 
space and how several host compartments are linked, com-
prehensive information was obtained from 2021 Malaria 
Indicator Surveys (MIS). This type of survey provides 
another data source for understanding the spatiotemporal 
trends of malaria endemicity. This study described malaria 
prevalence in different regions in Nigeria from years 2000 
to 2020. Descriptive statistical analysis, mean difference, 
and the association between malaria prevalence and environ-
mental indicators were computed using absolute and relative 
frequencies and Pearson correlation coefficients.

In the first stage, Kaiser–Meyer–Olkin (KMO)-Bartlett 
assays were performed to determine the adequacy of spatial 
analysis data. Initial results of the KMO sampling adequacy 
measurement indicated that Principal Component Analy-
sis (PCA) would be a suitable statistic for data reduction 
(Farzinpour et al. 2023). PCA is a linear statistical process 
universally deployed to reduce data dimensions by extract-
ing the most significant variations from the original data 
sets (Ocampo-Marulanda et al. 2022). It uses an orthogonal 
transformation to convert possibly correlated indicators into 
several linearly uncorrelated, independent PCs. Different co-
factors affected by collinearity affect malaria transmission 
at various stages. PCA allowed for keeping the main envi-
ronmental features without losing part of the environmen-
tal co-factors associated with malaria prevalence. Hence, a 
PCA with varimax rotation was applied to find this study’s 
explanatory indicators.

In the second stage, we performed ordinary least square 
(OLS) regression to test the assumption of the models 
according to OLS requirements. The OLS is a global 
model and assumes the variable relationship to be persis-
tent throughout the study area. The ultimate assumption 

of a multivariate regression model is that the relation 
between dependent and explanatory variables is spatially 
constant (Yue et al. 2018; Mohidem et al. 2021). Although 
the OLS model is not regarded as the best technique for 
the statistical analysis of spatial data, it has unswervingly 
been the appropriate initial point for any spatial regression 
analyses to uncover the significant indicators (explanatory 
indicators) associated with the outcome variable (malaria 
prevalence). This model would explain if malaria hotspots 
occurred due to the combination of these explanatory 
indicators. The implication of such is that it would assist 
in creating a prediction map that can be used for public 
health resource allocations due to the spatial relationship 
between the dependent and explanatory indicators.

In addition, before the main spatial mapping, the pur-
pose was to pre-process data further and assess the extent 
of the statistical significance between the outcome and 
the selected explanatory indicators from the PCA result. 
In this case, the independent variables were tested for 
normality using the Shapiro–Wilk test at 0.001. Since 
the p-values were all greater than 0.001, it showed that 
the independent variables were normally distributed. 
Using all normally distributed variables, we conducted 
the regression analysis and developed a model for malaria 
prevalence. Using this model, we generated a model preva-
lence raster map via ArcMap’s map calculation functions 
and complementary datasets. Further, Variance inflation 
factors (VIFs) were applied to monitor multicollinearity 
among the indicators through a VIF function in the R sta-
tistical programming environment using the “olsrr” pack-
age. We observed that multicollinearity does not occur as 
all the VIF values are less than ten, and the tolerance value 
is higher than 0.1.

Finally, the global spatial autocorrelation was evaluated 
using the Global Moran’s I statistic (Moran’s I) to assess the 
presence of geographical clustering and variability. A posi-
tive value for Moran’s Index implies a geographical cluster-
ing for malaria. In contrast, a negative value for Moran’s 
Index implies a dispersion and a zero value is distributed 
randomly when Moran’s Index is statistically significant. 
The local Getis-Ord spatial statistical tool was employed to 
detect statically significant hotspot and cold spot regions. 
Hotspot refers to the occurrence of high prevalence of 
malaria clustered together on the map; however, cold spots 
refer to the occurrence of low prevalence of malaria clus-
tered together on the map. A point density map was applied 
to examine the temporal pattern of malaria prevalence. 
The point density tool in ArcMap was used to create the 
point density map. The point density tool calculates the den-
sity of point features around each output raster cell. Detailed 
maps were built with spatial data to visualize the distribution 
of malaria prevalence and hot spot analysis. The PCA was 
performed using the FactoMineR and factoextra packages in 

https://spatialdata.dhsprogram.com/
https://spatialdata.dhsprogram.com/
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the R project. All the spatial maps were produced in ArcMap 
(version 10.4).

The health sciences database offers a wide array of data, 
ranging in diversity, size, and complexity, which can be 
effectively analyzed utilizing Geographic Information Sys-
tem (GIS) tools. Spatial analysis techniques, such as point 
density, spatial autocorrelation, raster map analysis, and hot 
spot analysis, were applied to examine spatiotemporal pat-
terns of malaria prevalence. Gaining a deeper understanding 
of malaria prevalence, particularly spatial patterns, is crucial 
for allocating resources effectively for malaria prevention 
and control efforts (Lai et al. 2015).

Results

Spatiotemporal statistics of environmental 
indicators and malaria mean separation across five 
years

The trends and spatial variation of the environmental indi-
cators from 2000 to 2020 in Nigeria were evaluated in this 
study. Table 2 provides descriptive characteristics of the 
study population. This resulted in 568 clusters in the coun-
try, 195 in urban areas, and 372 in rural areas. The 2021 
NMIS geospatial covariates contained malaria prevalence 
information. Concerning the data set, we have 2,835 cases 
of malaria. Table 2 also shows the descriptive trend of the 
explanatory indicators utilized. As shown, malaria preva-
lence in Nigeria was 48%, 43%, 35%, 23%, and 27% in 2000, 
2005, 2010, 2015, and 2020, respectively.

Malaria prevalence in the six regions of Nigeria between 
2000–2020 is summarized in Table 3. Malaria cases were 
concentrated in the northwest, northcentral, south-south, 
and Southwest, accounting for 71.3% of all cases. Also, 
malaria cases were concentrated in rural settings, account-
ing for 65.6% of the entire cases in the study area. At the 
regional level, over the five years, malaria cases reached 
the ultimate number in the Northwest region with 560 cases 
(19.75%), followed by the North-Central zone with 505 
cases, South-South with 495 cases, and Southwest with 460 
cases (Table 3).

Multivariate data analysis of environmental 
indicators

The KMO measure employed for the environmental indi-
cators set with seven indicators is 0.796. Since the KMO 
test is > 0.50, the environmental indicators set are accept-
able for PCA. Bartlett’s test of sphericity has these values: 
χ2 = 22,953.58, degrees of freedom = 21, and p < 0.0001 
for α = 0.05, which is good and indicates that we can pro-
ceed with the PCA. According to the empirical rule and 

the eigenvalues chart, two principal components (PCs) were 
chosen. The first and second main components explained 
62.4% and 14.3%, respectively. Further, the PCA conducted 
using Kaiser’s criterion resulted in maintaining two environ-
mental indicators that explained 76.7% of the total inertia 
(Fig. 2). Figure 2 shows the indicator factorial load chart on 
components and the relationship between indicators in three 
different ways. Each indicator is a point for which the loads 
on the PCs give the coordinates. If an indicator is well rep-
resented by only two principal components (F1 and F2), the 
sum of the cos2 on these two PCs equals one. If so, the indi-
cators will be placed on the circle of correlations. The cos2 
values serve to estimate the quality of the representation 
(Mebatsion et al. 2012). The nearer an indicator approaches 
the circle of correlations, the better its depiction on the 
factor map (and the greater the importance of interpreting 
these components). Indicators closed at the trace’s center are 
less critical for the first components. Additionally, the first 
principal component explained 62.4% of the total inertia. 
The indicators that best contributed to this were maximum 
temperature (13.76%, correlation coefficient r = 0.92), LST 
(13.40%, r = 0.87), mean temperature (13.08%, r = -0.38), 
and maximum temperature (10.77%; r = 0.38). The second 
principal component explained 14.3% of the total inertia. 
The indicator with the most contribution is the mean tem-
perature (10.08%, r = 0.76).

Based on the Pearson correlation coefficient, the aridity 
(coefficient = 0.165, p =  < 0.001), EVI (coefficient = 0.296, 
p =  < 0.001), and precipitation (coefficient = 0.157, 
p =  < 0.001) indicators explained a positive association with 
malaria prevalence. In contrast, ITNC (coefficient = -0.377, 
p =  < 0.001), land surface temperature (coefficient = -0.243, 
p =  < 0.001), maximum temperature (coefficient = -0.144, 
p =  < 0.001), and mean temperature (coefficient = -0.171, 
p =  < 0.001) explained a negative association with malaria 
prevalence. These findings imply some environmental indi-
cators show a direct relationship while others indicate an 
indirect one.

Environmental indicators affecting malaria 
prevalence using the OLS model

Following the results of the correlation analysis, col-
linearity was carried out among the selected indicators. 
Since the study environmental indicators do not have 
a normal distribution according to the Shapiro–Wilk 
test (Ho: The variable is normally distributed), VIF 
and conditional index (CI) were calculated for the mul-
ticollinearity analysis. However, all the VIFs of the 
reported indicators are less than 10, indicating no col-
linearity. The result of the collinearity reveals Average 
temperature (VIF = 1.479, tolerance = 0.676); precipi-
tation (VIF = 1.947, tolerance = 0.513); ITN Coverage 



Parasitology Research (2024) 123:262	 Page 7 of 16  262

Table 2   Temporal descriptive 
statistics of explanatory 
covariates from 2000 to 2020

Environmental factors Mean ± SD Minimum P25 Median P75 Maximum

2000 Prevalence 0.48 ± 0.18 0.01 0.36 0.46 0.59 0.93
Aridity 31.54 ± 18.29 3.75 14.42 29.28 47.85 71.52
EVI 0.33 ± 0.09 0.12 0.24 0.33 0.41 0.53
ITNC 0.06 ± 0.01 0.03 0.05 0.06 0.07 0.11
LST 25.65 ± 1.80 21.33 24.23 25.43 27.13 29.99
Maximum temperature 32.54 ± 1.39 28.99 31.54 32.00 33.47 36.44
Mean temperature 26.81 ± 0.82 23.04 26.53 26.84 27.18 28.83
Precipitation 112.70 ± 44.07 25.65 76.87 105.55 156.13 202.46

2005 Prevalence 0.44 ± 0.18 0.05 0.30 0.42 0.55 0.91
Aridity 31.31 ± 16.72 6.22 16.42 28.78 44.97 65.18
EVI 0.32 ± 0.09 0.12 0.24 0.32 0.40 0.51
ITNC 0.27 ± 0.18 0.01 0.02 0.03 0.03 0.04
LST 25.66 ± 1.53 20.93 24.29 25.69 26.94 29.12
Maximum temperature 32.75 ± 1.70 29.32 31.42 32.06 34.13 37.27
Mean temperature 27.41 ± 0.87 23.80 26.97 27.27 27.79 29.71
Precipitation 111.21 ± 36.62 42.58 82.44 104.54 140.66 186.84

2010 Prevalence 0.36 ± 0.14 0.07 0.25 0.34 0.44 0.75
Aridity 34.58 ± 19.80 5.59 15.44 33.48 49.39 71.59
EVI 0.32 ± 0.09 0.10 0.24 0.32 0.40 0.52
ITNC 0.18 ± 0.12 0.02 0.08 0.14 0.28 0.52
LST 25.95 ± 1.57 21.67 24.56 25.86 27.13 29.52
Maximum temperature 33.08 ± 1.72 29.30 31.72 32.37 34.44 37.52
Mean temperature 27.67 ± 0.86 23.94 27.21 27.51 28.14 29.79
Precipitation 124.43 ± 46.69 41.31 82.91 120.60 162.66 215.87

2015 Prevalence 0.23 ± 0.14 0.03 0.13 0.20 0.30 0.74
Aridity 27.52 ± 16.52 4.31 11.97 26.01 40.43 61.38
EVI 0.31 ± 0.10 0.09 0.23 0.31 0.40 0.54
ITNC 0.30 ± 0.16 0.01 0.17 0.27 0.43 0.71
LST 26.14 ± 1.61 21.38 24.75 26.05 27.49 29.90
Maximum temperature 32.73 ± 1.45 29.13 31.18 32.18 33.80 36.69
Mean temperature 27.29 ± 0.84 23.57 26.94 27.22 27.72 29.41
Precipitation 100.31 ± 42.22 29.44 62.63 92.54 135.34 186.26

2020 Prevalence 0.27 ± 0.13 0.05 0.18 0.26 0.34 0.69
Aridity 33.17 ± 18.47 6.37 17.11 28.45 48.99 72.53
EVI 0.31 ± 0.09 0.12 0.23 0.30 0.37 0.52
ITNC 0.38 ± 0.20 0.06 0.23 0.34 0.52 0.93
LST 26.68 ± 1.46 21.95 25.47 26.77 27.74 30.20
Maximum temperature 32.70 ± 1.39 29.21 31.70 32.19 33.73 36.27
Mean temperature 27.32 ± 0.83 23.53 27.03 27.31 27.68 29.45
Precipitation 120.03 ± 42.93 42.93 90.50 102.08 159.16 211.59

Table 3   Cases of malaria (cases 
per 1000 population) in the 
study area, 2000–2020

Geopolitical zone Residence

North Central North-East Northwest South-East South-South Southwest Rural Urban

Number 505 445 560 370 495 460 1860 975
Percentage 17.81 15.70 19.75 13.05 17.46 16.23 65.61 34.39
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(VIF = 1.122, tolerance = 0.891); enhanced vegetation 
index (VIF = 3.135, tolerance = 0.319) and land surface 
temperature (VIF = 3.578, tolerance = 0.279). Hence, the 
OLS model was fitted to assess the contribution of each 
essential indicator of malaria prevalence. The OLS model 
suggests that the indicators have some impact on the study 
area (Table  4). Besides, the OLS model explains the 
44.2% variation in malaria prevalence by environmental 
indicators. This implies that unknown environmental indi-
cators cause 55.8% of malaria prevalence. The regression 
coefficients for indicators significantly correlated with 
malaria are presented in Table 4. It showed the regres-
sion coefficients and the robust standard error estimated 
by the model.

Spatiotemporal trend of malaria prevalence rates 
from 2000 to 2020

Figure  3 depicts the overall temporal trend of malaria 
between 2000 and 2020. The South-South took the lead in 
2000, followed by the Northcentral and Northwest. Malaria 
cases decreased significantly among these three geopolitical 
zones, apart from the northwest, between 2000 and 2020. 
Over the past year, a substantial number of malaria cases 
have been detected in the Southwest, which could be attrib-
uted to the dense vegetation of the rural area, lack of access 
to adequate medical facilities, or an unsafe environment 
(Ekpa et al. 2023). Malaria prevalence has declined in the 
Northeast year after year from 2000 to 2020. The decline in 

Fig. 2   Circle of correlations and 
plot of the factor loadings of the 
indicators with F1 and F2

Table 4   Effect of Environmental Indicators affecting malaria prevalence in the study area

Indicator Coefficient [a] StdError t-Statistic Probability [b] Robust SE Robust_t Robust Pr [b] VIF [c]

Intercept 0.640 0.116 5.501  < 0.001 0.108 5.923  < 0.001 −
EVI 0.622 0.059 10.484  < 0.001 0.057 10.849  < 0.001 3.135
ITN Coverage −0.319 0.017 −18.357  < 0.001 0.014 −23.606  < 0.001 1.122
LST 0.012 0.004 3.282  < 0.001 0.003 3.654  < 0.001 3.578
Mean temp −0.025 0.004 −5.862  < 0.001 0.004 −6.154  < 0.001 1.479
Precipitation 0.000 0.000 −4.425  < 0.001 0.00009 −4.493  < 0.001 1.947
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this region could be attributed to a recent government effort 
to access good health institutions, attempts by residents to 
make their surroundings hygienic, or appropriate civic edu-
cation about the impact of illness (Oyibo et al. 2021). In 
general, the overall prevalence of malaria over the five years 
had a declining trend but with inconsistencies (Fig. 3).

Moreover, five malaria frequency raster maps were devel-
oped for the 5-year- intervals (Fig. 3A–E). Consequently, the 
appropriate spatial information has been well condensed, 
including geographic locations and spatial and temporal 
malaria changes. The most significant time frames were 
identified as 2000 (Fig. 4A) and 2020 (Fig. 4E); the highest 

Fig. 3   Temporal trend analysis of malaria prevalence in Nigeria between 2000 and 2020

Fig. 4   A five-year-period malaria frequency raster map for Nigeria during 2000 (A), 2005 (B), 2010 (C), 2015 (D), and 2020 (E)
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(0.92619) and lowest (0.687981) frequencies were recorded, 
respectively. The raster maps also showed the center of 
malaria distribution in a portion of the southern region over 
time (Fig. 4A–E).

Spatial distributions of malaria prevalence in 2000, 
2005, 2010, 2015 and 2020

The detailed count of malaria cases in different regions is 
shown in Fig. 5. Spatial variations in malaria prevalence 

have been observed at regional levels. Malaria cases were 
concentrated in western, northwest, and eastern Nigeria. 
The lowest concentration was observed in Nigeria’s north-
central, northeastern, and south-south regions (Fig. 5).

Also, when considering the density map, high-density 
regions for malaria cases (between 77.12 and 154.24) at 
the 1-km spatial resolution, which is displayed in red and 
orange, have been located at the junctions between South-
East (Imo and Abia State), and Southwest (Osun State) 
(Fig. 6).

Fig. 5   Geographical locations 
of data points and malaria 
prevalence in Nigeria: 2000(a), 
2005(b), 2010(c), 2015(d), and 
2020(e)

Fig. 6    Point density map show-
ing the distribution of malaria 
prevalence in the study areas 
from 2000–2020
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Spatial autocorrelation analysis (Moran’s I) 
of malaria

This section presents the results of methods used to ana-
lyze malaria cases. We used the Moran Global Index to 
estimate the overall degree of spatial autocorrelation. As 
Fig. 7 shows, the Moran Index value was positive, indicat-
ing statistically significant malaria within the study area. 
Global analysis of the spatial autocorrelation of individ-
ual surveys disclosed that there were substantial clustered 
trends of malaria across the country: Global Moran’s 
I = 1.312, Z-score = 41.35, p-value < 0.001 in NDHS 2000; 
Global Moran’s I = 1.098, Z-score = 34.62, p-value < 0.001 
in NDHS 2005; Global Moran’s I = 0.786, Z-score = 24.78, 
p-value < 0.001 in NDHS 2010; Global Moran’s I = 0.686, 
Z-score = 21.66, p-value < 0.001 in NDHS 2015, and 
Global Moran’s I = 0.732, Z-score = 23.09, p-value < 0.001 
in NDHS 2020 (Fig. 7a–e). In each output, the Z-score 
is primarily high and positive with a highly significant 
p-value, which showed 99% confidence for clustering 
malaria across Nigeria regions. The bright red (right side) 
and blue (left side) colors specified increased significance 
levels for which the probability of clustered patterns 
occurring by chance was less than 1%.

Hot spot analysis of malaria prevalence 
between 2000–2020

Figure 8 presents the hot spot analysis using Getis-Ord 
Gi*. From Fig. 8a–d, red and yellow disclosed significant 
clusters of high-risk (hotspot) malaria zones, while green 
and blue disclosed substantial clusters of low-risk (cold 
spot areas). From the findings, in 2000, the hot spot zones 
of malaria prevalence were seen in parts of South-South, 
South-east, Southwest, Northcentral, and Northwest 
(Fig. 8a). On the other hand, in 2005, the hot spot zones 
of malaria prevalence were observed in regions of South-
South, South-east, Southwest, Northcentral, while the cold 
spot zones were well pronounced in the Northeast, parts 
of the Northwest and South-South (Fig. 8b). Likewise, in 
2010, the hot spot zones of malaria prevalence in Nigeria 
were identified in the Southwest, part of the Northwest, 
Northcentral, and Northeast, while the cold spot zones 
were more significant in South-South and part of South-
west regions (Fig. 8c). During NDHS 2015, statistically 
significant hot spot zones were seen in the Northern part of 
Nigeria. The statistically substantial cold spot zones were 
seen in the country’s southern region (Fig. 8d). Similarly, 
during NDHS 2020, statistically significant hot spot zones 
were seen in the southern part of Nigeria. The country’s 
Northern region saw statistically substantial cold spot 
zones, excluding North-Central (Fig. 8e).

Discussion

Malaria is a severe menace to global health and is more 
critical in all regions of Nigeria, considering the coun-
try’s population. Previous findings on malaria modeling 
in Nigeria have reported higher malaria prevalence across 
various areas of Nigeria (Dawaki et al. 2016; Makinde 
et al. 2021; Beargie et al. 2019). The current study pre-
sents a spatiotemporal mapping of malaria prevalence 
and exploration of environmental inequalities in Nigeria 
for five years, ranging from 2000 to 2020. This study’s 
findings revealed that most malaria cases during the 
year investigated were substantially more extreme in the 
Northern region than in the Southern part of Nigeria. 
Conversely, the North Central region was more preva-
lent than all the Southern regions. However, the overall 
findings showed spatial discrepancies in the prevalence 
of the disease, indicating the northwest as the most 
affected area in the country. Also, the conclusions of 
this study identified the environmental indicators sig-
nificant to malaria and determined their association 
with malaria prevalence using OLS regression. It was 
shown that enhanced vegetation index, annual land sur-
face temperature, insecticide-treated bed net coverage, 
and mean temperature are significant indicators explain-
ing the prevalence of malaria. Besides, precipitation 
also affects malaria prevalence in Nigeria. This is not 
surprising since variations in precipitation patterns in 
northern and southern Nigeria can affect the spread of 
malaria differently. An observation that suggests various 
parts of Nigeria may affect malaria diffusion differently. 
More precipitation occurs in southern Nigeria than in 
the Northern region. As a result, the spread is generally 
extreme early in the rainy and dry seasons.

The distribution of malaria spates shifted from the 
Northcentral and South-South region between 2000 and 
2005 (Fig. 4A–B) towards the Northwest and Southwest 
region by the end of 2020 (Figs. 3C–E). However, the 
malaria distribution center turned to the Northern and part 
of the Southern region after 2005 (Fig. 3B), a finding that 
can be due to many reasons. One justification may be due 
to the movement from rural areas to the cities because of 
terrorist activities in some regions, and this may have con-
tributed to the population increase within the towns in this 
region where the urban infrastructure became inadequate 
(Joshua et al. 2014; Eme et al. 2018). Besides, malaria 
cases had almost been eradicated in the Northeast region 
by the end of 2020 (Fig. 4E). This finding was consistent 
with the one conducted by Houben (Houben et al. 2013) in 
Northeastern Nigeria. The justification for these findings 
might align with the result of the Nigeria Malaria Indica-
tor Survey 2021 (MIS), which established that mosquito 
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Fig. 7   Spatial patterns of malaria prevalence in Nigeria: 2000(a), 2005(b), 2010(c), 2015(d), and 2020(e). The clustered patterns showed that 
the likelihood of occurrence by random chance is less than 1%
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nets are accessible to most of the states in the northeast 
region of Nigeria. For instance, the latest MIS report 
shows that bed nets are available in 68% of households 
in the Northeast of Adamawa (Nigeria Malaria Indicator 
Survey (NMIS) 2021).

Furthermore, the research findings indicated that envi-
ronmental factors contribute to the increased malaria preva-
lence in the study area. A previous study by Sadoine et al. 
(2022) and Arhin et al. (2023) suggested that higher tem-
peratures may lead to elevated malaria levels, potentially 
due to changes in mosquito populations. This underscores 
the importance of considering climate change in developing 
early warning systems and response strategies. Moreover, 
our study revealed similar positive correlations between 
malaria cases and environmental indicators. Supporting 
our findings, Tangena et al. (2023) reported a negative rela-
tionship between Insecticide-Treated Net Coverage (ITNC) 
and malaria cases. However, our results did not determine 
whether areas with high access to mosquito nets had a lower 
prevalence of malaria than areas with low access (Lind-
blade et al. 2015). Hence, this suggests that a cost-effective 
response program would consider promoting household 

access to local mass media, where household members 
receive frequent medical advice, particularly in rural areas 
with limited access to medical care.

Consequently, malaria prevalence was spatially clustered 
at the regional level during the separate investigation period 
of the study. The spatial distribution of the high prevalence 
of malaria during the respective survey period was in the 
western, northwest, and eastern parts of Nigeria. These 
variations could be due to climate change and declining 
precipitation distribution in these areas at different times. 
Spatial spreading has further revealed the spatial difference 
between malaria and other regions of Nigeria. For example, 
in the 2000 survey, statistically significant sensitive areas of 
malaria prevalence were found in the South-South, South-
East, Southwest, Northcentral, and Northwest regions, while 
in the 2005 survey, malaria hotspots were observed in South-
South, South-east, Southwest, Northcentral. This finding 
might be related to the variation in rainfall patterns. In 2011, 
the malaria hot spot was observed primarily in the South-
west, a portion of the northwest, Northcentral, and North-
east, while in the 2016 survey, statistically significant sensi-
tive areas were observed in the northern parts of Nigeria 

Fig. 8   Hot spot analysis of malaria prevalence in Nigeria: 2000(a), 2005(b), 2010(c), 2015(d), and 2020(e)
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(Ekpa et al. 2023). Likewise 2020, statistically substantial 
sensitive regions were found in southern Nigeria. This may 
be due to changing precipitation patterns in northern and 
southern Nigeria, which can affect malaria transmission 
dynamics differently (Okunlola and Oyeyemi 2019).

The study is limited by potential issues with data quality 
and gaps, particularly regarding the accuracy and accessibility 
of malaria cases and environmental data. While the temporal 
analysis might overlook short-term fluctuations in malaria 
rates, the regional spatial analysis could mask localized 
transmission patterns. Additionally, although the study iden-
tifies associations between environmental factors and malaria 
prevalence, it does not establish causation, thus limiting the 
generalizability of its findings to other locations or nations.

Conclusion

This study utilized GIS to analyze malaria spatial patterns 
and environmental indicators across six regions in Nigeria. 
Malaria cases were concentrated in the western, northwest, 
and eastern areas, correlating positively with aridity, EVI, 
and precipitation. Despite an overall decline in malaria cases 
over time, particularly in the northwest region, there are still 
challenges in meeting the Sustainable Development Goal 
(SDG) target in the short term. Recommendations include 
focusing on rural areas with low socio-economic status 
and high malaria incidence, as well as scaling up interven-
tions in areas with concentrated malaria prevalence. The 
study’s model equation, incorporating factors like EVI, 
ITNC, LST, mean temperature, and precipitation, provides 
evidence-based guidance for public health professionals and 
policymakers. Ultimately, the findings offer valuable statisti-
cal insights and inform policymaking decisions to address 
malaria and improve public health outcomes in Nigeria.
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