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Abstract
Mosquitoes are important vectors of several arthropod-borne diseases, which remain a priority for epidemiological research. 
Mosquito vector control strategies have traditionally relied on chemical insecticides such as synthetic pyrethroids. However, 
the indiscriminate use of pesticides has resulted in the development of resistance in many mosquito species. In insects, resist-
ance evolves primarily through the overexpression of one or more gene products from the cytochrome P450, carboxylester-
ase, and glutathione superfamilies. The current study examined the expression of cytochrome P450 CYP6M2, CYP6AA7, 
CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes in larvae and adults of a permethrin-resistant (PerRes) 
and susceptible (Sus) Culex quinquefasciatus strains. The results showed that the CYP6AA7 gene was overexpressed (10-
fold) in larvae and adults with PerRes (p < 0.01) followed by CYPJ34 (9.0-fold) and CYP6Z2 (5.0-fold) compared to the 
Sus, whereas fewer changes in CYP6M gene expression were observed in PerRes adults (p < 0.05), and no expression was 
found in larvae. The esterase gene was overexpressed in PerRes larvae (9.0-fold) followed by adults (2.5-fold) compared 
to the susceptible strain. Based on data, the present study suggests that cytochrome P450, CYP6AA7, CYP6Z2, CYP9J34, 
α-Esterase, Esterase B1, and neuroactin genes were involved in permethrin resistance in larval and adult Cx. quinquefasciatus.
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Introduction

Vector-borne diseases are among the leading causes of death 
in humans worldwide. Hence, global vector control is a top 
priority in reducing disease transmission pressure (Chareon-
viriyaphap et al. 2013; Sowndarya et al. 2017). Insecticides 
such as pyrethroids are the primary means of controlling 
mosquito vectors and related diseases (Yang et al. 2021). 

The continuous use of synthetic insecticides has acceler-
ated the development of resistance to various categories of 
insecticide used to control mosquito species (Muthusamy 
and Shivakumar 2015a; Martins et al. 2019). Insecticide 
resistance in mosquitoes can manifest itself in four (4) 
ways: reduction in target site sensitivity (i.e., kdr mutations 
in a specific gene), reduced penetration (modification in the 
insect cuticle), behavioral resistance, and metabolic resist-
ance through overproduction and expression of one or more 
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enzymes, which are involved in the detoxification of insec-
ticides (esterases, glutathione S-transferase, and cytochrome 
P450). Among the resistance mechanisms in mosquitoes and 
other insect species, metabolic resistance through enhanced 
detoxification is predominant (Hemingway and Ranson 
2000; Feyereisen 2006; Zhu et al. 2010; Muthusamy and 
Shivakumar 2015a). Cytochrome P450s are a large super-
family in the P450 group, and the CYP6 and CYP9 families 
have been associated with pesticide resistance. In particular, 
the CYP6 gene family, which includes CYP6M2, CYP6Z2, 
and CYP6P3, plays an important role in insecticide resist-
ance in Anopheles gambiae (David et al. 2005; Weedall et al. 
2019). Aside from insecticide resistance, P450s could be 
involved in the catabolism and biosynthesis of juvenile hor-
mone (JH) as well as the degradation of harmful xenobiotics 
(Zhu et al. 2013).

Esterase is another common enzyme found in most living 
organisms that enhances metabolic reactions and develop-
mental regulations through the phase 1 detoxification reac-
tion. Based on the metabolic and physiological functions, 
esterases are subdivided into 11 clades (Claudianos et al. 
2006). Esterase enzymes in insects play an important role in 
the detoxification of various chemical groups such as organ-
ophosphates, carbamates, and pyrethroids through direct 
metabolism or sequestration (Wei et al. 2020). Increased 
esterase activities have been associated with enhanced 
detoxification in malaria vectors and other insects (Zhu et al. 
2008a, b; Zhang et al. 2011; Mamatha et al. 2020). Apart 
from increased esterase activity, overexpression of detoxi-
fication genes can be triggered by duplication of esterase 
genes, cis-regulatory elements, and trans-regulatory ele-
ments in organophosphate resistance of Cx. quinquefasciatus 
(Wilding et al. 2012; Weetman et al. 2018; Wilding 2018). 
Due to the large number of gene families involved in meta-
bolic resistance, identification of candidate genes requires 
examination of gene expression patterns associated with the 
resistance phenotype. Despite the role of Culex in the trans-
mission of several pathogens and inducing filarial worms 
and West Nile virus (WNV), as well as reports of high levels 
of insecticide resistance, few studies have examined the rela-
tive impact of metabolic resistance in Cx. quinquefasciatus 
(Djouaka et al. 2008; Narayanan et al. 2020).

Previous research found that laboratory selection of per-
methrin resistance (PerRes) in Cx. quinquefasciatus was 
associated with increased cytochrome P450 and esterase 
enzyme activity (Ramkumar and Shivakumar 2015). How-
ever, there is no information on the expression profiles of 
P450 and esterase genes involved in permethrin resistance 
in the PerRes strain. Hence, the current study investigated 
the expression profiles of selected candidate genes P450 
and esterase, which are involved in metabolic resistance 
mechanisms. For this study, the gene-specific primers of 
six cytochrome P450 (CYP6M2, CYP6AA7, CYP6Z2, 

CYP9J34, CYP6BTQ6B7, and CYP6AE14) and five ester-
ase genes (α-esterase, esterase B1, neuroactin, KM234968, 
and KM234962) were selected based on the Cx. quinque-
fasciatus genome platform and previously reported perme-
thrin resistance studies (Arensburger et al. 2010; Yang et al. 
2021).

Materials and methods

Mosquito strains and rearing

Two Cx. quinquefasciatus mosquito strains were studied: a 
laboratory susceptible strain (Sus) originally obtained from 
the National Centre for Disease Control (NCDC), Mettupa-
layam, Tamil Nadu, India, and not exposed to any insecticide 
and a permethrin-resistant (PerRes) field strain collected 
from Salem District in Tamil Nadu, India, and subjected 
to permethrin selection for 10 consecutive generations with 
LC50 value previously determined (Ramkumar and Shiva-
kumar 2015). All the samples were maintained at 27 ± 2 °C 
under a photoperiod of 14: 10 h (L:D) and fed blood samples 
on a strained chick in the hatchery cages (60 × 60 cm).

Larval and adult bioassays

Bioassays and P450 gene induction assays were performed 
on both Sus and PerRes larval and adult Cx. quinquefascia-
tus. The larval bioassay was performed based on the WHO 
standard protocol for susceptibility or resistance testing 
(WHO 1981). Twenty-five (25) early fourth (4th) instar lar-
vae were introduced in a 250 ml test solution of permethrin 
and an ethanol mixture in a 300-ml paper cup for 24 h. Con-
centrations were obtained by diluting commercial perme-
thrin stock solution (25% a.i. w/v) with absolute ethanol. For 
the control, 1 ml of absolute ethanol was added to 249 ml of 
distilled water. Different concentrations of permethrin were 
used in this bioassay based on mortality caused by them 
ranging from 10–90%. The tests were replicated three times 
per concentration. Larval mortality was observed after 24 h.

CDC bottle bioassays were performed on adult mosqui-
toes (Brogdon and Chan 2010; Brogdon and McAllister 
1998). A previously diagnosed dose of permethrin insec-
ticide 20 μg/bottle (data not shown) was diluted in ace-
tone and used to coat the inside of 250-ml glass bottles, 
and a control bottle was coated with acetone alone. The 
acetone was allowed to evaporate over the course of sev-
eral hours. After the acetone had completely evaporated, 
20–25 mosquitoes were introduced into each bottle by 
aspiration. The number of live and dead mosquitoes was 
counted every 15 min for 3 h. After 3 h, the mosquitoes 
were kept in separate paper cups with 10% sucrose solu-
tion under laboratory conditions. At least three replicates 
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were performed for 20 µg of insecticide. After 24 h, mor-
tality was assessed, and mortality in the control greater 
than 5% but lower than 20% was corrected using Abbott’s 
formula (Abbotts 1925).

RNA preparation and cDNA synthesis

Total RNA was extracted from live pooled samples of 
fifteen early 4th instar larvae and 3–5-day-old adults 
(without blood feeding) PerRes and Sus strains using the 
RNeasy Miniprep kit from QIAGEN. One microgram of 
RNA from both resistant and susceptible samples was 
reverse transcribed into 20µl of the ABI reverse tran-
scriptase kit. Quantitative analysis of the cDNA sample 
was performed using a UV-Vis double-beam spectropho-
tometer (Systronics, India). After quantification, reverse 
transcriptase polymerase chain reaction was performed in 
a Pepseq thermocycler at 94 °C for 5 min, followed by 35 
cycles at 94 °C denaturation for 30 s, annealing at 60 °C 
for 30 s, extension at 72 °C for 15 s, and a final extension 
at 72 °C for 10 min. After amplification, the PCR ampli-
cons were confirmed by 1.5% agarose gel electrophoresis. 
Each experiment was repeated 3 times with independent 
RNA preparation (Liu et al. 2004).

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR) analysis

The total RNA sample (0.5 µg/sample) from larval and adult 
mosquitoes (PerRes and Sus) was reverse transcribed using 
the ABI 7500 Real-Time PCR system (Applied Biosystems) 
supplied with the SYBR Green Master Mix Kit in a total 
volume of 25 µl. Each qRT-PCR reaction contains SYBR 
Green Master Mix (1x), 4 µl of cDNA from each amplicon, 
and a P450 and esterase gene-specific forward and reverse 
primer designed according to each of the P450 and esterase 
gene sequences (http: //quinquefasciatus. vector base. org/) 
at a final concentration of 3–5 µM. The primer pairs are 
listed in Table 1. All samples, including the negative control 
gene (non-template control), were performed in triplicates. 
The reaction was carried out for 40 cycles with initial melt-
ing at 50 °C for 2 min followed by 95 °C for 10 min, 95 °C 
for 15 s, and 60 °C for 60 s in a Light Cycler 480 II (Roche 
Applied Science, Switzerland). The relative expression lev-
els for P450 and esterase genes were calculated using the 
2−∆∆CT method of MIQE (minimum information necessary 
for evaluating qPCR experiment) guidelines. This method 
used in this study was due to the non-paring and differ-
ent amplification efficiency of some of the selected gene 
primers (amplification efficiency for each gene was given 

Table 1   Primers used for qRT-
PCR reaction

P450 and esterase gene-specific primer pair synthesized according to OligoPerfectTM designer from Invit-
rogen (http://c.​quinq​uefas​ciatus.​vecto​rbase.​org)

Genes Sequence (from 5′ to 3′) Amplification 
efficiency (%)

CYP6AA7 5′ ATG​ACG​CTG​ATT​CCC​GAG​ACT​GTT​ 3′
5′ TTC​ATG​GTC​AAG​GTC​TCA​CCC​GAA​ 3′

93.0 ± 1.8

CYP6M2 5′ CAT​GAC​ACA​AAC​CGA​CAA​GG3′
5′ GGT​GAG​GAG​GTC​GAC​GAA​G 3′

91.6 ± 2.0

CYP6Z2 5′TAA​CAT​GCT​CCC​CAC​TCT​CC 3′
5′GGG​ATC​TTC​CGA​GTT​GTG​AA3′

89.6 ± 2.1

CYP9J34 5′ ATC​CGA​TGT​CGG​TAA​AGT​GCA​GGT​ 3′
5′ TGT​ACC​TCT​GGG​TTG​ATG​GCA​AGT​ 3′

93.5 ± 1.1

CYP6B7 5′ TGG​ACC​GAA​AGG​AGG​AAT​AC 3′
5′ TTA​ACA​AGA​GGG​ATC​TCC​ATAAG 3′

83.7 ± 2.2

CYP6AE14 5′ TGT​GCA​TTT​GGC​GTT​GAA​ 3′
5′ TCC​GAG​ATG​TGG​GCG​TAT​ 3′

91.0 ± 1.3

Esterase B1 5′ GGT​TTA​AGG​CAC​CAG​TTC​CA 3′
5′ TGA​TCT​CTT​TCG​CAA​ACA​CG 3′

88.2 ± 1.2

α esterase 5′ CAT​CAT​ACC​GTC​GTT​TGT​CG 3′
5′ GCT​TGA​GGG​TTT​GCT​TTC​AG 3′

90.5 ± 2.2

Neuroactin 5′ GCT​GAA​TGT​CTG​CGT​GAA​AA 3′
5′ CCA​TTC​GGT​ATG​CTT​GAG​GT 3′

80.7 ± 3.0

KM234962 5′ TCC​TGA​CCC​TGG​AAG​ATA​CC 3′
5′ ATT​TGA​GTG​CCA​ACA​CCT​GA 3′

90.5 ± 1.5

KM234968 5′ CAA​GAA​CGC​TTC​CAG​ATG​AA 3′
5′ CTT​GAA​CCC​GAA​GTA​AAG​CC 3′

92.7 ± 1.7

EF-1α 5′GAC​AAA​CGT​ACC​ATC​GAG​AAG3′
5′GAT​ACC​AGC​CTC​GAA​CTC​AC3′

97.8 ± 2.1

http://c.quinquefasciatus.vectorbase.org
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in Table 1). The elongation factor 1 (EF-1α) gene was used 
as an endogenous control to normalize the target gene mani-
festation level.

Statistical analysis

Mortality in larva and adult PerRes and Sus Cx. quinquefas-
ciatus mosquitos and their relative gene expressions were 
presented as standard error of the mean replicates (n = 3). 
The significances in the bioassay and P450 and esterase gene 
expression levels were subjected to parametric population 
analysis at *p < 0.05 and **p < 0.01 (Student’s t-test column 
statistics) using GraphPad PRISM software (version 9.0).

Results

Bioassay

The percentage mortality in the permethrin-resistant 
(PerRes) and susceptible (Sus) Culex quinquefasciatus lar-
vae and adults is represented in Fig. 1. After exposure to dif-
ferent concentrations of permethrin, the permethrin-resistant 
Cx. quinquefasciatus larvae and adults showed lower mortal-
ity (10–15%) than the Sus strain (92–83%) p < 0.05.

0 20 40 60 80 100

Adult

Larvae

PerRes

Sus

Mortality (%)

*

*

Fig. 1   Percentage mortality of resistant (PerRes) and susceptible 
(Sus) Cx. quinquefasciatus larvae and adults after 24 h permethrin 
treatment. The results are given as a mean ± S.E of three replicates, 
and the asterisks indicate significant mortality at P < 0.05 (Student’s 
t-test)
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Fig. 2   a–d Relative expression of cytochrome P450 genes from lar-
vae and adults of permethrin-resistant (PerRes) and susceptible (Sus) 
strains of Cx. quinquefasciatus. The results are shown as the mean 

± S.E. Asterisks indicate significant difference in cytochrome P450 
genes expression level in resistant strain compared with susceptible 
strain (Student’s t-test **p < 0.01)
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P450 and esterase gene expression

The current work investigated the expression of six P450 and 
five esterase genes. Out of these genes, four P450 and three 
esterase genes were amplified in both permethrin-resistant 
and susceptible strains along with the internal reference gene 
(EF-1α). Followed by amplification, CYP6AA7, CYP9J34, 
and CYP6Z2 genes were overexpressed in PerRes larvae 
(10, 9.0, and 5.0-fold) and adults (4.5 to 4.0-fold) compared 
to the Sus strain (p < 0.01) with a standard error value of 
0.1–0.2 (Fig. 2a–c), whereas the CYP6M2 gene (Fig. 2d) 
was not differentially expressed in larval and adult strains 
(S.E. ± 0.4). Next, the esterase B1 and α-esterase genes were 
9.0-fold expressed in the larval stage and 2.5-fold in the 
adult stage Fig. 3a, b, p < 0.01, whereas 4.0-fold expression 
was increased in the neuroactin gene in the PerRes larval 
stage p < 0.01 and 1.2-fold in adult (S.E. ± 0.2) p < 0.05, 
Fig. 4.

Discussion

Insecticide resistance is common in many mosquito vec-
tors and has been linked to both target site and detoxifica-
tion mechanisms (Muthusamy et al. 2014; Muthusamy and 
Shivakumar 2015b; Ramkumar et al. 2022). In our previ-
ous study, Cx. quinquefasciatus showed metabolic resist-
ance (P450 and esterase enzyme) to permethrin selection 
under laboratory conditions (Ramkumar and Shivakumar 
2015). Therefore, the present study further investigated the 
susceptibility and expression pattern of cytochrome P450 
and esterase genes involved in permethrin resistance in Cx. 
quinquefasciatus larvae and adults. As a result of bioassay, 
the PerRes Culex strain showed high permethrin resistance 
compared to the Sus strain through reduced mortality and 
overexpression of one or more P450 and esterase genes in 
both larvae and adults. In a similar study with significant 
overexpression of P450 genes CYP6AA7 and CYP6Z10 and 
esterase A and esterase B genes, they were reported to be 
involved in insecticide resistance in Cx. quinquefasciatus 
compared to the S-lab strain (Talipouo et al. 2021). Guntay 
et al. (2018) investigated the susceptibility status of Culex 
pipiens in the northern Izmir Province of Turkey and found 
that the species had high resistance to all tested pyrethroids 
compared to the susceptible population. Cytochrome P450 
belongs to a superfamily of metabolic enzymes found in all 
living organisms (Liu 2015). Overexpression of P450 genes 
as a result of increased P450 protein levels has been linked to 
resistance to mosquito insecticide resistances (Hemingway 
and Ranson 2000; Donnelly et al. 2009; Muthusamy and Shi-
vakumar 2015b). The present study showed overexpression 
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Fig. 3   a, b Relative expression of esterase B1 and α-esterase genes 
from larvae and adults of permethrin-resistant (PerRes) and suscepti-
ble (Sus) Cx. quinquefasciatus. The results are shown as the mean ± 
S.E. Asterisks indicate significant difference in gene expression level 
in resistant strain compared with susceptible strain *p < 0.05 and **p 
< 0.01 (Student’s t-test)
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Fig. 4   Relative expression of neuroactin from larvae and adults of 
permethrin-resistant (PerRes) and susceptible (Sus) strains of Cx. 
quinquefasciatus. The results are shown as the mean ± S.E. Asterisks 
indicate significant difference in neuroactin expression level in resist-
ant strain compared with susceptible strain *p < 0.05 and **p < 0.01 
(Student’s t-test)
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of CYP6AA7, CYP9J34, and CYP6Z2 in both larva and 
adult permethrin-resistant strains, whereas no significant dif-
ference was found in the expression of CYP6M2 at the adult 
and larval stage among susceptible and PerRes strain. These 
results suggest that CYP6M2 plays no role in the develop-
ment of resistance in the PerRes strain. These results further 
suggest that different mechanisms and/or P450 genes may 
be involved in the response to insecticide pressure for dif-
ferent developmental stages of mosquitoes (Liu et al. 2011). 
Several P450 genes from the CYP6, CYP4, and CYP9 gene 
families were found to be up-regulated and constitutively 
overexpressed in the permethrin-resistant Musca domes-
tica ALHF strain (Zhu et al. 2008a, b). Similar studies on 
overexpression of CYP6Z1, CYP6P3, CYP9J32, CYP4H34, 
CYP6F1, CYP9M10, and CYP6AA7 were reported in An. 
gambiae, Ae. aegypti, and Cx. quinquefasciatus in differ-
ent parts of the world (Mueller et al. 2008; Komagata et al. 
2010; Gong et al. 2017; Omotayo et al. 2022).

Esterase is another important metabolic resistance gene 
from the carboxylesterase family because it can hydrolyze 
the ester bonds in the chemical structure of most organo-
phosphate and pyrethroid insecticides (Wei et al. 2020; Ram-
kumar et al. 2021; Shyam-Sundar et al. 2022). Resistance 
to synthetic pyrethroids and carbamates, associated with 
esterase hydrolysis and carboxylesterase overexpression, 
has been shown to be involved in metabolic resistance in 
insects (Wheelock et al. 2005; Prasannakumar et al. 2023). 
The expression of esterase B1, α-esterase, and neuroac-
tin genes was found to be higher in larval and adult Cx. 
quinquefasciatus PerRes strains. These results suggest the 
possibility of esterase metabolism resistance in the PerRes 
strain. Similar studies on esterase overexpression caused 
by organophosphate resistance in An. stephensi larvae have 
been published (Vivekanandhan et al. 2021; Prasannakumar 
et al. 2021). Wang et al. (2018) reported that overexpression 
of the carboxyl esterase gene (RpCarE) was associated with 
isoprocarb and cyhalothrin resistance in R. padi. Studies by 
Marcombe et al. (2019) showed that overexpression of the 
CCEAe3a gene was reported to be involved in permethrin 
resistance in Ae. aegypti mosquito. Based on the results of 
this present study, we conclude that the selection of per-
methrin resistance in Cx. quinquefasciatus mosquitoes can 
develop metabolic resistance through overexpression of one 
or more cytochrome P450 and esterase genes (CYP6AA7, 
CYP9J34, CYP6Z2, and esterase B1, α-esterase, and neu-
roactin) in larvae and adults. Therefore, careful application 
of recommended pesticide is essential to reduce the develop-
ment of resistance in Culex mosquito.
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