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Abstract
The appearance of increasing drug resistance in apicomplexan intracellular Plasmodium falciparum presents a significant 
challenge. P. falciparum infection results in cerebral malaria (CM), causing irreversible damage to the brain leading to 
high mortality cases. To enhance the clinical outcome of the disease, further research is required to identify new molecular 
targets involved in disease manifestations. Presently, the role of non-coding microRNAs (miRNAs) derived from different 
cells implicated in CM pathogenesis is still barely understood. Despite the absence of miRNA machinery in Plasmodium, 
host-parasite interactions can lead to disease severity or impart resistance to malaria. Cytoadherence and sequestration of 
parasitized RBCs dysregulate the miRNA profile of brain endothelial cells, leukocytes, monocytes, and platelets, disrupting 
blood–brain barrier integrity and activating inflammatory signaling pathways. The abundance of miRNA in blood plasma 
samples of CM patients directly correlates to cerebral symptoms compared to non-CM patients and healthy individuals. 
Moreover, the differential host-miRNA signatures distinguish P. falciparum from P. vivax infection. Here, we review the 
diverse functions of host-miRNA, either protective, pathogenic, or a combination of the two, which may act as prognostic 
markers and novel antimalarial drug targets.
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Introduction

Malaria is a known inflammatory parasitic disease, with 
cerebral malaria (CM) being one of its most severe forms 
responsible for neuro-inflammation and disruption of the 
blood–brain barrier caused by Plasmodium falciparum. CM 
is an essential concern in the modern world, accounting for 
significant mortality rates, especially in children (Brewster 
et al. 1990; John et al. 2008; WHO 2020). In compliance 
with the world malaria report 2020, there were an estimated 
229 million malaria cases globally, with about 94% of cases 
reported in the WHO African Region (WHO 2020). The high 
burden of malaria and death still prevails among pregnant 

women and children (Makenga et al. 2020; SIMON-OKE 
et al. 2019). However, a more pressing situation would 
be accelerating current drug inefficacy, leading to clini-
cal resistance and asymptomatic peripheral parasitemia in 
highly endemic regions (Laishram et al. 2012; Raman et al. 
2020). Concordantly, the prevalence of malaria coinfection 
with other vector-borne parasites, HIV, and opportunistic 
pathogens curbs the drug efficacy (Deen 2021; Salam et al. 
2018). Current biological threats like parasite deletions of 
pfhrp2/3 genes make RDTs (rapid diagnostic tests) based on 
HRP2 ineffectual (Thomson et al. 2019; WHO 2017). Muta-
tions in PfKelch13 creating partial resistance to artemisinin 
(ART) and ART partner drugs (Birnbaum et al. 2020; Das 
et al. 2019; Nsanzabana 2019). Emerging vector resistance 
to insecticides has been a growing concern regarding malaria 
transmission (Gnanguenon et al. 2015; Ingham et al. 2017; 
Yewhalaw et al. 2011). The dream for a malaria vaccine is 
no longer unattainable. Among many proposed vaccines for 
malaria, including pre-erythrocytic vaccines, blood-stage 
vaccines, and transmission-blocking vaccines, RTS,S vac-
cine has been the front runner candidate that began its pilot 
implementation project in three African countries in 2018 
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(Coelho et al. 2017). However, the latest studies reveal that 
the efficacy of the RTS,S vaccine is partial and depends on 
host immunologic and genetic factors (Dobano et al. 2019; 
Khan et al. 2020; Nielsen et al. 2018). This situation calls for 
novel ways to diagnose and treat the infection, and miRNAs 
might provide us with a promising standpoint for tackling 
this current predicament.

MicroRNAs (miRNAs) are small non-coding RNA 
molecules with no biological function, approximately 22 
nucleotides in length. They regulate mRNA expression via 
a process known as translational repression by binding to 
their putative mRNA target through complementary base 
pairing, as demonstrated in Fig. 1. Thus, leading to cleavage 
of mRNA or decreases translational efficiency by causing 
improper ribosomal loading followed by mRNA destabiliza-
tion. (Bartel 2009; Bartel 2018; Bartel 2004; Fabian et al. 
2010). Additionally, miRNAs in high concentrations inter-
vene at a transcriptional level by hypermethylation of genes 
encoding target RNAs resulting in reduced transcription 
(Khraiwesh et al. 2010). Metazoan microRNAs maintain 
a characteristic profile under normal physiological condi-
tions where they regulate tissue-specific functions in which 
they are uniquely expressed (Liang et al. 2007; Ludwig et al. 

2016; van de Bunt et al. 2013). Dysregulation of miRNA 
profile is observed in response to disrupting normal meta-
bolic processes due to external stimuli like infiltration of 
a pathogen into a host cell (Ruiz-Tagle et al. 2020; Zhou 
et al. 2018). Since many pathogens prefer a specific tissue 
to infest, some miRNAs uniquely expressed in those tissues 
characteristically dysregulate in response, thereby altering 
the expression levels of their target genes. Such incidences 
reinforce miRNAs clinical potential as next-generation med-
icine and diagnostic tool (Chakraborty et al. 2017).

Interestingly, these alterations might cause a protective 
effect or aid in disease progression. P. falciparum completes 
its asexual life-cycle in human red blood cells (RBCs) as a 
host. The RBCs harbor few miRNAs and modulate the infec-
tivity process by serving as clinical biomarkers of specific 
disease conditions (Sun et al. 2018; Sun et al. 2020). Con-
siderable work has shown that intracellular malarial para-
sites lack miRNA biogenesis, and changes in host-miRNAs 
control parasite development, as shown in Fig. 2 (Rathjen 
et al. 2006; Xue et al. 2008). However, minimal informa-
tion on miRNA in malaria pathogeny has been established 
and remains elusive to date. Our review’s main aim is to 
understand better how this dysregulation of specific miRNAs 

Fig. 1  Schematic representation of miRNA biogenesis leading to miRNA-induced translational inhibition in mammalian host cells
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during plasmodial infection affects host-parasite interactions 
and provide insight on ways to exploit them for clinical ben-
efit. A complete list of the functions and pathways targeted 
by each miRNA during Plasmodium infection is represented 
in Table 1.

Role of miR‑451 in Plasmodium infection

The miR-451 family originates from a bicistronic gene 
cluster—premiR-144/451 that encodes for miR-144 and 
miR-451, which are highly conserved genes. miR-451 are 
profoundly located inside RBCs and are primarily involved 
in normal human erythropoiesis (Masaki et al. 2007; Wang 
et al. 2019) and tumor progression (Bai and Wu 2019). 
An in vitro analysis has shown that miR-451a is found in 
abundance in the cell conditioning media of human brain 
endothelial (HBE) cells infected with cytoadhering strain of 
P. falciparum FCR3 serving as a model for cerebral malaria 
(Gupta et al. 2021). A study outlined the examination of 

extracellular vesicles (EVs) released by parasitized-RBCs 
(pRBCs) during a blood-stage P. falciparum infection that 
revealed miR-451a to be highly concentrated inside those 
EVs (Babatunde et al. 2018). Moreover, these EVs contain-
ing miR-451a RISC complex with Ago2 integrated with 
endothelial cells and downregulated CAV-1 and ATF-2, caus-
ing endothelial barrier dysfunction and apoptosis (Mantel 
et al. 2016).

Similarly, another study demonstrated a high accumula-
tion of hAgo2-miRNA complex inside EVs released from 
pRBCs, which were transferred into the parasites where 
miR-451 downregulated the var gene of parasite virulence 
factor PfEMP1, essentially providing resistance (Wang et al. 
2017). This particular miRNA is found inside sickle cell 
erythrocytes and variants, blocking Plasmodium mRNA 
translation and conferred malaria resistance (Feliciano 2012; 
LaMonte et al. 2012). Furthermore, a notable dichotomy was 
observed in the dysregulation of miR-451 when compar-
ing the plasma miRNA profiles of patients suffering from 
P. vivax and P. falciparum. Significant downregulation of 

Fig. 2  Involvement of host-miRNAs in Plasmodium infections: aberrant expression of dysregulated host-miRNAs by different cell types leading 
to breakdown of “blood brain barrier” integrity which acts as disease progression marker and a therapeutic target for treating malaria
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miR-451 was noted during a P. vivax infection which nega-
tively correlated to parasitemia. On the other hand, miR-
451 showed marked upregulation in a P. falciparum infec-
tion (Chamnanchanunt et al. 2015). The collected evidence 
shows the potential of this miRNA family as an ideal bio-
marker in distinguishing different forms of malarial disease 
and a possible candidature (miR-451) in the treatment of P. 
falciparum malaria. An in vivo study suggested that miR-
451 negatively regulated parasitemia by limiting  CD4+ pro-
liferation by directly targeting the Myc gene during infection 
(Chapman et al. 2017). Myc gene is a known regulator of 
cell cycle progression and tissue proliferation (Henriksson 
and Luscher 1996), and  CD4+ T-cells have been demon-
strated to be critical in malaria clearance in humans (Pombo 
et al. 2002). It has been evidenced by inoculating P. yoelii 
XNL into WT and miR  451−/− mice. The miR  451−/− mice 
showed faster parasite clearance in blood and an increased 
leukocyte response, particularly  CD4+ T-cells. The reason 
explained was partly due to the suppression of Myc-regu-
lated genes that affected T-cell proliferation. Based on the 
findings, we reasoned that nonoverlapping evidence of miR-
451 between in vivo and in vitro systems attributes to the dif-
ferences in metabolic regulations and biological pathways.

Role of miR‑155 in Plasmodium infection

Certain miRNAs do not show significant dysregulation dur-
ing a specific infection but could position themselves as a 
critical player in therapeutics, such as the case of miR-155 in 
the course of cerebral malaria infection. miR-155 has widely 
been accepted as an oncomiR significantly upregulated and 
modulates tumor progression in breast cancer (Iorio et al. 
2005; Jiang et al. 2010; Neilsen et al. 2013). Besides its 
oncogenic properties, miR-155 is also involved in regulating 
inflammation (Hu et al. 2014; Tili et al. 2011), with SHIP1 
and SOCS1 being its primary targets (O'Connell et al. 2009; 
Qayum et al. 2016). Bioinformatic analysis exhibited miR-
155 to moderate CD36, TLR4, IFN-γ, and PRR15 respon-
sible for the progression of cerebral malaria (Rangel 2017). 
Furthermore, a study revealed that inhibiting miR-155 leads 
to increased survivability due to reduced vascular leakage 
and conservation of the “blood–brain barrier” despite caus-
ing a higher inflammatory response. It was experimen-
tally shown by infecting miR-155−/− and WT mice with 
P. berghei ANKA (Barker et  al. 2017). The study also 
substantiated that miR-155 inhibition with Antagomir155 
reduced vascular leakage induced by sera samples collected 
from Ugandan children with CM in an ex vivo endothelial 
microvessel model (Barker et al. 2017). Another study dis-
played a significant increase of miR-155 in Kupffer cells of 
mice infected with injections of genetically attenuated para-
sites (GAP) of P. berghei uis3(-) to induce immunity, and 

ectopic administration of miR-155 using adeno-associated 
virus 8 (AAV8) vectors reduced the number of injections 
required to induce sterile immunity in the liver from 3 to 
1(Hentzschel et al. 2014).

In other apicomplexan parasites, a study reported that 
intravenously injected Leishmania donovani (LV82) amas-
tigotes in miR-155 knockout (KO) mice showed an inade-
quate immune response a higher parasite count in the spleen 
and liver. The recovery of miR-155 KO mice from para-
sitemia is twice as slow as its WT counterpart. This study 
indicates miR-155 as an enhancer of immunity by modulat-
ing IFN-γ, IL-4, and CCR2 but is inessential in resolving/
curing infection since both mutant and WT mice eventu-
ally cleared the parasites (Varikuti et al. 2019). Another 
investigation showed that T. gondii (RH) infected dendritic 
cells (DC2) released exosomes with high miR-155-5p lev-
els. These exosomes were taken up by macrophage cells 
(RAW264.7) where miR-155-5p targeted SOCS1 to activate 
the NF-κB pathway, triggering pro-inflammatory cytokines 
(IL-6, TNFα, iNOS). This condition resulted in M1 polari-
zation of the macrophages leading to inhibition of T. gon-
dii proliferation. Transfection of miR-155-5p mimic into 
RAW264.7 cells under in vitro conditions displayed a similar 
effect (Jiang et al. 2021). The availability of such compelling 
evidence indicates miR-155 as a possible target for treating 
cerebral malaria as an adjunct therapy.

Role of miR‑27a in Plasmodium infection

miR-27a is a crucial component of the host-miRNA profile 
of many apicomplexan parasitic infections. This family of 
miRNA is highly expressed in endothelial cells, involved 
in angiogenesis, and the central nervous system controlling 
apoptosis (Urbich et al. 2012) and neuroinflammation dur-
ing oxidative stress in the brain (Narasimhan et al. 2012). 
Increased expression of miR-27a was observed in the brain 
tissue of mice infected with P. berghei ANKA linked to 
increased TNF expression (El-Assaad et al. 2011). Addi-
tionally, miR-27a-5p had elevated levels in the brain tissue 
of CM-infected mice (Martin-Alonso et al. 2018). Interest-
ingly, a study on Thai patients with P. falciparum infec-
tion showed that miRSNPs in miR-27a and miR-146a did 
not alter CM pathogenesis (Wah et al. 2019). It indicates 
that miR-27a retains its function and target specificity even 
upon mutation marking this small non-coding RNA to have 
clinical significance in malarial pathogenesis. These find-
ings solidify the prospect of miR-27a as a CM fingerprint. 
A study elucidated the upregulation of miR-27a/b blocked 
ABCA1 gene expression (Zhang et al. 2014). Inhibition of 
ABCA1 conferred protection from CM as ABCA1 KO mice 
reported complete resistance to P. berghei ANKA infec-
tion (Combes et al. 2005). Notably, it was observed that 
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Tanshinone IIA (Tan) inhibited LPS induced inflammatory 
damage to human bronchial epithelial cells (BEAS-2B) by 
repressing miR-27a, causing inactivation of PI3K/AKT and 
JNK pathways (Liu and Meng 2018). It is noteworthy to 
look at the role of miRNAs during inflammation in severe P. 
falciparum infection. The therapeutic capability of miR-27a 
has been explored in other parasitic diseases. A significantly 
elevated level of miR-27a was observed in the intestinal tis-
sue of Kazakh sheep resistant to Echinococcus granulosus 
infection, suggesting the involvement of miR-27a mediated 
resistance (Jiang et al. 2016). In Leishmania major infected 
macrophages, miR-27a mimic acted synergistically with 
miR-340, resulting in reduced macrophage infectivity by 
downregulation of IL-10 and TGF-β1 expression (Hamidi 
et al. 2021). These inflammatory pathways are also involved 
in the progression of cerebral malaria, indicating that further 
studies warrant exploration of this crucial lead.

Role of miR‑150 in Plasmodium infection

miR-150 is abundantly found in the brain tissue of mice 
induced with CM infection (Cohen et al. 2018; El-Assaad 
et al. 2011; Martin-Alonso et al. 2018). This particular 
miRNA is highly abundant in monocytes, and its increased 
levels in brain tissue are due to the sequestration of mono-
cytes during disease progression (El-Assaad et al. 2011). 
miR-150 is expressed majorly in mature lymphocytes 
and is known to negatively regulate transcription factor 
c-Myb controlling different stages of lymphocyte develop-
ment, specifically B cell differentiation (Xiao et al. 2007). 
A study revealed that mutant mice lacking miR-150 had 
decreased mature NK cells (Bezman et al. 2011), affecting 
parasite clearance. It was further evidenced where human 
NK cells were directly stimulated by Leishmania promas-
tigotes or their lipophosphoglycan (LPG) to produce IFN-
γ, which further activated macrophages and curtailed the 
progression of early-stage infection in culture (Bogdan 
2012). Conferring with prior reports, miR-150 aggrega-
tion in the brain tissue during CM possibly hampers NK 
cell development and aid in the pathogenesis of cerebral 
malaria. Interestingly, erythrocytes loaded with chemically 
synthesized miR-150-3p and miR-197-5p hindered para-
site invasion and growth. Moreover, the miRNA-loaded 
pRBCs downregulated the expression of Plasmodium 
apicortin resulting in reduced secretion of apical mem-
brane antigen1 (AMA1) (Chakrabarti et al. 2020). Inject-
ing miR-150 alone or combining antimalarial agents in 
malaria patients could effectively reduce the parasitic bur-
den as a new therapeutic intervention. Conversely, a study 
linked miR-150-5p as a marker to non-thrombocytopenic 
P. vivax infections by conducting bioinformatic analyses 
using patient samples (Santos et al. 2020). The revealed 

data holds as miR-150 is a known modulator of platelet 
biogenesis and activity (Gatsiou et al. 2012; Pordzik et al. 
2018). Further investigations should open up diagnostic 
prospects of miR-150 in the case of P. vivax malaria con-
cerning severe thrombocytopenia.

Role of miR‑146 in Plasmodium infection

The miR-146 family has shown great potential in moderating 
cerebral malaria biogenesis. This family has been involved 
in innate immunity via regulation of TLR signaling result-
ing in cytokine response (Sonkoly et al. 2008). miR-146 
and miR-155 induce pro-inflammatory stimuli like IL-1, 
TNFα, and TLRs (Sheedy and O'Neill 2008) and are widely 
studied as oncogenic modulators (Testa et al. 2017). They 
also have been verified to modulate genes (CD36, TLR4, 
IFN-γ, and PRR15) responsible for cerebral malaria (Rangel 
2017). Furthermore, increased levels of miR-146a in plasma 
microvesicle of CBA mice infected with P. berghei ANKA 
were confirmed. The increase was attributed to the trigger-
ing of factors such as IL-1 and TNF, causing suppression of 
inflammation-inducing genes and those involved in toll-like 
receptor pathways like TLR2 and TLR4 (Cohen et al. 2018). 
We previously discussed miRSNPs do not alter miRNA 
function and target specificity in CM (Wah et al. 2019). The 
data is consistent regarding another community study that 
elucidated miR-146a polymorphism was not associated with 
P. falciparum, P. vivax, or mixed infection in southern India 
(van Loon et al. 2020). However, another study from the 
same group demonstrated that miR-146a SNP (rs2910164) 
promoted the manifestation of P. falciparum malaria, espe-
cially in Ghanaian women suffering from pregnancy-asso-
ciated malaria (PAM), by causing failure of TLR activity 
leading to altered expression in IRK-1 and TRAF6 levels 
(van Loon et al. 2019).

Additionally, miR-146a has shown a manipulative role in 
other parasitic infections. Elevated expression of miR-146a 
during Leishmania major infection in mice blocks TGF-β 
signaling, causing the diminution of the parasite inside the 
macrophages (Nimsarkar et al. 2020). However, in a Toxo-
plasma infection mice model, increasing miR-146a and miR-
155 correlated with increased infection. Ablation of miR-
146a expression in infected mice showed decreased IFN-γ 
levels and played a protective role during early infection of 
Toxoplasma in the gut (Cannella et al. 2014). These findings 
point to the fact that each parasite-host interaction responds 
differently in the presence or absence of the same micro-
RNA. This implies that the role of a specific microRNA is 
functionally different in every apicomplexan infection, even 
if it shows similar dysregulation among all of them.
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Role of let‑7 in Plasmodium infection

The let-7 family of miRNA is important to assess when dis-
cussing CM. This family of miRNA regulates all the three 
genes of the RAS domain in humans (Johnson et al. 2005) 
and is embroiled in negatively regulating TLR4 expression, 
the major immune receptor of microbial lipopolysaccharide 
during protozoan infection (Androulidaki et al. 2009; Hu 
et al. 2009). Significantly elevated levels of Let-7i were 
noted in the brain tissue of CBA mice suffering from CM. 
The role of TLRs during P. falciparum infection is argued, 
but increased levels of this miRNA in CM infection lead-
ing to TLR4 activation might be due to the difference in 
host genetic factors (El-Assaad et al. 2011). On the other 
hand, let-7i contributes to Cholangiocyte immune responses 
against Cryptosporidium parvum infection by regulating 
TLR4 (Chen et al. 2007). A general trend of decrease of 
let-7i upon microbial infection is evidenced by an experi-
ment that showed NFκB p50 and C/EBPβ mediating let-7i 
silencing following C. parvum infection or LPS treatment 
(Chen et al. 2007). It is hypothesized that infection leads to 
the formation of a repressor (NFκB p50-C/EBPβ silencer 
complex) that binds to the let-7i promoter region and pro-
motes histone H3 deacetylation (Chen et al. 2007; O'Hara 
et al. 2010).

The protective role of the let-7 family is further strength-
ened from research which demonstrated accelerated liver 
generation due to upregulation of a multitude of members 
of the family (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, 
let-7f-5p, let-7 g-5p, let-7i-5p) among others (miR-27a 
included) in Balb/c mice protected by vaccination during a 
crisis of Plasmodium chabaudi blood-stage malaria (Dkhil 
et al. 2016). Surprisingly, a member of the let-7 family is 
involved in regulating gene expression in P. falciparum. Let-
7a, accompanied by two more host RBC miRNAs (miR-15a 
and miR-144), are imported into the parasite along with 
components of miRISC (hAgo2) that target Plasmodium 
mRNAs encoding putative Rad54, L/S symporter genes, and 
Mal8p1.29, which provide additional stability and regula-
tory network to parasite mRNAs (Dandewad et al. 2019). 
Furthermore, it is observed that hAgo2 is imported in each 
of the intraerythrocytic stages of P. falciparum and its lev-
els increase as the parasite progresses from ring to schizont 
stage (Dandewad et al. 2019), thus serving as a possible 
indicator in disease progression.

Role of miRNA signature (cohort) 
in Plasmodium infection

It is also imperative to look at sets of miRNAs as indi-
vidual markers and define microRNAs that work syner-
gistically to provide a more detailed account of disease 
progression and a prognostic marker or a medium for 
treatment. A study reported dichotomous miR expression 
in whole blood miRNA profile of CHMI volunteers with 
falciparum malaria on three occasions, i.e., prior to Day 
4 and Day 7. A 3-miR signature consisting of miR 15a-
3p, miR 30c-5p, and miR30e-5p is differentially expressed 
between high miR responders versus low miR responders. 
The signature negatively correlated with parasite burden 
and is considered a potential peripheral blood biomarker 
controlling blood-stage infection (Burel et al. 2017). Upon 
acute P. berghei ANKA infection, differentiation of mono-
cyte-derived dendritic cells resulted in dysregulation of 
miR-16-5p and miR-491-5p as a signature that potentially 
targets neuroinflammation and dendritic cell maturation 
(Assis et al. 2020). Consistent with the above findings, the 
expression profile of peripheral whole blood miRNA dur-
ing the blood stage of adult imported falciparum malaria 
(AIFM) in patients showed marked upregulation of five 
miRNAs (miR-6780b-5p, miR-3135b, miR-1246, miR-
6126, and miR-3613-5p) (Li et al. 2018).

Further in silico analysis established the diverse roles 
of these miRNAs in immune response and as a biomarker 
in the early detection of P. falciparum malaria. Subse-
quently, in whole blood samples of complicated P. vivax 
malaria, five miRNAs (hsa-miR-7977, hsa-miR-28-3p, 
hsa-miR-378-5p, hsa-miR-194-5p, hsa-miR-3667-5p) were 
significantly upregulated. In silico analysis exemplified 
that high levels of miR-7977 may play a putative role in 
complicated P. vivax through UBA52 or TGF-beta sign-
aling pathway. This makes miR-7977 a robust potential 
candidate as a biomarker for differentiating complicated 
P. vivax malaria from uncomplicated type for effective 
prognosis and treatment (Kaur et al. 2018). Another study 
conducted using a longitudinal pediatric cohort in Burkina 
Faso demonstrated that diminution of immune cells during 
P. falciparum infection was attributed to the upregulation 
of miR-15a-5p, miR-16-5p and miR-181c-5p by targeting 
anti-apoptotic gene BCL2 and induce apoptosis (Dieng 
et al. 2020). Lymphocyte depletion was hypothesized to 
be caused due to internalization of pRBCs enriched with 
the upregulated miR signature.

Additionally, there is mounting evidence to show that P. 
chabaudi infection in female C57BL/6 mice demonstrated 
sustained expression of hepatic miRNAs signature after 
repeated infection imparted protection by regulating the 
epigenetic modifications in genes. The reprogramming of 
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the distinct liver-miRNA species in immune mice resulted 
in the self-healing of P. chabaudi infection (Delic et al. 
2011). Same investigators further reported the effect of 
protective vaccinations on differential miRNA expression 
in the liver of Balb/c mice against P. chabaudi challenge 
infections. They observed that vaccinations induced liver-
miRNA signatures were consistent and able to self-heal 
and survive mice to lethal infections (Dkhil et al. 2016). 
Moreover, another study revealed a similar effect on liver-
miRNA signature upon P. chabaudi infection in response 
to testosterone (Al-Quraishy et al. 2012). Presently, lim-
ited studies fail to provide a detailed mechanistic action 
on the self-healing potential of dysregulated liver-miRNA 
species during reinfection, and further studies are required 
to understand their protective role.

Conclusion and future perspectives

miRNAs remain an attractive novel target in alleviating the 
disease condition, especially when the Plasmodium spp. 
have developed clinical resistance to almost all front-line 
antimalarial drugs. This review comprehensively covered 
various facets involving miRNAs interactions with host-
signaling pathways during Plasmodium infections. miRNA 
therapy is recommended as a standalone or adjunctive 
therapy for numerous diseases in various clinical trials. 
Therefore, suppressing detrimental miRNAs and restoring 
suppressed miRNAs could be a feasible approach in arrest-
ing the growth of Plasmodium and other inflammatory path-
ways. Also, this review stresses that a thorough understand-
ing is required of the paradoxical functions of miRNA, their 
targetome interactions and signaling pathways. Due to the 
absence of miRNA biogenesis in Plasmodium, controlling 
the host cell-induced miRNAs regulatory pathway provides 
an alternative treatment strategy in malaria infections. In 
support of this notion, coadministration of chemically modi-
fied antisense oligonucleotides in a stable nanocarrier sys-
tem along with antimalarial agents may significantly reduce 
cerebral-malarial symptoms. Usage of miRNA sponges will 
help decipher the loss- or gain-of-function of listed miRNAs 
involved in pathogenesis as an alternative tool. Aberrant 
expression of malaria-specific miRNAs in plasma could be 
a possible indicator in diagnostics as a non-invasive, early 
detection marker. There is limited information on miRNA-
regulatory pathways in malaria which warrants further stud-
ies in clinical use. Altogether, it seems reasonable to suggest 
that miRNAs in Plasmodium infection can be considered a 
potential druggable target and biomarker tool.
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