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Abstract
Infections with parasitic helminths cause severe debilitating and sometimes lethal diseases in humans and domestic animals 
on a global scale. Unable to synthesize de novo their own fatty acids and sterols, helminth parasites (nematodes, trematodes, 
cestodes) rely on their hosts for their supply. These organisms produce and secrete a wide range of lipid binding proteins 
that are, in most cases, structurally different from the ones found in their hosts, placing them as possible novel therapeutic 
targets. In this sense, a lot of effort has been made towards the structure determination of these proteins, but their precise 
function is still unknown. In this review, we aim to present the current knowledge on the functions of LBPs present in para-
sitic helminths as well as novel members of this highly heterogeneous group of proteins.
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Introduction

Knowing the biochemistry of parasitic helminths in detail 
may reveal differential enzymes or metabolic pathways that 
could represent an Achilles’ heel for these organisms. Those 
proteins or enzymes could be targets for novel therapeutic 
strategies as well as molecular markers to be used in diag-
nostics. However, it is a really hard task to perform studies 
on the biochemistry of parasitic helminths, and many times 
it is almost impossible. This difficulty is based on the fact 
that these experiments may require keeping the complete 
life cycle (or at least part of it) under laboratory conditions, 
which can be complex and expensive, including welfare 

protocols and keeping animals as alternative hosts. Although 
this has been achieved in some cases, e.g., for Echinococ-
cus multilocularis (Spiliotis and Brehm 2009) and the hook-
worm Necator americanus (Jian et al. 2003), this is still 
not possible for many parasitic species. Particularly, those 
parasites affecting wild fauna where the collection of live 
samples depends on roadkill findings according to different 
country regulations. However, this is not the case for plant 
parasites where different biological approaches have been 
accomplished, and there is enough information to look into 
the possible biological function of different types of pro-
teins (see below). In this regard, an impressive advance on 
helminthology has been achieved based on the massive data 
retrieved by whole genomic sequencing and genome-wide 
expression profiling methods at the level of the transcrip-
tome and proteomes. All this data provides highly valuable 
information platforms to seek for alternative biochemical 
pathways, variations in certain canonical routes, different 
expression patterns, specific proteins, etc.

In particular, parasitic helminths present a restricted lipid 
metabolism; this means that many biochemical pathways 
are dampened or completely absent in different members of 
this group. The parasitic helminths considered in this review 
include species of the phylum Platyhelminth, commonly 
known as “flatworms” and phylum Nematoda or “round-
worms”. Particularly, neither flatworms nor roundworms 
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can synthesize fatty acid de novo (Barrett 1981). In some 
parasitic nematodes, the enzymes are present but with really 
low activity so no significant product is obtained (Barrett 
2009). Nevertheless, incorporated fatty acids are involved in 
the synthesis of complex lipids such as triacylglycerol and 
phospholipids, suggesting their importance in maintaining 
different cellular structures. Although a partial mevalonate 
pathway is present for the synthesis of dolichol, quinones’ 
side chains, and isoprenoids for protein prenylation (Hiepe 
et al. 2006), the complete de novo synthesis pathway of cho-
lesterol is absent in both phyla (Barrett 1981; Frayha and 
Smyth 1983). In this sense, the acquisition and transport 
of several lipid molecules are crucial to these organisms, 
and the proteins and receptors involved in lipid transport 
and exchange may provide potential targets for chemo- and 
immunotherapy.

Lipid binding proteins (LBPs) of parasitic helminths 
have been studied for decades and are considered relevant 
because they are usually found in the excretion/secretion 
(E/S) products of these organisms. Most of them are struc-
turally different from those of their host and as such they 
are usually targets of a strong immune response (Kennedy 
et al. 1990; Tomlinson et al. 1989). Hence, a lot of effort 
has been dedicated to study the structure of these proteins 
to improve novel drug design and the setting up of more 
specific diagnostic methods. Besides their possible utility, 
the precise biological functions of LBPs are still unknown. 
They have been proposed to participate in the acquisition 
and distribution of lipids within tissues of the parasite and/
or modulation of the host’s local tissue environment and its 
innate and acquired immune systems.

Addressing the function of these proteins is not a straight-
forward task, since they are not catalytic enzymes but car-
rier proteins. Hence, one of the few ways to assess LBPs’ 
biological activity is to evaluate their binding capacity. A 
key step towards understanding the functions of these pro-
teins might be to describe the ligands that are bound in their 

natural environment, as well as studies performed on tis-
sues from parasites or whole organisms. The most informa-
tive experiments used to unravel protein functions involve 
reverse genetics approaches. These would imply the knock-
down (or knock out) expression of the protein of interest 
within the parasite. Unfortunately, this technique has been 
achieved successfully only in a few examples of parasitic 
species (Britton et al. 2016; Dutta et al. 2015; Guidi et al. 
2015; Kimber et al. 2007; Lilley et al. 2012; MacDonald 
et al. 2014; Pérez et al. 2019). In this scenario, appropriate 
model organisms are needed to shed light on the functions. 
In this review, we highlight the improvements in the assess-
ment of the biological functions of LBPs from parasitic hel-
minths as well as the description of novel members of this 
diverse group.

A highly heterogeneous group

Altogether, parasitic helminths produce and secrete a broad 
range of different LBPs. At least five different types of LBPs 
have been described and they are distributed in different taxa 
as is summarized in Table 1. Below we describe in brief each 
type of LBP trying to address the most significant improve-
ments on their biological functions.

Hydrophobic ligand binding proteins (HLBPs)

HLBPs is a family of proteins that are specific to cestodes in 
phylum Platyhelminthes. This unusual family is composed 
of intracellular and extracellular members that bind a vari-
ety of fatty acids, retinoids, and some sterols as reviewed in 
Alvite and Esteves (2012). In their native state, HLBPs are 
described as lipoprotein particles that could reach a size of 
about 230 kDa. This complex structure consists of multiple 
small protein subunits of approximately 8 kDa (although this 

Table 1   Distribution of LBPs across groups of parasitic helminths
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Bibliographic references for each group are cited in each section. *A search for nemFABPs has been done in clade II using Blast tool from 
WormBase Parasite (https://​paras​ite.​wormb​ase.​org/​Tools/​Blast?​db=​core), and no hit was found with the presence of leader signal peptide. Nev-
ertheless, there is only one species with a determined genome so we cannot rule out the presence of nemFABPs in the clade
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might change within species) interacting with lipids (Lee 
et al. 2007; Silva-Álvarez et al. 2015).

One of the most studied examples is antigen B (EgAgB) 
from Echinococcus granulosus sensu lato (s. l.). EgAgB is 
one of the major molecules synthesized in large amounts by 
the cyst (metacestode larval stage), and it is present in most 
tissues of the parasite as well as in protoscoleces (infec-
tive stage for definitive host) (González et al. 1996; Oriol 
et al. 1971; Sanchez et al. 1991, 1993). From the molecu-
lar point of view, it conforms to a lipoprotein particle with 
a protein component consisting of 8 kDa subunits that are 
rich in amphipathic alpha-helices (Fernández et al. 1996; 
Lightowlers et al. 1989). For the case of E. granulosus s. l., 
these subunits are encoded by a multigene family, dubbed 
EgAgB8/1–EgAgB8/5 (Arend et al. 2004; Chemale et al. 
2001; Frosch et al. 1994; Haag et al. 2004; Kamenetzky et al. 
2005; Muzulin et al. 2008; Zhang et al. 2010). The lipid moi-
ety found to be interacting with native EgAgB showed that 
not only fatty acids and triacylglycerols are bound but also a 
wide range of other hydrophobic compounds like cholesterol 
esters, cholesterol, and phospholipids (Obal et al. 2012).

In vitro functional analysis of recombinant lipid-free 
rEgAgB8/2 and rEgAgB8/3 showed a selective capacity to 
bind lipids, showing affinity at least for 16- and 18-C fatty 
acids, but not for cholesterol, indicating that these compo-
nents of the natural EgAgB lipoprotein particles would not 
interact directly with cholesterol (Silva-Álvarez et al. 2016). 
Additionally, the capacity of these subunits to transfer lipids 
to membranes was also assayed showing that different subu-
nits of EgAgB8 are able to deliver their cargo to phospho-
lipid membranes, supporting the hypothesis that EgAgB is 
involved in lipid transport between parasite and host tissues 
(Silva-Álvarez et al. 2015). However, the capacity of EgAgB 
particles to transfer fatty acids to the parasite or to the host’s 
cells remains to be formally demonstrated. In this regard, 
assays performed with a related macromolecule found in 
Taenia solium metacestode strongly support this hypothesis 
(Lee et al. 2007).

Remarkably, EgAgB and particularly its predominant 
EgAgB8/1 apolipoprotein are potential ligands for mono-
cyte and macrophage receptors as described in Silva-Álvarez 
et al. (2016). These receptors may also be involved in plasma 
lipoprotein recognition and induce an anti-inflammatory 
phenotype in macrophages upon recognition of EgAgB 
(Silva-Álvarez et al. 2016, 2018). Moreover, it has been 
proposed to be the most specific Echinococcus antigen for 
serodiagnosis (Siracusano et al. 2008).

Molecules of this type have also been described in 
other cestodes including Moniezia expansa, Hymenolepis 
diminuta, Taenia crassiceps, Taenia solium, and Taenia 
hydatigena (Barrett et al. 1997; Jia et al. 2011; Saghir et al. 
2001; Sako et al. 2000; Zarlenga et al. 1994). A primary 
sequence comparison of HLBPs found in these species 

revealed that they are significantly diverse but present well-
conserved molecular characteristics like two alpha-helical 
domains that are presumed to be involved in protein-mem-
brane interactions (Lee et al. 2007). Notably, HLBPs from 
M. expansa and H. diminuta do not show an N-terminal 
hydrophobic leader sequence indicating that they might exert 
their function intracellularly.

Fatty acid binding proteins (FABPs)

FABPs are small intracellular proteins (around 15 kDa) that 
reversibly bind fatty acids and other hydrophobic ligands. 
Members of this family have been found throughout the ani-
mal kingdom, both in invertebrates and vertebrates, but no 
counterparts have been found in plants or fungi (Haunerland 
and Spener 2004). Ancestral intracellular FABP genes are 
supposed to have arisen after the separation of animals from 
fungi and plants (Schaap et al. 2002).

The first FABP from invertebrates was found in Schis-
tocerca gregaria (Haunerland and Chisholm 1990), almost 
20 years after the first vertebrate FABP was described. After 
this finding, many proteins of the family have been described 
in nematodes, insects, mollusks, and flatworms (Esteves and 
Ehrlich 2006). The first flatworm FABP to be described was 
Sm14 from Schistosoma mansoni (Moser et al. 1991), fol-
lowed by FABPs of S. japonicum, Fasciola hepatica, Fas-
ciola gigantica, and E. granulosus s.l. (Becker et al. 1994; 
Esteves et al. 1993; Estuningsih et al. 1997; Rodríguez-Pérez 
et al. 1992). As in vertebrate’s FABPs, the sequence identity 
between different FABPs from invertebrates varies signifi-
cantly, but they still share their overall 3D protein struc-
ture. It consists of a β-barrel, composed of ten antiparallel 
β-strands (βA-βJ), capped with two α-helices (αI and αII). 
The barrel is solvent accessible, and the helices have been 
proposed as a gate that regulates the entrance or exit of 
ligands see Fig. 1 (Haunerland and Spener 2004; Scapin 
et al. 1992; Storch and Corsico 2008; Storch and McDermott 
2009; Zimmerman and Veerkamp 2002).

FABPs from vertebrates are grouped into four subfami-
lies based on their primary sequence analysis (Marcelino 
et al. 2006) and each of these characteristically binds certain 
types of ligands. When compared to mammalian FABPs, 
proteins from parasitic helminths show higher similarity to 
those that belong to subfamily IV (Esteves and Ehrlich 2006; 
Marcelino et al. 2006; Smathers and Petersen 2011). Group 
IV is the largest subfamily and includes FABP3, FABP4, 
FABP5, FABP7, FABP8, FABP9, and FABP12 (Liu et al. 
2008) from vertebrates and binds a variety of ligands includ-
ing long-chain fatty acids, eicosanoids, and retinoids. In par-
ticular, there is a high conservation of a triad of residues 
that play a central role in the mechanism of binding of fatty 
acids to those FABPs. In relation to the genetic structure, 
it is worth mentioning that the position of the introns in 
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invertebrate FABPs seems to be substantially conserved, 
although their number and length vary considerably (Este-
ves and Ehrlich 2006).

Recently, data mining in genomes from the parasitic plat-
yhelminthes, Echinococcus multilocularis and E. granulosus 
s.l., revealed that this family of proteins is far more complex 
than previously reported in cestodes. Six genes with different 
coding sequences for FABPs were found in each organism, 
with the sole exception of EmFABP1.1 and EmFABP1.2, in 
E. multilocularis, that are identical to one another (Pórfido 
et al. 2020). All of these variants have been cloned and pro-
duced recombinantly presenting structural features (inferred 
from spectroscopic data as well as in silico prediction) that 
resemble those of previously reported FABPs from verte-
brates and invertebrates (Bélgamo et al. 2020; Pórfido et al. 
2020). Notably, for EmFABP4, the most striking feature is 
that the primary sequence is considerably longer (176 amino 
acids) than that for a regular FABP (around 130 amino 
acids). In this case, a typical FABP fold is predicted, but no 
specific structure is assigned to the C terminus of the protein 
(Pórfido et al. 2020). Surprisingly, EmFABP4 was purified 

as a dimer, and this state is stable in solution (Bélgamo et al. 
2020). However, whether it exists as a dimer in its biological 
environment remains to be elucidated. It is noticeable that a 
large subfamily of FABPs, including some with C-terminal 
extensions, has also been reported in Fasciola spp. (Bélgamo 
et al. 2020; Morphew et al. 2016). Interestingly, these longer 
variants are different from the so-called nemFABPs (see 
below) since the unusual extensions in flatworms’ FABPs 
are exclusively on the C-terminal sequence.

Published transcriptomic information on E. multilocula-
ris and E. granulosus s.l. suggest that all fabp genes are 
transcribed in different stages of these organisms (Huang 
et al. 2016; Tsai et al. 2013; Zheng et al. 2013a, b). Moreo-
ver, according to the different sets of data, emfabp1.1 and 
emfabp1.2 are the most highly expressed FABP genes in E. 
multilocularis (Pórfido et al. 2020).

It is worth mentioning that specific inhibitors of mamma-
lian FABP4 have been developed and employed as effective 
therapeutic agents of diseases such as diabetes and athero-
sclerosis (Barf et al. 2009; Furuhashi et al. 2007; Wang et al. 
2016). Based on the degree of conservation between FABPs 
from helminths to group IV from vertebrate FABPs, mem-
bers of this family from E. multilocularis and E. granulosus 
are being considered as druggables (Bélgamo et al. 2020), 
and this could also be extended to FABPs from other hel-
minth species as well.

As expected, FABPs are also present in both parasitic 
and free-living nematodes. Particularly, in the free-living 
species, Caenorhabditis elegans, there are nine isoforms of 
FABPs (dubbed lbp-1 to lbp-9) with tissue specific expres-
sion patterns (Plenefisch et al. 2000). As previously said, it is 
difficult to perform reverse genetic experiments on most par-
asitic helminths, but in the case of nematodes, the use of C. 
elegans as a model to study protein function is an excellent 
option. In this sense, knockdown experiments on lbp-5 of 
C. elegans have shown strong physiological disruptions (Xu 
et al. 2011). lbp-5 knockdown causes a decrease in expres-
sion of β- oxidation genes, by affecting NHR-49 signaling 
(homolog of mammalian NHF-4 and functional homolog 
of PPAR-α), which contributes to fat storage increase. An 
analysis of the localization of LBP-5 in cells from C. elegans 
revealed that it is found both in the nucleus and the cyto-
plasm, suggesting a possible role in transporting fatty acids 
into the nucleus regulating the expression of genes involved 
in fat metabolism (Xu et al. 2011).

The particular case of “nemFABPs”

All the FABPs described so far in nematodes form two dis-
tant groups suggesting at least two different phylogenetic 
origins (Plenefisch et al. 2000; Zheng et al. 2013a, b). One 
of these groups includes sequences related with muscle-
type intracellular FABPs from vertebrates as is the case of 

Fig. 1   X-ray structure of EgFABP1 (PDB: 108 V) from Echinococcus 
granulosus. Copurifying ligand, palmitic acid, is depicted in green
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LBP-5 mentioned above (Plenefisch et al. 2000). The other 
group includes some FABPs that present particular char-
acteristics that are found almost exclusively in the phylum 
Nematoda; hence, they were dubbed “nemFABPs.” One of 
the most striking differences found in “nemFABPs” is the 
presence of a cleavable secretion signal leader peptide, and 
hence they are secreted from the cell, presumably by tra-
ditional secretory pathways (Mei et al. 1997). Until now, 
only FABPs genes from Trichinella spiralis are found to 
be the exception to the two groups mentioned before. This 
is an interesting finding, since T. spiralis is a member of 
Clade I of nematodes which is quite an underrepresented 
group and may show interesting features (Blaxter and 
Koutsovoulos 2015).

As in vertebrate cytosolic FABPs, “nemFABPs” present 
the characteristic beta barrel fold with an alpha-helical 
cap. The first of these to be described from nematodes 
were Asp-18 from the large intestinal roundworm, Ascaris 
suum, and Bm-FAB-1 from the agent of lymphatic fila-
riasis, Brugia malayi (Michalski et al. 2002). These pro-
teins are not only produced by human and animal parasites 
(Zheng et al. 2013a, b) but, as already mentioned, are also 
found in free-living forms like C. elegans. These proteins 
were found to be gender specific as well as developmen-
tally regulated and have been proposed to be associated 
with reproduction since they are found in the perivitel-
line fluid of nematode eggs harboring the embryos (Li 
et al. 2004; Mei et al. 1997; Michalski et al. 2002; Michal-
ski and Weil 1999; Plenefisch et al. 2000). One of these, 
Ce-LBP-1, appears only to be synthesized and secreted 
by developing embryos within the egg (Plenefisch et al. 
2000).

Notably, their primary sequences are typically 10–19 
residues longer than other FABPs, and it was proposed that 
some of these additional residues are accommodated in 
extended loops (Mei et al. 1997). The structure of Asp-18 
has been solved at the atomic level by X-ray crystallography 
and NMR confirming the presence of two extended loops, 
one immediately adjacent to the ligand portal and another 
distantly located on the opposite side of the molecule see 
Fig. 2. Additionally, the triad of amino acid side chains that 
tether bound fatty acids is differently arranged and com-
posed compared to what is found in mammalian FABPs 
(Ibáñez-Shimabukuro et al. 2019). A preliminary analysis 
of their ligand preferences in a biological context such as E. 
coli showed that Asp-18 binds exclusively fatty acids, par-
ticularly 18 carbons vaccenic acid with the highest affinity 
(Ibáñez-Shimabukuro et al. 2019).

The fact that some nemFABPs are found in eggs, more 
precisely in the perivitelline fluid allows us to hypothesize 
that they might be involved in the uptake of lipids from 
perivitelline fluid. Unfortunately, no further functional 
experiments have been performed other than in vitro assays.

Fatty acid and retinol binding proteins (FAR)

The FAR family is a novel class of proteins, also exclu-
sively found in nematodes. They have an approximate size 
of 20 kDa and are able to bind both fatty acids and reti-
nol. Genes encoding FAR proteins have been described in 
many nematode species, both free-living and parasitic forms 
(Garofalo et al. 2002; Kennedy et al. 1997) and each species 
produces several isoforms. FARs are present in ES products, 
as is the case of Ac-FAR-1 from the intestinal hookworm 
Ancylostoma caninum (Basavaraju et al. 2003; Kennedy 
et al. 1997). The study of FAR proteins started in 1995 with 
Ov-FAR-1 (Tree et al. 1995), a protein secreted by Oncho-
cerca volvulus, a causative agent of river blindness. Since 
then, the FAR family has expanded greatly; being described 
not only in filarial species but also in hookworms, plant 
parasites, and the free-living nematode C. elegans, as well 
as other Caenorhabditis species. Notably, none of these 
proteins are found in clade I of phylum Nematoda. The 
knowledge we have about them nowadays seems vast but 
also dispersed, with many studies done in separated groups 
of proteins within the family.

From the molecular point of view, FARs range from 17 
to 30 kDa in size and have relatively conserved glycosyla-
tion sites, but glycosylation patterns vary from one protein 
to another (Nirmalan et al. 1999). They also have potential 
sites of phosphorylation for conserved type II casein kinase 
(Prior et al. 2001). They are rich in alpha-helices, show high 
stability, and do not have structural analogues in other ani-
mal groups. To date, the crystallographic structure of FAR 

Fig. 2   X-ray structure of Asp-18 (PDB: 6I8X) from Ascaris suum in 
complex with vaccenate (depicted in light blue). Extended loops are 
shown in dashed circles
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proteins has been resolved for two members of the family, 
Ce-FAR-7 from C. elegans (Jordanova et al. 2009) and Na-
FAR-1 from Necator americanus (Rey-Burusco et al. 2015) 
(see Fig. 3). Ce‐FAR‐7 presents two discrete cavities in 
which it could locate different types of ligands; however, 
based on its sequence identity, this protein might not be rep-
resentative of parasite proteins. The overall structure is a 
flattened ellipsoid which seems to adopt different degrees of 
expansion depending on whether ligands are absent or bound 
to the central cavity. Recent studies using in silico tech-
niques compared Na-FAR-1 with classical β-barrel FABPs. 
Particularly, the use of extended molecular dynamics simula-
tions and principal component analysis allowed to identify 
different conformations adopted by each system during the 
simulations. Na-FAR-1 encompasses a complex highly flex-
ible internal ligand-binding domain that allows reversible 
switching between distinct states in the protein. Besides, the 
ligand inside the cavity experiences large conformational 
changes between bent and stretched conformations. These 
changes in the ligand conformation follow changes in the 
cavity size dictated by the transient protein conformation. 
On the contrary, protein–ligand complex in β-barrel FABPs 
fluctuates around a unique conformation (Barletta et al. 
2019). These results are in agreement with the observations 
that FAR proteins bind a broad range of hydrophobic ligands 
while FABPs bind almost uniquely fatty acids.

Na-FAR-1 and possibly other FARs may have a wider 
repertoire for hydrophobic ligand binding; this is supported 
by the fact that a range of neutral and polar lipids co-purify 
with the bacterially expressed recombinant protein (Rey-
Burusco et al. 2015). Many studies show that these proteins 
are able to bind fatty acids (mainly oleic acid) and retinol, 
but recent evidence shows phospholipids as other possible 
ligands (Rey-Burusco et al. 2015). As observed with FABPs, 

FAR proteins have a well described and conserved structure 
but have a wide range of sequence similarity even between 
isoforms. For example, Na-FAR-1 has a sequence identity 
that ranges from 44 to 60% with FARs from other nematodes 
from the Rhabditida (Ancylostoma, Ostertagia, and Caeno-
rhabditis) class, but this identity descends to 25–38% with 
other classes like Spirurida (Onchocerca, Brugia, Acan-
thocheilonema) and Diplogasterida (Globodera and Meloi-
dogyne) (Rey Burusco, 2014). For C. elegans, Ce-FAR-8 
and Ce-FAR-7 are so divergent (19–23%) that has even led 
to cataloging them as outliers, disregarding their importance.

In regard to expression levels, different isoforms are 
found through all developmental stages, some are highly 
expressed during infective stages other during reproductive 
or prereproductive stages. An important note is that no FAR 
proteins are highly expressed in eggs. Moreover, in most 
cases, more than one FAR isoform is found at the same stage 
and they show a different pattern of expression, as is clear 
for the case of C. elegans (Garofalo et al. 2002). This evi-
dence suggests that FAR proteins might fulfill different roles 
through development rather than having one static biological 
function.

FARs are the major components of human, animal, and 
plant parasite secretions (Basavaraju et al. 2003; Kennedy 
et al. 1997). As an example, we have the case of Na-FAR-1, 
found in ES products thanks to immunological assays with 
antibodies against the recombinant protein (Rey-Burusco 
et  al. 2015). A proteogenomic analysis of ES products 
revealed that FAR proteins are among the top 10 most 
abundant protein families in the ES products of adult N. 
americanus (Logan et al. 2020). These findings have made 
it possible to use FAR proteins as diagnostic tools for some 
parasitic diseases (Burbelo et al. 2009). This raises the 
hypothesis that they could play roles in the interaction with 

Fig. 3   X-ray structures of A 
Na-FAR-1 (PDB: 4XCP) from 
Necator americanus and B 
Ce-FAR-7 (PDB: 2W9Y) from 
Caenorhabditis elegans. For 
Na-FAR-1, the ligands (palmitic 
acid) are depicted in blue
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the host and in pathogenesis by interfering with host defense 
signals (Bradley et al. 2001; Hewitson et al. 2009; Iberk-
leid et al. 2015). In fact, recent results demonstrated that 
injecting recombinant FAR proteins from entomopathogenic 
nematode Steinernema carpocapsae can reduce survival of 
host Drosophila melanogaster when exposed to bacterial 
infections, showing that these proteins can interfere with 
immune response. Although further studies are needed, the 
mechanism seems to indeed involve sequestering lipidic sig-
nals, thus disrupting the normal functioning of host defenses 
(Parks et al. 2021). Apart from this, it should be noted that 
Ace-FAR-1 from Ancylostoma ceylanycum has been shown 
to be potentially useful as a vaccine because it is capable of 
conferring immunity in challenge tests in laboratory animals 
(Fairfax et al. 2009). On the other hand, these parasitism-
focused hypotheses fall short when we look at the eight FAR 
proteins described for C. elegans, where seven of them pre-
sent a signal peptide with Ce-FAR-7 lacking this sequence. 
It is thus important to formulate new hypotheses including 
the possible function of these secreted proteins in free-living 
worms.

FAR proteins in plant parasites

The first example we have is Gp-FAR-1 from Globodera pal-
lida. From its molecular description, analyses of its binding 
specificity (encompassing linoleic and linolenic acid) and 
localization in the hypodermis of J2 stage (invasive stage 
of the parasite) suggested a crucial role in countering plant 
defense mechanisms. Lipoxygenase-mediated peroxidation 
of linolenic acid is an early step in the octadecanoid signal-
ing pathway, which leads to the synthesis of the systemic 
plant defense signal transducer jasmonic acid. A pronounced 
inhibition of lipoxygenase-mediated breakdown of linoleic 
acid was observed in the presence of recombinant Gp-FAR-1 
(Prior et al. 2001).

The study of the root knot nematode, Meloidogyne javan-
ica, and its FAR proteins Mj-FAR-1 and Mj-FAR-2 was the 
first work to place FAR proteins from plant parasites as a 
unique node in a phylogenetic tree showing a clear evolu-
tionary adaptation to plant parasitism. Mj-FAR-1 accumu-
lates in the cuticle and is secreted by hypodermis, being 
found in the intercellular space between the parasite and the 
host (Iberkleid et al. 2013, 2015). These findings so far are 
aiming towards an immunomodulatory function, disrupting 
plant defense mechanisms, and facilitating parasitism. On 
the other hand, Mi-FAR-1 from Meloidogyne incognita is 
expressed in J2, J3, and J4. In this last stage, it might be 
playing a role in the pre-reproductive stage, presenting the 
possible relationship with development, egg-laying, and 
reproduction. This was also supported by the silencing of 
Mi-FAR-1 with RNAi that showed a decreased number of 
females as well as the fertility and production of eggs when 

exposed to bacteria (Phani et al. 2017). This decrease in 
fertility was also seen in Ab-FAR-1 from Aphelenchoides 
besseyi, “white tip nematode”, where the retinol binding 
capabilities of FAR proteins could be related to the needs 
of retinol for the synthesis of collagen and egg development 
(Cheng et al. 2013; Wang et al. 2018).

In accordance with both hypotheses, FAR proteins in 
Bursaphelenchus mucronatus are among the genes with 
increased expression in the more virulent strains of this 
plant parasite. A silencing experiment showed a decrease of 
infective capacity and offspring, associating FARs with both 
development and reproduction functions as well as disturb-
ing inter-intracellular defense signals in plants (Zhou et al. 
2016). Similar experiments and results are presented with 
Pp-FAR-1 from Pratylenchus penetrans (Vieira et al. 2015), 
highly expressed during infection and showing a significant 
reduction in reproduction upon silencing, and Rs-FAR-1 
from Radopholus similis (Zhang et al. 2015), as this pro-
tein regulates expression of allene oxide synthase and it is 
upregulated during early infection in Arabidopsis thaliana.

At last, work done in Heterodera avenae described two 
FAR proteins, Ha-FAR-1 and Ha-FAR-2, with different 
molecular structures (Le et al. 2016). While Ha-FAR-1 has 
the conserved phosphorylation site and no glycosylation site, 
Ha-FAR-2 has a glycosylation site and no phosphorylation 
site, also showing weaker binding capabilities. Expression 
of both is seen in hypodermis, suggesting secretion, but 
Ha-FAR-1 is greater than Ha-FAR-2, and although they are 
expressed through all stages, Ha-FAR1 is predominant in the 
J4 stage (prereproductive), and Ha-FAR2 is predominant in 
J2 (post-parasitic). Structurally, they show a 28% similarity, 
a difference also seen in their weight, 17 kDa for Ha-FAR-1, 
and 30kDA for Ha-FAR-2; and isoelectric point, 5.62 for 
Ha-FAR-1 and 9.02 for Ha-FAR-2, which might indicate 
that they work in different environments (Le et al. 2016).

FAR proteins in Caenorhabditis genus

Recent studies done in Caenorhabditis bovis, a close rela-
tive of C. elegans, have rekindled the interest in FAR-8, an 
outlier of the FAR protein family (Garofalo et al. 2002), as a 
possible factor in the evolution towards parasitic behavior. C. 
bovis is unusual for a Caenorhabditis species, as it has been 
isolated several times from the outer auditory canals of Zebu 
cattle in Eastern Africa and Gyr cattle in South America, 
presenting a deeply different habitat (Cardona et al. 2010; 
Kiontke and Sudhaus 2006). C. bovis is believed to be the 
causative agent of bovine parasitic otitis. However, there is 
not enough information about the biology to classify it as a 
“true” parasite; C. bovis might instead be an opportunistic 
colonizer of niches created by other pathogens. The publi-
cation of the genome of C. bovis showed that the genome 
and gene set of C. bovis, compared to C. elegans is smaller 
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but at least three gene families have undergone an expan-
sion and all of them have been related to parasitism (Stevens 
et al. 2020). The FAR family of genes in C. bovis has been 
almost completely lost, except for FAR-8 which is repeated 
two times. This suggests that there might be a relationship 
between the adaptation to a completely different niche and 
the conservation and expansion of this FAR protein. These 
findings indicate how poorly understood these proteins are 
and that molecular analysis alone provides little information 
of the possible biological functions and role of these proteins 
in the major plot that is the evolution in nematodes.

Nematode polyprotein antigens/allergens (NPAs)

Nematodes present yet another well-described LBP group, 
the NPAs. These proteins are found in the pseudocoelomic 
fluid and connective tissue of nematodes, as well as in the 
E/S products where they induce a highly immunogenic 
response from the host (Kennedy 2011).

NPAs present a quite particular translation mechanism 
since they are produced as a large polypeptide that is post-
translationally cleaved by proteases rendering globular 
units of 15 kDa (Kennedy 2011). These units are helix-rich 
and can present similar or divergent amino acid sequences, 
depending on the species (Kennedy et al. 1995; Kuang et al. 
2009).

Only one of these proteins has its structure determined 
by nuclear magnetic resonance (NMR), ABA-1A from 
Ascaris suum (Meenan et al. 2011). This protein adopts a 
novel seven-helical fold comprising a long central helix that 
participates in two four-helical bundles. There are two dis-
crete hydrophobic ligand-binding pockets, one in each of the 
N-terminal and C-terminal bundles (Fig. 4). It is important 
to note that this is the first structure of a unit of any tandemly 
repetitive polyprotein yet reported. To date, the structure and 
ligand-binding characteristics of these proteins have been 
demonstrated only for single units of the polyprotein, but not 
for two or more units in tandem from the same polyprotein 
array as these functions might change if interactions with 
other subunits are present.

From the functional point of view, NPAs bind small 
lipids such as fatty acids and retinol as has been demon-
strated using in vitro fluorescence experiments (Moore et al. 
1999). Additionally, it has been shown that NPAs, particu-
larly ABA-1A, physically interact with membranes and 
they unload their lipid cargo by releasing it into the aqueous 
phase (McDermott et al. 2002). They have been described 
in several species of disease-causing nematodes, including 
Ascaris lumbricoides, A. suum and B. malayi of humans, and 
Dictyocaulus viviparus, Ostertagia ostertagi, Haemonchus 
contortus, and Dirofilaria immitis of domestic animals (Brit-
ton et al. 1995; Kuang et al. 2009; Poole et al. 1996; Selkirk 
et al. 1993; Solovyova et al. 2003; Xia et al. 2000).

Notably, as with other LBPs, NPAs are also found in 
free-living species from the phylum. Indeed the npa-1 gene 
from C. elegans has been involved in some morphological, 
and life span phenotypes obtained in gunshot RNAi experi-
ments (Ceol and Horvitz 2004; Curran and Ruvkun 2007). 
Unfortunately, no further functional experiments have been 
performed on these extremely interesting proteins.

Novel LBPs of parasitic helminths: a bottomless pit

It is well known that we are still in a lack of knowledge of 
novel species across the biodiversity worldwide and hence a 
lot of biomolecules are still to be described. A good example 
is the case of the dorylipophorin (GeneBank: MW014827.1) 
isolated from the pseudocoelomic fluid of Dioctophyme 
renale, the giant kidney worm (Giorello et al. 2017). To date, 
D. renale is a clade I nematode that has no genomic, tran-
scriptomic, or proteomic data, yet it is an important parasitic 
infection affecting domestic and wild fauna, not mentioning 
that it is a zoonosis (Eiras et al. 2021; Paras et al. 2018). The 
phylogenetically closest species for which genomic data is 
available is Sobolyphyme baturini that belongs to the same 
subclass Dorylaimia but is a member of an entirely differ-
ent family of nematode parasites. It is important to note that 
other members of clade I include the human parasites Tri-
churis trichiura and Trichinella spiralis.

Dorylipophorin has proven to selectively bind fatty acids 
from a highly heterogeneous environment (Giorello et al. 

Fig. 4   NMR structure of ABA-1A (PDB: 2XV9) from Ascaris suum. 
Black arrows are showing the two described ligand binding sites
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2017). N-terminal and internal peptide amino-acid sequences 
of this protein indicate a relationship with a cysteine- and 
histidine-rich protein of unknown function from Trichinella 
spiralis and Trichuris muris which are found to be the major 
component of E/S products (Radoslavov et al. 2010; Trit-
ten et al. 2017). Recently, the structure of P43, the major 
secreted protein from T. muris, was resolved to the atomic 
level, and it was shown to bind the signaling molecule inter-
leukin-13 (Bancroft et al. 2019). Since dorylipophorin and 
P43 present 50% sequence identity, these observations give 
room to hypothesize that dorylipophorin might be impor-
tant in the attenuation of host’s immune response. Notably, 
within the five clades that conform phylum Nematoda, clade 
I only presents FABPs and now this novel family of LBPs 
which seems to be clade specific.

Concluding remarks

Different members of LBPs are present in all parasitic hel-
minths. In some cases, they can be found broadly distributed 
like FABPs, but in other cases, they are highly specific of 
a particular group as is the case of HLBPs or the clade I 
from phylum Nematoda, to which P43 and dorylipophorin 
belong. LBPs are usually found in multigenic families where 
function might vary even in the same species, as more than 
one LBP protein might be present and its expression could 
change through the developmental stages.

Regardless of the enormous amount of information avail-
able, a specific function cannot be strictly associated with 
any of these families of proteins yet. As stated before, LBPs 
have been proposed to participate in the acquisition and dis-
tribution of lipids within tissues of the parasite; and/or in the 
modulation of the host’s immune systems. To date, experi-
ments performed with HLBPs and FAR proteins (exclusively 
found in cestodes and nematodes, respectively) presented 
strong evidence about their role in the modulation of the 
host’s immune response. On the other hand, FABPs might 
be involved in the distribution and storage of lipids in nema-
todes. Whether this is also the case for cestodes remains to 
be determined. For nemFABPs and NPAs, detailed knowl-
edge about their structure and possible natural ligands is 
available, but there are no direct functional experiments.

Finally, the HBLPs are the only LBPs with a detailed 
description of their cargo obtained from their natural envi-
ronment; this is clearly a missing block of information that 
needs attention in order to decipher the metabolic routes 
these proteins are related to.
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