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Abstract
The order Piroplasmida encompasses tick-borne pathogens of veterinary and medical importance positioned in two main 
families: Babesiidae and Theileriidae. Even though previous studies carried out in Brazil recorded the occurrence of piro-
plasmid species circulating in small mammals, 18S RNA gene sequences were only partially sequenced, preventing the 
assessment of their phylogenetic positioning. The current study aimed to detect and characterize, using morphological, 
molecular, and bioinformatic approaches, piroplasmids from wild mammals and associated ticks sampled in Central-Western 
Brazil. Out of 67 Didelphis albiventris sampled, 22 (16.4%) were positive for piroplasmids by PCR. In contrast, none of the 
48 small rodents and 14 capybaras (Hydrochoerus hydrochaeris) was PCR-positive. Four Amblyomma dubitatum ticks—one 
from Rattus rattus, one from H. hydrochaeris, and two from D. albiventris—out of 114 Amblyomma spp. DNA samples were 
positive for piroplasmids by PCR. The phylogenetic inference performed using the near-complete 18S rRNA gene positioned 
the putative novel piroplasmid species detected in D. albiventris and associated A. dubitatum ticks near to Babesia sensu lato 
clade (Western group—cluster III) and distant from the Australian marsupial-associated piroplasms. Phylogenetic inferences 
based on two additional molecular markers, namely hsp-70 and cox-1, supported the near-complete 18S rRNA gene phyloge-
netic inference. Finally, the partial 18S rRNA gene sequences detected in ticks from rodents (R. rattus and H. hydrochaeris) 
showed 97.2–99.4% identity with the Piroplasmida previously detected in a capybara from Brazil, raising evidence that a 
still uncharacterized piroplasmid species has been identified in the capybara, the largest rodent species from South America.
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Introduction

Environmental changes, such as deforestation and urbani-
zation, caused by anthropic actions may alter the transmis-
sion dynamics of vector-borne agents, precipitating the 
emergence of infectious diseases and the spillover of path-
ogens from humans and domestic animals to wildlife and 
vice versa (Chomel 2007; Price et al. 2019). In urban and 
peri-urban areas, the frequency of contact between humans, 
their pets, and wildlife ranges from occasional encounters 
to permanently sharing sites, hence increasing the chance of 
pathogens spillover (Mackenstedt et al. 2015).

Piroplasmids, haemoprotozoan parasites belonging to 
the order Piroplasmida (Phylum Aplicomplexa), encompass 
tick-borne pathogens of veterinary and medical importance 
distributed worldwide. These organisms are positioned into 
two main families (Babesiidae and Theileriidae) and taxo-
nomically grouped into three main genera: Babesia, Theile-
ria, and Cytauxzoon (Schnittger et al. 2012; Jalovecka et al. 
2018; 2019).

Traditional parasitological methods such as microscopy 
are insufficient for identification and classification of 
piroplasmids found in wild vertebrate hosts. In contrast, 
molecular approaches have overcome some issues in the 
piroplasmids taxonomy (Schnittger et al. 2012; Jalovecka 
et al. 2019). Currently, based on molecular and phylogenetic 
data, ten clades of piroplasmids are distinguished (Jalovecka 
et al. 2019).

In contrast to studies carried out in Brazil targeting piro-
plasmids in domestic animals, the data regarding this group 
of protozoans in wild mammals is still incipient. For instance, 
Criado-Fornelio et al. (2009) detected a Piroplasmida geno-
type—showing 90% of identity with Theileria equi—in one 
out of 14 (7.14%) capybaras (H. hydrochaeris) sampled in 
Pelotas, State of Rio Grande do Sul, extreme south of Bra-
zil. In addition, Wolf et al. (2017) reported two Piroplasmida 
genotypes in wild rodents (Thrichomys pachyurus [27.2%; 
3/11]) and marsupials (Monodelphis domestica [50%; 1/2]) 
trapped in Poconé municipality, State of Mato Grosso, Central-
Western Brazil. In the Amazon forest, Soares et al. (2017) 
reported Theileria spp. in one agouti (Dasyprocta sp. [n = 2]) 
and four lowland pacas (Cuniculus paca [n = 32]). In addition, 
the authors detected Piroplasmida DNA in one common opos-
sum (Didelphis marsupialis [n = 19]). Besides, Sousa et al. 
(2018) reported two Piroplasmida genotypes closely related 
to Babesia vogeli (6.5%; 5/77) and T. equi (1.3%; 1/77) in 
wild rodents (Trychomis fosteri) in Pantanal biome. Recently, 
Colle et al. (2019) reported a Piroplasmida genotype in two 
out of 31 (6.45%) D. marsupialis trapped in Sinop, State of 
Mato Grosso. This Piroplasmida genotype was identical to that 
one previously detected in common opossum sampled in Pará 
State, Northern Brazil (Soares et al. 2017).

Although some studies have been carried out aiming at 
performing the molecular characterization of piroplasmids in 
rodents and marsupials in Brazil, all of them were performed 
using a partial fragment of the 18S rRNA gene, precluding the 
accurate phylogenetic positioning of the detected piroplasmid 
species.

In light of the current scenario, the present study aimed 
to (i) investigate the occurrence and molecularly characterize 
piroplasmids in Rodentia and Didelphiomorphia mammals and 
their associated ticks in urban and urban forest fragments from 
Brazil; and (ii) morphologically and molecularly characterize 
a piroplasmid species infecting D. albiventris from Central-
Western Brazil, by light microscopy and phylogenetic assess-
ment based on three different molecular markers.

Material and methods

Ethical statement

The animal captures were in accordance with the licenses 
obtained from the “Instituto Chico Mendes de Con-
servação da Biodiversidade” (license number 56912–2), 
Imasul (license number 001/2017) and endorsed by the 
Ethics Committee of FCAV/UNESP under the number: 
01952/18.

Study sites, mammals trapping, and blood 
and ectoparasite sampling

Between May 2017 and August 2018, 105 mammals 
belonging to four different species were sampled in dif-
ferent sites of Campo Grande municipality (− 20° 42′ 30″ 
S, − 54° 61′ 60″ W), State of Mato Grosso do Sul, Central-
Western Brazil. In Campo Grande, 48 small rodents (Rat-
tus rattus [n = 39] and Mus musculus [n = 9]) were trapped 
in urban areas (four sites) and urban forest fragments (four 
sites). Additionally, 14 capybaras (H. hydrochaeris) and 
43 marsupials (D. albiventris) were trapped in three and 
six urban forest fragments, respectively, in Campo Grande. 
All capture procedures and blood sample collection were 
performed as previously described (Nantes et al. 2019; 
Gonçalves et al.2020).

The sampled animals were checked for the presence 
of ticks. Once collected, the arthropods were placed in 
microtubes containing absolute ethanol (Merck®) and 
maintained at − 20 °C until morphological identification 
and DNA extraction. The morphological identification 
was performed using previously described taxonomic 
keys (Onofrio et al. 2005; Martins et al. 2010; Linard et al. 
2014; Anholt et al. 2014; Pereira et al. 2017).
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Additionally, between May 2019 and January 2020, 
24 blood samples from marsupials (D. albiventris) were 
obtained from a rescue center (“Centro de Triagem de Ani-
mais Silvestres do Distrito Federal”—CETAS–DF) in the 
Federal Disctrict. The animals were from urban areas of 
Brasilia (15° 47′ 38″ S 47° 52′ 58″ O), Distrito Federal 
(DF), and were sampled by convenience, independently 
of age, gender, or clinical status.

Giemsa‑stained blood smears

Blood smears were performed using peripheral blood sam-
ples collected from wild Rodentia and Didelphiomorphia 
mammals, fixed with methanol (Merck®, Darmstadt, Ger-
many) and stained with Giemsa (Giemsa stain, modified, 
Sigma-Aldrich®, St. Louis, MO, USA). The blood smears 
were then observed at 1000 × magnification and images of 
the parasites recorded using a Olympus BX-43 microscope 
coupled to a camera (Olympus DP73). The piroplasmid 
dimensions detected in D. albiventris’ blood smears were 
measured using the Olympus CellSens™ microscope 
imaging standard software.

DNA extraction and quality assessment

DNA was extracted from 10 mg of each small rodent spleen 
tissue, and from 200 µL of each blood sample from marsu-
pials and capybaras, using the DNeasy® Blood & Tissue 
Kit (Qiagen®, Valencia, California, USA), according to 
the manufacturer’s instructions. Furthermore, the sampled 
arthropods were submitted to DNA extraction individually 
and/or in pools of up to three tick nymphs or seven tick lar-
vae from the same host.

In order to discard the presence of PCR inhibitors, all 
extracted mammal DNA samples were used as a template in 
an internal control PCR targeting the mammal gapdh gene 
(Birkenheuer et al. 2003). Likewise, all arthropod DNA 
samples were submitted to an internal control PCR assay 
targeting the 16S rRNA (Black and Piesman 1994). Internal 
control-PCR positive samples were submitted to a nested 
PCR assay targeting a fragment of the 18S rRNA gene of 
piroplasmids.

Molecular detection and characterization 
of piroplasmids in mammals and associated ticks

Firstly, DNA samples were screened for piroplasmids 
DNA using a nested PCR assay targeting a small 
fragment (~ 800 bp) of the 18S rRNA gene as previously 
described (Jefferies et  al. 2007). Additionally, the 
positive samples were subjected to further molecular 
character ization using conventional PCR assays 

targeting seven molecular markers, namely near-complete 
18S rRNA gene (1500  bp—Greay et  al. 2018), cox1 
(~ 800 bp—Corduneanu et al. 2017), hsp70 (~ 700 bp—
Soares et al. 2011), β-tubulin (600 bp—Zamoto et al. 2004), 
ITS1 (~ 450 bp BROWN et al. 2009), cytB (~ 1 kb—Barbosa 
et  al. 2019), and cox3 (~ 600  bp Barbosa et  al. 2019). 
Additionally, a qPCR assay targeting a lsu region (130 bp) 
was performed (Qurollo et al. 2017). Conventional PCR 
assays were carried out in 25 µL reaction volume containing 
10 × PCR buffer, 1.0 mM MgCl2, 0.8 mM deoxynucleotide 
triphosphate (dNTPs) mixture, 1.5 U Taq DNA Polymerase 
(Life Technologies®), 0.3 µM of each primer, and 5 µl of 
DNA—used as a template.

A qPCR assay was carried out for marsupial blood sam-
ples DNA using the primers B-lsu-F (ACC​TGT​CAA​RTT​
CCT​TCA​CTAAMTT) and B-lsu-R (TCT​TAA​CCC​AAC​
TCA​CGT​ACCA) as previously described (Qurollo et al. 
2017). Briefly, the amplification reaction was performed 
using the CFX96 thermal cycler (Bio-Rad, CA, USA) real-
time system. The qPCR assays were performed with a final 
volume of 10 µL containing 5 µl of 2xqPCR SYBRBIO 
(PCR Biosystems™, London, UK), 0.6 μM of each primer, 
and 1 μL of each DNA sample. The amplification protocol 
used was as follows: 3 min at 98 °C, followed by 40 cycles 
of 15 s at 98 °C, 15 s at 60 °C, and 15 s at 72 °C. The melt-
ing curves were acquired using 0.5 °C steps, withholds of 
5 s, from 65 to 88 °C. The results were assessed through 
observation of amplification curves using a CFX96 thermal 
cycler. Serial dilutions were performed with the aim of con-
structing standard curves with different concentrations of 
Gblock DNA (Gblock; Integrated DNA Technologies, USA) 
(2.0 × 107 to 2.0 × 100 copies/μL), which encoded a 135-bp 
B. bovis Isu fragment.

DNA of B. bovis (Matos et al. 2017) and ultra-pure water 
were used as positive and non-template controls, respec-
tively, in all (q)PCR assays.

The 18S rRNA gene (large fragment) positive ampli-
cons were submitted to pGEM-T Easy vector cloning (Pro-
mega® Madison, WI, USA), following the manufacturer’s 
recommendations. One clone from each positive sample was 
selected for sequencing, according to the blue/while colonies 
system. Finally, the identified clones were submitted to plas-
mid DNA extraction using the Illustra® PlasmidPrep Mini 
Spin Kit (GE Healthcare, Buckinghamshire, UK) and to a 
PCR assay targeting the multiple cloning sites of the pGEM 
T-Easy plasmid (Lau et al. 2013).

The obtained amplicons were purified using the 
EXOSAP-IT® (Applied Biosystems) and submitted to 
sequencing in an automatic sequencer (ABI Prism 310 
Genetic Analyser—Applied Biosystem/Perkin Elmer). 
Consensus sequences were obtained by Phred-Phrap 
program with Phred quality score established at ≥ 20 
(Ewing et al. 1998).
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BLAST, phylogenetic analyses, and generation 
of distance matrices

Identity, query coverage, and e-values were assessed by 
BLASTn tool (using default parameters), available in 
the NCBI GenBank database (Altschul et al. 1990). The 
obtained sequences were aligned with other sequences 
retrieved from GenBank using MAFFT software, version 
7 (Katoh et al. 2019), using default gap penalty on EMBL-
EBI analysis tools (Madeira et al. 2019). The model “best 
of fit” was selected by the program jModelTest2 (version 
2.1.6) on 11 XSEDE19, under the Akaike information 
criterion (AIC) (Darriba et  al. 2012). The Bayesian 
inference (BI) analysis was performed for both large and 
short 18S rRNA gene sequences with MrBayes 3.1.2. 
(Ronquist and Huelsenbeck 2003). Markov chain Monte 
Carlo (MCMC) simulations were run for 107 generations 
with a sampling frequency of every 100 generations and 
a burn-in of 25% using the CIPRES Science Gateway 
(Miller et  al. 2010). The number of generations was 
selected based on the value of the average standard 
deviation of split frequencies (< 0.02, MrBayes version 
3.2 Manual) (Ronquist and Teslenko 2012). Maximum 
likelihood tree inference was performed with IQ-TREE 
software (Trifinopoulos et al. 2016) for hsp-70 and cox1 
sequences. The phylogenetic tree edition and rooting 
(outgroup) were performed using the Treegraph 2.0 beta 
software. The genetic distances were calculated using 
the p-distance method in MEGA X using the models 
previously selected in the phylogenetic analysis.

Results

Ticks and DNA extraction quality

Ticks were obtained from 5 out of 48 (10.4%) small rodents 
sampled in Campo Grande, MS. Moreover, 71.4% (10/14) 
of sampled capybaras were infested by ticks. Likewise, ticks 
were observed in 14 out of 43 (32.5%) of the trapped D. 
albiventris in Campo Grande. The identification of the tick 
species sampled is shown in Table 1. Ticks were not col-
lected from D. albiventris sampled in Brasilia.

All but three of the tick samples and all of the mammal 
blood/tissue samples were positive in PCR assays targeting 
endogenous genes. The three tick samples collected from 
capybaras negative in arthropod-16S rRNA PCR assay were 
excluded from subsequent analyses.

Microscopic detection of Piroplasmids

Intra-erythrocytic oval ring–shaped organisms similar to 
piroplasmid merozoites were detected in blood smears from 
four and six D. albiventris from Campo Grande and Brasilia, 
respectively. These merozoites were encircled by basophilic-
staining membrane of variable width around a less densely 
stained pale center. Also, this peripheral basophilic-staining 
membrane frequently showed more than a single dense chro-
matin. Merozoites in different stages of development ranged 
from 1.33 to 3.22 µm (mean = 2.25 ± 0.48) in length, and 
1.07 to 2.63 µm (mean = 1.92 ± 0.53) in width (Fig. 1). Intra-
erythrocytic structures resembling piroplasmids were neither 
found in capybaras nor in small rodents’ blood smears.

Table 1   Occurrence of Piroplasmida DNA in the marsupials, rats, capybaras and their related ticks sampled in Campo Grande and Brasília, Mid-
western Brazil

a Amblyomma sp. refers to larvae sampled—in these specimens, only the genus was reported
b Ectoparasites-DNA pool samples
c Three out of 36 Amblyomma-DNA samples were negative to the endogenous control (16S rRNA)

Animal species Sample type No. of sam-
pled animals

Occurrence of 
piroplasmids % 
(no.)

Ectoparasite species No. of sampled 
ectoparasites

Occurrence of 
piroplasmids % 
(no.)

Mammals Arthropds
Rodentia Ixodida

  R. rattus DNA from spleen tissues 39 0% (0/39) Amblyomma sp.a 62 11.1% (1/9)b

  M. musculus DNA from spleen tissues 9 0% (0/9) – – –
  H. hydrochaeris DNA from whole blood 14 0% (0/14) A. dubitatum 42 2.38% (1/42)

A. sculptum 36 0% (0/33)c

Amblyomma sp.a 2 0% (0/2)
Didelphimorphia

  D. albiventris DNA from whole blood 43 25.5% (11/43) A. dubitatum 70 7.14% (2/28)b
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Occurrence of piroplasmids DNA in synanthropic 
mammals and ticks

None of 48 small rodents sampled in Campo Grande were 
positive in the nPCR assay for piroplasmids targeting a 
small fragment (~ 750 bp) of the 18S rRNA gene. On the 
other hand, one A. dubitatum nymph collected from a spec-
imen of R. rattus was positive in the nPCR for piroplas-
mids targeting 18S rRNA gene. The amplified sequence 
(~ 750 bp) shared 99.4% identity (E-value = 0.0; query-
coverage = 98%) with Babesia sp. (EF222255) detected 
in a capybara captured in Rio Grande do Sul, Southern 
Brazil. Similarly, none out of 14 capybara-DNA samples 
showed positivity in the nPCR assay. Among the 77 tick-
DNA samples obtained from capybaras, one female adult 
specimen of A. dubitatum collected from a capybara was 
positive for piroplasmids. The sequence (~ 750 bp) shared 
97.2% identity (E-value = 0.0; query-coverage = 100%) to 
Babesia sp. (EF222255) previously reported in a capybara.

In addition, 11 out of 43 (25.5%) D. albiventris sam-
pled in Campo Grande were positive to piroplasmids in 
the nPCR targeting the 18S rRNA gene. Two (nymphs) 
out of 28 (7.14%) A. dubitatum samples obtained from 
D. albiventris were also positive. Likewise, 11 out of 24 
(48.5%) D. albiventris sampled in Brasília were positive 
to piroplasmids targeting the 18S rRNA gene region in the 
screening protocol (S1 Table).

Molecular characterization of the detected 
piroplasmids

Aiming to investigate the identity of the detected piroplas-
mids, the positive samples were submitted to additional 
PCR assays targeting seven different molecular mark-
ers. One (obtained from D. albiventris) out of four 18S 

rRNA-A. dubitatum positive samples was also positive in 
a PCR assay targeting a large fragment of the 18S rRNA 
gene. Unfortunately, these tick DNA-samples were negative 
in the PCR assays targeting the other additional molecular 
targets, except for the tick-DNA samples obtained from D. 
albiventris (n = 2) and R. rattus (n = 1) that were positive in 
the qPCR assay targeting the lsu region. Another large frag-
ment of 18S rRNA gene was obtained from a D. albiventris 
DNA blood sample. In addition, three hsp70 and two cox1 
sequences were amplified and sequenced from D. albiven-
tris. Out of the 43 and 24 D. albiventris from Campo Grande 
and Brasilia tested, six and 12 were positive, respectively, 
in the qPCR targeting lsu region (S1 Table). The range of 
the melting temperature for Isu fragment ranged from 75 to 
75.5 °C. Despite attempts—three times—sequences were 
not obtained for the other target genic regions.

Phylogenetic analyses

Two 18S rRNA gene large sequences were successfully 
obtained, one detected in a D. albiventris and another 
one in an A. dubitatum tick. The ML analysis based on an 
alignment of the ~ 1.3 kb 18S rRNA gene positioned these 
piroplasmid sequences in an exclusive clade, near to clus-
ter III (B. duncani and B. conrade) previously established 
by Jalovecka et al. (2019), but with a low bootstrap value 
(42%) (Fig. 2). In addition, genetic distance ranging from 
3.5 to 7.2% was observed between the amplified sequences 
and those belonging to cluster III (S2 Table). These find-
ings support the assumption that the amplified piroplasmid 
sequences represent a distinct yet unknown species that 
likely does not belong to clade III.

Three hsp-70 DNA sequences were successfully ampli-
fied and used in the phylogenetic analyses. Similar to 
the 18S rRNA phylogenetic analysis, the two sequences 

Fig. 1   Intra-erythrocytic ring-shaped merozoites of Babesia sp. in blood smears from a marsupial (Didelphis albiventris) captured in the city of 
Campo Grande, state of Mato Grosso do Sul, Central-Western Brazil
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obtained from D. albiventris captured in Brasília and one 
sequence amplified in D. albiventris from Campo Grande 

were positioned in an exclusive clade, near to Babesia 
(WA1–DQ007005)—formally Babesia duncani—in ML 

Fig. 2   Phylogenetic tree based 
on an alignment of 1.3 kb of 
18S rRNA sequences using 
maximum likelihood (ML) 
with GTR + I + G evolutionary 
model. Bootstrap supports were 
estimated by 1000 replicates 
and are presented at nodes. 
Sequences of piroplasmids 
detected in the present study are 
highlighted in bold. Cardio-
sporidium cionae was used as 
outgroup

Fig. 3   Phylogenetic tree based 
on an alignment of 575 bp 
of hsp-70 sequences using 
maximum likelihood (ML) with 
GTR evolutionary model. Boot-
strap supports were estimated 
by 1000 replicates and are 
presented at nodes. Sequences 
of piroplasmids detected in the 
present study are highlighted in 
bold. Plasmodium falciparum 
was used as outgroup

Fig. 4   Phylogenetic tree based 
on an alignment of 708 bp of 
cox1 sequences translated into 
amino acids using maximum 
likelihood (ML) with TVM 
evolutionary model. Boot-
strap supports were estimated 
by 1000 replicates and are 
presented at nodes. Sequences 
of piroplasmids detected in the 
present study are highlighted in 
bold. Plasmodium falciparum 
was used as outgroup
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analysis but with a low support (50%) (Fig. 3). Despite the 
phylogenetic positioning, the amplified sequences showed a 
relatively high genetic distance (15%) when compared to the 
abovementioned B. duncani sequence (S3 Table).

Additionally, two cox-1 DNA sequences were obtained 
from D. albiventris trapped in Brasília and submitted to ML 
analyses. Similar to previous trees, the two sequences were 
grouped near to the cluster III (Babesia conradae), but sup-
ported by a low bootstrap value (48%) (Fig. 4). Genetic dis-
tances were observed between the amplified cox-1 sequences 
and B. conradae (group III—33.1%) as well as Theileria 
sensu stricto (group IX—30.2 to 31.2%) species (S4 Table).

Due to inconsistency in the phylogenetic tree based on 
small fragment of the 18S rRNA gene, only genetic dis-
tances were assessed for this target. Genetic distances rang-
ing from 0 to 0.8% at the 18S rRNA gene were observed 
between the amplified piroplasmid sequences in Didelphis 
spp. and associated ticks in the present study and those pre-
viously detected in Didelphis spp. from Brazil (S5 Table), 
suggesting they represent the same species. Conversely, evo-
lutionary distances of 8.8 to 9.7% were observed between 
the sequences detected in marsupials in the present study and 
those detected in Australian marsupials (S5 Table), evidenc-
ing they are distinct species. Additionally, two piroplasmid 
18S rRNA gene sequences amplified from A. dubitatum 
ticks—from capybara and another one from the black rat (R. 
rattus)—grouped with a Babesia 18S rRNA gene sequence 
previously detected in a capybara sampled in southern Bra-
zil. Genetic distance ranging from 0.8 to 3.4% was observed 
between these amplified haplotypes and that one reported 
in a capybara from Brazil, suggesting they may represent a 
novel species.

Discussion

In the present study, we report the occurrence and molecu-
lar characterization of a Piroplasmida species circulating in 
marsupials and their ticks from Brazil. In addition, piro-
plasmid sequences showing 97.2 to 99.4% identity with 
a sequence previously detected in a capybara from south 
Brazil was detected in A. dubitatum ticks collected from 
H. hydrochaeris and R. rattus, respectively. These results 
expand our knowledge on the phylogenetic positioning of 
piroplasmids from marsupials and add novel epidemiologi-
cal data related to these hemoparasites in Brazil.

Herein, 34.3% (23/67) of all D. albiventris analyzed were 
found positive for piroplasmids. This prevalence was sub-
stantially higher than those previously reported in synan-
thropic and wild marsupials sampled in Brazil (0–5.8%) 
(Wolf et al. 2016; Soares et al. 2017; de Sousa et al. 2018; 
Colle et al. 2019). This finding may be attributed to different 

aspects, including but not limited to the marsupial species 
analyzed, sampling sites, fauna composition, environmen-
tal conservation status, presence of ectoparasites, and PCR 
assay used in the screening. Although previous studies car-
ried out in Brazil have sampled different marsupial species, 
only in a single case a species not belonging to the genus 
Didelphis (Monodelphis—Wolf et al. 2016) was positive for 
Piroplasmida, suggesting a potential specificity of this piro-
plasm to the genus Didelphis (Serra Freire 1979). However, 
we should keep in mind that species of Didelphis are more 
often captured and studied because it is a synanthropic ani-
mal and abundant in anthropized areas whereas Monodelphis 
comprises small marsupials with low densities that inhabit 
pristine areas (Olifiers et al. 2005; Herrera et al. 2007).

Opposite to studies performed in Brazil that detected 
piroplasmid DNA in small rodents (Wolf et al. 2016; de 
Sousa et al. 2018), no piroplasmid DNA was found in sam-
ples of the black rat. Similar results were reported regard-
ing the capybara DNA samples analyzed. Thus, the role of 
these rodents as reservoirs for Piroplasmida in Brazil may be 
limited. However, since few rodent samples were obtained 
and screened for piroplasmid DNA, these results should be 
analyzed with caution. Moreover, once piroplasm DNA was 
detected in A. dubitatum ticks collected from R. rattus and 
capybaras, the role of these mammals in the epidemiological 
cycle of this piroplasm must be further addressed.

Morphological identification of piroplasmids (pre-
viously named as Nuttallia brasiliensis/Theileria 
brasiliensis/Babesia ernestoi, and currently Babesia brasil-
iensis) in marsupials circulating in Brazil was performed 
virtually 100 years ago (Regendanz and Kikuth 1928). 
However, the molecular characterization of this Piroplas-
mida species has not been performed, precluding a robust 
comparison with the piroplasmids detected in the current 
study. More recently, the molecular detection of piroplas-
mids infecting marsupials has been performed in central-
western and Northern Brazil (Wolf et al. 2016; Soares et al. 
2017; Colle et al. 2019). However, the abovementioned 
studies targeted a small fragment of piroplasm-18S rRNA 
gene, precluding an accurate phylogenetic positioning of the 
piroplasmid species infecting Didelphis spp.

Unlike previous studies performed in Brazil, the molec-
ular characterization of the piroplasmid species infecting 
South American marsupials and associated ticks is based 
on the near-complete 18S rRNA, cox-1, and hsp-70 genes. 
The phylogenetic inference based on a large fragment of 
the 18S rRNA gene showed that the Piroplasmida detected 
in D. albiventris was positioned near to Babesia sensu lato 
(Western group—cluster III, comprising the species B. 
duncani, B. lengau, and B. conrade) as a sister taxon but 
with low support (42%). However, the sequences detected 
in the present study showed a considerable genetic distance 
from Western group, the most closely related Piroplasmida 
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species. Phylogenetic reconstructions using two mitochon-
drial genes (cox-1 and hsp-70) were carried out using the 
piroplasmid sequences detected in marsupials from the pre-
sent study. These analyses, associated to pairwise distances 
observed among cox-1 and hsp-70 sequences, provided sup-
porting evidence for the uniqueness of this piroplasmid and 
corroborate the phylogenetic position as determined by 18S 
RNA gene analysis of this protozoan species.

These findings demonstrated that the piroplasmids circu-
lating in marsupials from Australia and Brazil are genetically 
distant, which is likely expected due to the origin, disper-
sion, and evolutionary history of these animals (Mitchell 
et al. 2015). The Australian marsupials are phylogenetically 
and immunologically more closely related between them 
than they are to any American marsupial. This finding sug-
gest that they originated from a single ancestral stock that 
would have reached Australia in the beginning of the Ter-
tiary (64 mya), coming from South America via Antarctica 
(Clements, 1968; Svartman, 2009). Thus, the piroplasmids 
lineages may have been isolated with their hosts in Australia, 
providing a most recent date of origin for the piroplasmids 
recorded in Australia, i.e., 64 mya.

BLAST analysis of a short 18S rRNA sequences 
(~ 750 bp) identified in A. dubitatum ticks collected from R. 
rattus and H. hydrochaeris showed 97.2–99.4% identity with 
a Piroplasmida previously detected in capybaras from south 
Brazil. Since little is known about this piroplasmid, further 
studies using molecular and morphological approaches are 
necessary to better characterize this protozoan. Considering 
that A. dubitatum is a three-host tick and R. rattus and H. 
hydrochaeris were captured in the same locality, it is pos-
sible that the specimen of A. dubitatum containing DNA of 
a capybara-associated piroplasmid might have previously 
acquired the parasite from capybaras found in that region.

Finally, since A. dubitatum is a tick species commonly 
identified in marsupials (Massini et al. 2019; Ueno et al. 
2020) and capybaras (Queirogas et al. 2012) from Brazil, the 
role of this arthropod in the capybara and marsupial-associ-
ated piroplasmids’ life cycles must be further investigated.

Conclusions

The present study showed the occurrence and characterized 
a putative novel piroplasmid species infecting D. albiven-
tris and associated ticks in Central-Western Brazil. Accord-
ingly, the near-complete 18S rRNA-based phylogenetic 
inference suggests that although the analyzed piroplasmid 
sequence seems to be most closely related with the Western 
group – cluster III, it cannot be associated with any of the 
recognized ten clades, supporting that it is a novel species. 
Phylogenetic inferences based on two additional molecular 

markers, namely hsp-70 and cox-1, supported the near-com-
plete 18S rRNA gene phylogenetic inference. Furthermore, 
a partial 18S rRNA gene sequence detected in A. dubitatum 
ticks collected from R. rattus and H. hydrochaeris suggests 
that a still non-characterized piroplasmid species occurs in 
the largest rodent species from South America.
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