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Abstract
Acanthamoeba are free-living protozoa present ubiquitously in numerous environmental reservoirs that exist as an actively 
feeding trophozoite or a dormant cyst stage. The pathogenic Acanthamoeba are known to cause Acanthamoeba keratitis 
(AK) and granulomatous amoebic encephalitis (GAE). Despite their omnipresence, the number of infections is quite low. 
The reason behind this low frequency of Acanthamoeba infections could be the existence of many non-pathogenic strains 
or a successful host immune response to these infections. Studies in the past have proposed a few physiological parameters 
for the differentiation of pathogenic and non-pathogenic strains. Additionally, in vivo experiments are known to play an 
essential role in understanding the virulence of parasites, immunological aspects, and disease pathogenesis. The thermotol-
erance (30 °C, 37 °C, and 40 °C) and osmotolerance (0.5 M, 1 M, and 1.5 M) tests were performed on 43 Acanthamoeba 
isolates from patients with keratitis (n = 22), encephalitis (n = 5), and water samples (n = 16). In addition, the genotype of 
10 Acanthamoeba isolates (keratitis (n = 2), encephalitis (n = 2), water (n = 6)) was determined and were then evaluated for 
pathogenicity on mouse model by inducing Acanthamoeba keratitis and amoebic encephalitis. The results of the thermo-
tolerance and osmotolerance assays categorized 29/43 (67.4%) isolates as pathogenic, 8 as low pathogenic (18.6%), and the 
remaining 6 (13.9%) as non-pathogenic. The 10 Acanthamoeba isolates were categorized as T11 (5 isolates), T5 (2 isolates), 
T4 (2 isolates), and T10 (1 isolate) genotypes. Out of 10 Acanthamoeba isolates, 9 were successful in establishing AK, 
amoebic encephalitis, or both in the mice model, and a single isolate was found non-pathogenic. Two isolates from water 
samples were non-pathogenic in the physiological tests but successfully established Acanthamoeba infection in the mice 
model. The results of the physiological assays and in vivo experiments were analogous for 7 isolates while 1 isolate from the 
water was low pathogenic in the physiological assays but failed to produce pathogenicity during in vivo experiments. The 
physiological parameters are not very dependable to test the pathogenic potential of Acanthamoeba isolates, and thus results 
must always be validated by in vivo experiments. There is no infallible approach for determining the potential pathogenicity 
of environmental isolates of Acanthamoeba because several parameters regulate the pathogenic potential.
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Introduction

Acanthamoeba, a genus of single-celled protozoa, encom-
passes a diverse group of microorganisms that thrive in 
various aquatic and terrestrial environments. These organ-
isms exhibit intricate biological characteristics and play 
significant roles in ecosystems yet they also pose a poten-
tial threat to human health (Garcia et al. 2013; Ong et al. 
2017). Upon successful invasion of the human host, the 
pathogenic isolates are responsible for causing serious ill-
ness of the central nervous system (granulomatous amoe-
bic encephalitis-GAE), eye (Acanthamoeba keratitis-AK), 
and rarely cutaneous or disseminated disease (Siddiqui and 
Khan 2012; Khurana and Sharma 2020; Lorenzo-Morales 
et al. 2015). GAE is mainly documented in immunocom-
promised patients and is associated with high mortality 
(da Rocha-Azevedo et al. 2009). AK is mainly reported 
among individuals wearing contact lenses, or those sus-
taining injuries to the eyes, and loss of vision is a common 
outcome (Dodangeh et al. 2018; Khan 2009; Megha et al. 
2021). Also, various serological surveys have indicated 
the presence of Acanthamoeba-specific serum antibodies 
in about 90% of the healthy adult population but infec-
tions are relatively rare which may be attributed to an 
effective host response or the presence of non-pathogenic 
strains (Alizadeh et al. 2001; Niederkorn 2021). Hence it 
is crucial to study the factors and triggers related to patho-
genicity and thus it is essential to differentiate reliably 
between pathogenic and non-pathogenic isolates. Many 
studies have suggested physiological parameters for deter-
mining pathogenicity, but they are not very precise and 
reliable (Dodangeh et al. 2018; Khan and Tareen 2003). 
With this background, we have attempted to check the 
reliability of thermo-tolerance, osmotolerance assays, and 
in vivo studies for determining the pathogenic potential of 
Acanthamoeba isolates.

Materials & Methods

Sampling, and confirmation of Acanthamoeba, 
and maintenance of Acanthamoeba

The study included 43 isolates obtained from patients 
with keratitis (n = 22), encephalitis (n = 5), and water 
samples (n = 16). The isolates CHA1 to CHA27, CHA29, 
and CHA30 have been published previously (Khurana et 
al. 2015; Megha et al. 2018, Megha et al. 2021; Megha 
et al. 2023). The isolates CHA32-CHA46 were recorded 
for the first time in the present study, however, genotyping 
was not performed for all the isolates. The keratitis and 

encephalitis isolates were obtained from clinical speci-
mens (corneal scraping, cerebrospinal fluid, brain biopsy) 
and inanimate samples (contact lens and lens solution) of 
patients who had presented to the Postgraduate Institute of 
Medical Education and Research, Chandigarh, India. The 
water samples were obtained from different locations in 
Chandigarh, India, and are being maintained in the Depart-
ment of Medical Parasitology, Postgraduate Institute of 
Medical Education and Research, Chandigarh, India. The 
water sample was centrifuged, and the pellet was inocu-
lated onto the non-nutrient agar (NNA) plate having a lawn 
of Escherichia coli, and the growth of Acanthamoeba was 
monitored until seven days.

Physiological parameters for discriminating 
pathogenic and non‑pathogenic Acanthamoeba

The temperature and osmolarity tolerance assays were 
performed on 43 isolates. For the thermo-tolerance assay, 
an agar block containing Acanthamoeba cysts was sliced, 
kept on the surface of a freshly prepared 1.5% non-nutrient 
agar (NNA) agar plate having a lawn of Escherichia coli, 
and incubated in triplicates at three different temperatures; 
30 °C, 37 °C, and 40 °C. For the osmolarity tolerance assay, 
an agar block containing Acanthamoeba cysts was sliced 
and kept on the surface of freshly prepared 1.5% NNA agar 
plates having different mannitol (D-Mannitol, HiMedia Pvt. 
Ltd., New Delhi, India) concentrations (0.5 M, 1 M, and 
1.5 M) and having a lawn of E. coli that were incubated at 
30 °C. The growth in the plates was monitored at 24, 48, 
and 72 h for their ability to grow. The limit of expansion was 
scored based on the distance reached by the trophozoites and 
cysts from the center of the plate as described previously 
(Khan et al. 2001; Mohd Hussain et al. 2022a; Possamai 
et al. 2018). The strains showing maximum growth (+ + +) 
at the high temperature (40 °C) and mannitol concentration 
(1.5 M) were designated pathogenic whereas the non-patho-
genic strains were the ones incapable of proliferating at high 
temperature (40 °C) and mannitol concentration (1.5 M). 
The strains exhibiting scanty growth (+) at high temperature 
(40 °C) and mannitol concentration (1.5 M) were designated 
low-pathogenic (Possamai et al. 2018).

Animal model for the differentiation of pathogenic 
and non‑pathogenic Acanthamoeba

We evaluated 10 Acanthamoeba isolates (2 isolates each 
of keratitis, encephalitis, and 6 isolates from water) in the 
mouse model for the establishment of keratitis and encepha-
litis. A total of 120 male Balb/c mice were used in the study 
as detailed below. All the animal experimentation was done 
according to the guidelines of the Committee for Control and 
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Supervision of Experiments on Animals and recommenda-
tions of the Institutional Scientific Advisory Committee. All 
the necessary approvals were taken from the Institutional 
Ethics Committee (Ref. No. 95/93/IAEC/658).

Maintenance of Acanthamoeba isolates

All the Acanthamoeba isolates were inoculated on non-
nutrient agar (NNA) having a lawn of inactivated E. coli 
and incubated at 37 °C for 72 h. The trophozoites were 
scraped, and suspended in sterile phosphate-buffered saline 
(PBS); centrifuged at a low speed and the pellet was washed 
with 0.9% isotonic NaCl, then the pellet was resuspended in 
PBS and the cell count was adjusted to103 trophozoites/ml 
(Sharma et al. 2021).

Acanthamoeba keratitis

The pathogenic potential of ten Acanthamoeba isolates was 
evaluated using a keratitis model on 40 mice (4 mice per 
isolate). The right eyes of all the mice were used for infec-
tion, and the left eyes were used as control. The mice were 
given 0.1 ml of an anaesthetic cocktail per 20 g of body 
weight (ketamine 60 mg/kg + xylazine 5 mg/kg), and 0.5% 
proparacaine ophthalmic solution was also used to achieve 
corneal anaesthesia. The eyes were traumatized using a sur-
gical blade no. 15 three times vertically and horizontally 
under a dissection microscope. Small lenses made of Para-
film that had been preincubated with Acanthamoeba were 
then applied to the abraded corneal surface. The eyelids were 
sewn by performing tarsorrhaphy using 6–0 (0.7 metric) vic-
ryl sutures as described previously (Sharma et al. 2021). 
The mice were graded on the fifth-day post-infection based 
on the clinical features of mild to severe corneal cloudiness 
& presence of corneal infiltrate. The mice presenting with 
clinical features were euthanized on day seven, and the eyes 
were removed for culture, stored in PBS for Acanthamoeba-
specific PCR (Schroeder et al. 2001), and stored in formalin 
for histopathological examination.

Amoebic encephalitis

The amoebic encephalitis mouse model was performed on 80 
Balb/c mice (8 mice per isolate including 5 mice for infection 
and 3 as controls) with 10 Acanthamoeba isolates. Amoe-
bic encephalitis was established with slight modifications 
in the protocol previously described (Mirjalali et al. 2013; 
Omaña-Molina et al. 2017). Briefly, the mice were immune-
suppressed with 2 doses of cyclophosphamide (EndoxanTM-
N, Cadila Healthcare (Zydus), Ahmedabad, India) injected 
intra-peritoneally at a dosage of 100 mg/kg on alternate days. 
The immune-suppressed mice were anesthetized with 0.1 ml 
of anesthetic cocktail (ketamine 60 mg/kg + xylazine 5 mg/

kg) for an easy intranasal instillation of 103 Acanthamoeba 
trophozoites. The mice were monitored daily for signs of 
encephalitis like in-coordination, ruffled hair, and lethargy 
for 21 days. The mice presenting with severe clinical features 
were sacrificed earlier and those healthy were sacrificed at 
the end of the time-point (21 days). The brain, lung, liver, and 
spleen were removed from euthanized mice and used for cul-
ture, kept in PBS for PCR (Schroeder et al. 2001), and stored 
in formalin for histopathologic examination.

Sequencing for genotype determination

The genotyping for isolates CHA5, CHA20, CHA24, 
and CHA 27 had been performed previously and the 
accession numbers are provided in Table 2. The puri-
fied amplified products of the remaining six isolates were 
sequenced using the Big-Dye 3.1 Terminator sequencing 
kit (Applied Biosystems, Foster City, CA, USA) on an 
ABI 3130 Genetic Analyzer automated sequencer follow-
ing the manufacturer's instructions (Applied Biosystems, 
Foster City, CA, USA). The obtained raw sequences were 
compared with GenBank by using Blast (http://​blast.​ncbi.​
nlm.​nih.​gov/​Blast.​cgi) for determining the genotype and 
the sequence similarity.

Results

The thermo-tolerance and osmo-tolerance assays were per-
formed on 43 Acanthamoeba isolates including 22 isolates 
from AK, 5 from GAE patients, and 16 from water sam-
ples. All the isolates were previously inoculated on an NNA 
medium and confirmed by PCR assay for their confirmation 
as Acanthamoeba species. Twenty-nine out of 43 isolates 
(67.4%) showed pathogenic potential based on thermo-tol-
erance and osmo-tolerance assays, 8 were low pathogenic 
(18.6%), and the remaining 6 (13.9%) isolates were not able 
to tolerate high temperature and osmolarity conditions and 
thus were designated non-pathogenic (Table 1). In addition 
to the physiological assays, 10 isolates were sequenced for 
determining the specific genotype and were subsequently 
employed in AK and amoebic encephalitis animal models 
each to assess the pathogenic potential of the Acanthamoeba 
isolates. In the present study, ten Acanthamoeba sequences 
that belonged to T4, T5, T10, and T11 genotypes were 
detected upon comparing the raw data to the NCBI database. 
The genotype T10 was detected in one clinical isolate and 
T5 was found in two isolates from water. Furthermore, five 
isolates were similar to the T11 genotype and one isolate 
each from a keratitis patient and water was detected as the 
T4 genotype (Table 2). The “Identity to reference acces-
sion number” in Table 2 represents the accession number to 
which our isolate showed the highest similarity.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 1   Results of the 
thermotolerance and 
osmotolerance assay for the 
Acanthamoeba isolates at 72 h 
incubation

No growth (-), Growth until 1 cm from the central area ( +), Growth from 1 to 2 cm from the central area 
(+ +), and Growth above 2 cm from the central area (+ + +); GAE-Granulomatous amoebic encephalitis
Pathogenic: Maximum growth (+ + +) at the high temperature (40 °C) and mannitol concentration (1.5 M)
Non-pathogenic strains: No proliferation at high temperature (40 °C) and mannitol concentration (1.5 M)
Low-pathogenic: Scanty or retarded proliferation (+) at high temperature (40 °C) and mannitol concentra-
tion (1.5 M)

Isolate No Source 30 °C 37 °C 40 °C 0.5 M 1 M 1.5 M Predicted Pathogenicity

CHA1 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA2 GAE  +  +  +   +  +   +   +  +  +   +  +  +   +  Low pathogenic
CHA3 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA4 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA5 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA6 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA7 Water  +  +  +   +  +   +  +   +  +  +   +  +   +  Low pathogenic
CHA8 GAE  +  +  +   +  +   +  +   +  +  +   +  +   +  +  Pathogenic
CHA9 Water  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA10 Water  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA11 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA12 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA13 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +   +  +  Pathogenic
CHA14 GAE  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA15 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA16 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA17 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA18 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA19 Keratitis  +  +  +   +  +  +   +   +  +  +   +  +  +   +  Low pathogenic
CHA20 Keratitis  +  +  +   +  +  +   +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA21 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA22 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA23 Keratitis  +  +  +   +  +  +   +   +  +  +   +  +  +   +  Low pathogenic
CHA24 GAE  +  +  +   +  +  +   +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA25 Keratitis  +  +  +   +  +  +   +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA27 Brain abscess  +  +  +   +  +  +   +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA29 Water  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA30 Water  +  +  +   +  +  +   +  +   +  +  +   +  +  +   +  +  Pathogenic
CHA32 Keratitis  +  +  +   +  +  +   +   +  +  +   +  +  +   +  Pathogenic
CHA33 Keratitis  +  +  +   +  +  -  +  +  +   +  +  - Non pathogenic
CHA34 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA35 Keratitis  +  +  +   +  +  +   +  +  +   +  +  +   +  +  +   +  +  +  Pathogenic
CHA36 Water  +  +  +   +  +   +   +  +  +   +  +   +  Low pathogenic
CHA37 Water  +  +  +   +  -  +  +  +   +  - Non-pathogenic
CHA38 Water  +  +   +  +   +   +  +   +  +   +  Low pathogenic
CHA39 Water  +  +  +   +  +   +   +  +   +  +   +  Low pathogenic
CHA40 Water  +  +  +   +  +   +  +   +  +  +   +  +   +  +  Pathogenic
CHA41 Water  +  +   +  - - - - Non-pathogenic
CHA42 Water  +   +  +   +  +   +   +  +   +  +  Pathogenic
CHA43 Water  +  +  +   +  +  +  -  +   +  - Non-pathogenic
CHA44 Water  +  +  +   +  +  +  -  +  - - Non-pathogenic
CHA45 Water  +  +  +   +  +  +   +   +  +   +  +   +  Low pathogenic
CHA46 Water  +  +  +   +  +  +  -  +  +  +  - - Non-pathogenic



2113Parasitology Research (2023) 122:2109–2118	

1 3

Forty mice were used to investigate the pathogenic 
potential of 10 isolates to cause keratitis, and the clini-
cal assessment was carried out 5 days after infection. 
The 2 AK isolates, 2 encephalitis, and 5 environmental 
isolates successfully established AK in the mice model 
(Table 3). The successful establishment of AK in the 
mice eye was confirmed clinically by the presence of 
characteristic corneal infiltrate and corneal cloudiness. 
In addition, the inoculation of corneal scraping demon-
strated Acanthamoeba trophozoites and cysts on culture 
(Fig. 1) and was used for the successful amplification 
of the Acanthamoeba by PCR (Fig. 2). The clinical and 
histopathological examination of the mouse cornea 
further validated AK in the mouse model (Fig. 3). The 
three confirmatory tests corroborated with the clini-
cal evaluation of the mouse eye. In addition to the AK 

model, we have assessed the pathogenic potential of 
10 Acanthamoeba isolates in an amoebic encephalitis 
mice model. Out of 10 isolates, the 2 GAE, and 1 envi-
ronmental isolate successfully established an amoebic 
encephalitis model that was confirmed using culture 
(Fig. 1), PCR (Fig. 2), and histopathology of the brain, 
lung, liver, and spleen (Fig. 4) from the infected mice. 
Based on the results of physiological parameters and 
in vivo experiments, the 4 clinical isolates were desig-
nated pathogenic. In addition, 4 isolates from the water 
had the potential of inducing keratitis alone, and 1 iso-
late was capable of inducing keratitis and encephalitis in 
the animal model. The result of the physiological assays 
for these 5 isolates was quite variable that designated 1 
isolate as pathogenic; 2 isolates each as low pathogenic 
and non-pathogenic (Table 3). Additionally, 1 isolate 

Table 2   Genotype of the 
sequences obtained in 
the present study and the 
corresponding identity to 
reference accession number

Isolate Source Genotype Accession number Identity to reference 
accession number

CHA5 Keratitis T11 KX709491.1 KJ094683
CHA20 Keratitis T4 KY859173.1 KF733234
CHA24 CSF T11 KX675341.1 KU936113
CHA27 Brain abscess T10 KX675337.1 AF019067
CHA36 Water T4 Unpublished OQ300084.1
CHA37 Water T11 KJ094683.1
CHA39 Water T5 KM823783.1
CHA40 Water T11 AF333608.1
CHA45 Water T11 KJ094683.1
CHA43 Water T5 MN153019.1

Table 3   Results of the physiological assays and in vivo Acanthamoeba keratitis and amoebic encephalitis mouse model for ten Acanthamoeba 
isolate

Isolate Source Result of Physiological 
parameters

Genotype Result of in vivo experimentation

Acanthamoeba keratitis No. of animals positive (GAE)

No. of animals 
positive

Interpretation No. of animals 
positive

Interpretation

CHA5 Keratitis Pathogenic T11 4/4 Pathogenic Negative Non-pathogenic
CHA20 Keratitis Pathogenic T4 3/4 Pathogenic Negative Non-pathogenic
CHA24 CSF Pathogenic T11 2/4 Pathogenic 6/6 Pathogenic
CHA27 Brain abscess Pathogenic T10 3/4 Pathogenic 5/6 Pathogenic
CHA36 Water Low pathogenic T4 Negative Non-pathogenic Negative Non-pathogenic
CHA37 Water Non-pathogenic T5 4/4 Pathogenic 3/6 Pathogenic
CHA39 Water Low pathogenic T5 3/4 Pathogenic Negative Non-pathogenic
CHA40 Water Pathogenic T11 4/4 Pathogenic Negative Non-pathogenic
CHA45 Water Low pathogenic T11 4/4 Pathogenic Negative Non-pathogenic
CHA43 Water Non-pathogenic T11 4/4 Pathogenic Negative Non-pathogenic
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was found non-pathogenic in the in vivo experimen-
tation and it was designated as low pathogenic by the 
physiological assays.

Discussion

Acanthamoeba species are ubiquitous in nature; however, 
cases of AK and GAE have been relatively rare (Lorenzo-
Morales et al. 2006; Rezaeian et al. 2008; Possamai et al. 
2018). Many different parameters in the past have helped 
in demarcating pathogenic isolates from non-pathogenic 
Acanthamoeba. Studies have used molecular and protease 
markers, in vivo models, and physiological parameters to 
assess the pathogenic potential of Acanthamoeba isolates 
(Howe et al. 1997; Khan et al. 2000; Khan et al. 2001; Khan 
et al. 2002; Garate et al. 2006; Castro-Artavia et al. 2017). 
Additionally, comparisons between osmotolerance, thermo-
tolerance, and Acanthamoeba genotypes have been reported 
previously (Kahraman & Polat 2022). The virulence of an 
isolate depends on its capability to adapt & survive in the 
mammalian host and the isolates taken from environmental 
sources should be evaluated by animal experimentation for 
their pathogenicity (Khan 2006; Landell et al. 2013; Kah-
raman & Polat 2022). In addition, studies in the past have 
shown that the pathogenic potential of free-living amoebae, 
including those from the genus Acanthamoeba, may be 

examined in vitro using known cell lines or primary and sec-
ondary human cell cultures. Additionally, using them under 
controlled conditions reduces the individual and species-
specific variability of the experimental animals, enhances 
the reproducibility of the experiment, and provides excel-
lent data on both the pathogenicity characteristics of these 
protozoa and the defensive response of the host (Koehsler 
et  al. 2009; Martín-Navarro et al. 2010; Mohd Hussain 
et al. 2022b; Walochnik et al. 2000). The pathogenic Acan-
thamoeba is reported to withstand high temperatures and 
osmolarity and also show high levels of heat shock proteins 
(Pérez-Serrano et al. 2000; Podlipaeva et al. 2006; Landell 
et al. 2013; Kahraman & Polat 2022). In the present study, 
we have used physiological parameters of thermo-tolerance 
and osmo-tolerance along with results from in vivo study to 
ascertain the pathogenicity of isolates. The verification of 
isolates based on the results of the animal model has helped 
in providing an appropriate confirmation. Previous reports 

Fig. 1   Acanthamoeba trophozoites and cysts on 1.5% non-nutrient 
agar (10 × magnification)

Fig. 2   Representative agarose gel image for Acanthamoeba spp.-spe-
cific JDP PCR, lane1, negative control, lane 2 & 3, positive samples 
of corneal scraping, lane 4 & 5, samples from mouse brain & lung 
found positive, lane 6, 100 bp molecular marker, lane 7, positive con-
trol amplifying a ~ 450 bp band
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have assessed the pathogenicity based on different physi-
ological parameters and cytopathogenicity that suggested a 
weak correlation between the clinical origin of isolate and 
physiological assays (Nagyova et al. 2010; Siddiqui and 
Khan 2012; Possamai et al. 2018), but they did not perform 
an animal model based test to confirm their results from 
in vitro experiments.

The physiological criteria in the current study misclas-
sified 4 clinical isolates either as low or non-pathogenic. 
Three out of 27 clinical isolates were detected as low path-
ogenic and 1 was non-pathogenic. Among 16 isolates from 
water sources, physiological assays suggested 6 isolates as 
pathogenic and the remaining 10 were either low patho-
genic or non-pathogenic (Table 1). Additionally, based 
on genotyping, the 10 clinical and environmental isolates 
included for the in vivo experimentation were categorized 

into genotypes T4, T5, T10, and T11 (Table 2). Studies in 
the recent past have demonstrated the presence of T4, T5, 
and T11 genotypes in samples from water, soil, and dust 
(Behnia et al. 2017; Milanez et al. 2020; Paknejad et al. 
2020; Salehi et al. 2022). Likewise, different Acantham-
oeba genotypes have been associated with clinical cases of 
keratitis and encephalitis with T4 being the most common 
genotype among all (Esboei et al. 2020; Hajialilo et al. 
2016; Kalra et al. 2020; Megha et al. 2018). The fact that 
we did not genotype every isolate makes it unjust to say 
which genotype is the most prevalent.

The ten isolates used for in vivo experiments included 
environmental and clinical isolates each of keratitis and 
encephalitis. The keratitis isolates (CHA 5 and CHA 20) 
were obtained from the corneal scrapings of AK patients. At 
the time of presentation, the size of the ulcers was 1 × 1 mm 
and 05 × 0.5 mm respectively and the visual acuity was 6/6. 
The patients were prescribed Polyhexamethylene Biguanide 
(PHMB 0.02%) half hourly for one week, then hourly for one 
week and then gradually tapered according to the response. 
The clinical outcomes in both cases were healed corneal 
opacities. On the other hand, the two encephalitis isolates 
belonged to an immunocompetent individual (CHA24) and 
an individual under treatment for acute myeloid leukaemia 
(CHA27). The diagnosis of GAE was made postmortem in 
the case of CHA24 and antemortem for CHA27 isolates.

Based on the results of in vivo mouse model, 5 environ-
mental isolates were found to establish keratitis, amoebic 
encephalitis, or both, and 1 was found non-pathogenic 
(Fig. 1–4). We could not conduct in vivo experiments 
on a larger set of Acanthamoeba isolates from water due 
to certain constraints in procuring a sufficient number 
of animals. The results of the physiological assays and 
in vivo experiments were analogous for 7 isolates. In addi-
tion to the establishment of AK and amoebic encepha-
litis by the respective clinical isolates, we observed the 
GAE isolate establish keratitis as well. Our results are 
different from a previous report in which the isolate from 
the keratitis patient was not showing positive results in 
the keratitis mouse model. However, there was a direct 
relationship between their physiological results and ani-
mal experiments (Mirjalali et al. 2013). The long-term 
axenic cultivation of the strain and certain host factors 
might have played a role that led to this discordance. The 
growth at high osmolarity has been correlated with the 
propensity to counter high osmotic pressure, a situation 
Acanthamoeba face while acting as parasites of the cor-
nea (Siddiqui and Khan 2012). Additionally, the capacity 
of thermo-tolerance is directly proportional to the ability 
of Acanthamoeba to produce cellular damage (Waloch-
nik et al. 2000). Even if these two characteristics provide 

Fig. 3   Clinical and histopathological examination of Acanthamoeba 
infected mouse eye. a Corneal cloudiness and infiltrate seen at day 
five post-infection; b Hematoxylin and eosin stained section display-
ing Acanthamoeba trophozoites in the substantia propria (40X mag-
nification)
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amoebae with an adaptative advantage while parasitizing 
a host, the mere presence or absence of these character-
istics is not enough to define the amoeba as pathogenic. 
For instance, different species of Acanthamoeba may be 
thermotolerant and osmotolerant but they are not always 
pathogenic (De Jonckheere 1980; Schuster and Visvesvara 
2004). In addition, the pathogenic potential of environ-
mental isolates of Acanthamoeba cannot be determined 
with absolute certainty because other factors, such as the 
genetic makeup of the protozoan, epigenetic factors, and 
the biological characteristics of the experimental mod-
els (animal, tissue, or cellular) must also be taken into 
account. In our data, none of the pathogenic isolates from 
the physiological assay was found non-pathogenic in the 
mouse model. However, this could be explained by the 
less number of isolates included in our study for in vivo 
experimentation. Nevertheless, physiological properties 
are not sufficient to ascertain whether a given isolate is 
always pathogenic. There are other aspects like the ability 
to invade the host, protease profile, and encystment rate 
which play a role in the pathogenesis and might act as an 
indicator of pathogenicity.
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