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Abstract
Toxoplasma gondii can cross the blood-brain barrier and infect different regions of the brain including the hippocampus. In the
present study, we examined the impact of Toxoplasma gondii infection on the metabolism of the hippocampus of female BALB/c
mice compared to control mice using ultra-high-performance liquid chromatography-tandem mass spectrometry. Multivariate
analysis revealed significant differences between infected and control hippocampi and identified 25, 82, and 105 differential
metabolites (DMs) in the infected hippocampi at 7, 14, and 21 days post-infection (dpi), respectively. One DM (sphingosyl-
phosphocholine in the sphingolipid metabolism pathway) and 11 dysregulated pathways were detected at all time points post-
infection, suggesting their important roles in the neuropathogenesis of T. gondii infection. These pathways were related to neural
activity, such as inflammatory mediator regulation of TRP channels, retrograde endocannabinoid signaling, and arachidonic acid
metabolism. Weighted correlation network analysis and receiver operating characteristic analysis identified 33 metabolites
significantly associated with T. gondii infection in the hippocampus, and 30 of these were deemed as potential biomarkers for
T. gondii infection. This study provides, for the first time, a global view of the metabolic perturbations that occur in the mouse
hippocampus during T. gondii infection. The potential relevance of the identifiedmetabolites and pathways to the pathogenesis of
cognitive impairment and psychiatric disorders are discussed.
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Introduction

The protozoan Toxoplasma gondii is one of the most success-
ful opportunistic pathogens, affecting nearly one-third of the
world’s human population (Tenter et al. 2000). This parasite
can penetrate various biological barriers, such as the blood-
brain barrier, and infects different regions of the brain where it
causes structural and functional alterations, resulting in en-
cephalopathy, cognitive impairment, and other pathological
changes (Marra 2018). The ability of T. gondii to modify the
behavior or cognitive performance of the host, and its rele-
vance as a risk factor for psychiatric disorders, such as schizo-
phrenia is being increasingly recognized (Elsheikha et al.
2016). Toxoplasma gondii infection can also alter the behavior
of the murine host to facilitate its own transmission to the
definitive feline host (Evans et al. 2014; Ingram et al. 2013).

The exact mechanism linking T. gondii infection and psy-
chiatric disorders remains incompletely understood. However,
previous studies have shown that T. gondii alters gene expres-
sion of the infected brains and changes neurotransmitter re-
ceptor distribution on neurons in mice (He et al. 2019;
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Mendez and Koshy 2017; Zhou et al. 2013). The neuroinflam-
mation associated with T. gondii infection can modify the
behavior of mice (Boillat et al. 2020). Toxoplasma gondii
can also alter the metabolic pathways that regulate the neural
activity, such as dopamine, tryptophan, and quinolinic acid
pathways (Elsheikha et al. 2016) and change the abundances
of neurochemical metabolites in the brain, such as phenylala-
nine and tryptophan (Ma et al. 2020; Ma et al. 2019; Zhou
et al. 2015). Patients with psychosis can have alterations in the
levels of creatine, glutamate, kynurenine, lactate, N-
acetylaspartate, and tryptophan (Li et al. 2018), and metabolic
decline can underpin cognitive impairment in Alzheimer’s
disease (Wilkins and Trushina 2017).

Different parts of the brain perform different biological
functions. For example, the cerebral cortex, one of the largest
brain tissues, regulates bodymovement and language compre-
hension (Bedny et al. 2008; Binder et al. 2005; Huth et al.
2016). The cerebellum controls mood, learning, motor coor-
dination, and food-anticipatory activity (Abdoli and Dalimi
2014; Mendoza et al. 2010; Reeber et al. 2013). The hippo-
campus plays a role in learning and memory processes and
also controls natural defense behavior and emotion process-
ing, such as depression and stress (da Silva and Langoni
2009). A previous study showed an association between the
alteration of hippocampal metabolism due to prenatal stress
and depressive-like behaviors in rats (Zhang et al. 2019).Mass
spectroscopy has been employed to examine the metabolomic
signatures of the whole brain, cerebral cortex, cerebellum,
spleen, liver, and serum of mice following T. gondii infection
(Chen et al. 2018; Chen et al. 2017; Ma et al. 2020; Ma et al.
2019; Zhou et al. 2015; Zhou et al. 2016). These studies
showed that T. gondii infection induced significant alterations
of several pathways (e.g., arachidonic acid metabolism and
hormone biosynthesis).

Given the aforementioned functions of the hippocampus
and the relative preference of T. gondii to mouse hippocampus
(Berenreiterova et al. 2011), it is possible that metabolic alter-
ations in the hippocampus caused by T. gondii infection un-
derpin some of the mechanisms mediating behavioral changes
and cognitive deficits (Elsheikha et al. 2016; Evans et al.
2014; Groer et al. 2011; Hsu et al. 2014; Ingram et al.
2013). Therefore, a better understanding of the metabolic per-
turbation in the hippocampus caused by T. gondii infection
may r evea l impo r t an t a sp e c t s o f t h e pa r a s i t e
neuropathogenesis, as well as processes that underpin
infection-related cognitive dysfunction. As a step towards a
better understanding of the mechanisms underlying behavior-
al changes and cognitive deficit associated with T. gondii in-
fection, we used the global ultra-high-performance liquid
chromatography-tandem mass spectrometry (UPLC/MS-
MS) method to determine the changes in the metabolic profile
of the hippocampus of mice infected by T. gondii infection at
7, 14, and 21 days post-infection (dpi).

Materials and methods

Parasite strain and animals

Cysts of T. gondii PRU (type II) strain were collected from the
brain homogenates of Kunming mice that had been infected
by the PRU strain for 1 month. Female, 3 weeks old, BALB/c
mice were purchased from Lanzhou University Laboratory
Animal Center (Lanzhou, China). This inbred mouse strain
has been widely used as a preclinical model to understand
the molecular and behavioral consequences of stress and neu-
ropsychiatric disorders (Sathyanesan et al. 2017). Mice were
housed in standard plastic cages in a humidity- and
temperature-controlled room (22–25 °C), with a 12-h light–
dark cycle. Mice had access to food and water ad libitum and
were acclimatized for a week before being used in the
investigation.

Mouse infection

The mice (n = 36) were randomly divided into six groups (6
mice/group): three infected groups and three control groups.
Each mouse of the infected groups was inoculated orally with
10 T. gondii PRU cysts in 0.5 mL phosphate-buffered saline
(PBS). Mice in the non-infected (control) groups received
only 0.5 mL PBS without any T. gondii cysts (Torres et al.
2018; Zhang et al. 2020b). On days 7, 14, and 21 post-infec-
tion, one infected and the corresponding control group were
euthanized by controlled CO2 exposure followed by cervical
dislocation. The brain was immediately harvested out of the
mouse skull and the hippocampus region was dissected out
using a dissecting microscope with a cold stage. The collected
hippocampi were washed immediately with chilled PBS to
remove the excess blood and any residual fluid was removed
by bibulous paper, followed by storing the hippocampi at − 80
°C until analysis.

Determination of Toxoplasma gondii infection in the
brain

The presence of T. gondii in the hippocampus was examined
using a PCR assay that targets the T. gondii B1 gene. Briefly,
the TIANamp Genomic DNA kit (TianGen™, Beijing,
China) was used to isolate genomic DNA from ~ 10 mg of
the hippocampus samples of infected and control mice. The
extracted DNA was stored at − 20 °C until use. The PCR was
performed with a T100TM Thermal Cycler (Bio-Rad, USA)
using Premix Taq™ (Takara, Dalian, China). The PCR pro-
tocol including the primers was strictly performed as de-
scribed previously (Ma et al. 2019).
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Metabolite extraction

The frozen hippocampi were transferred from − 80 °C to − 20
°C for 30 min and then defrosted at 4 °C (Gu et al. 2015; Lin
et al. 2007; Zhang et al. 2020a). For metabolite extraction, ~
25 mg of each defrosted hippocampus was mixed with 800 μl
H2O/MeOH (50:50% vol/vol) and lysed using TissueLyse
bead-mill homogenizer (Qiagen, Hilden, Germany). The ho-
mogenized hippocampi were centrifuged to remove cellular
debris at 25,000g for 20 min at 4 °C. The supernatant of the
homogenized hippocampi was collected and 50 μl of the su-
pernatant was used for metabolite extraction using SPE (solid-
phase extraction) column (Strata-X polymeric reversed-phase
column, Phenomenex, USA). The purified metabolites were
dissolved with acetonitrile. To examine the reproducibility
and reliability of the LC-MS/MS method, ~ 20 μl of each
metabolite sample was pooled and examined as a QC sample.

LC-MS/MS analysis

LC-MS/MS was performed using ultra-high-performance liq-
uid chromatography (UPLC) system (Waters, Milford, USA).
Reversed-phase separation was performed using ACQUITY
UPLC BEH C18 column (100 mm*2.1 mm, 1.7 μm, Waters,
UK) and the column oven was maintained at 50 °C. The flow
rate was set as 0.4 ml/min and the mobile phase consisted of
two solvents: solvent A (water + 0.1% formic acid) and sol-
vent B (acetonitrile + 0.1% formic acid). Themetabolites were
eluted by a chromatographic gradient elution process as fol-
lows: 100% solvent A for 0–2 min; 0–100% solvent B for ~
11 min; 100% solvent B for 11–13 min; and 100% solvent A
for 13–15 min. A high-resolution tandem mass spectrometer
SYNAPT G2 XS QTOF (Waters, Ireland) was used for the
analysis of the eluted metabolites. For both positive (ESI+)
and negative (ESI−) ion modes, the capillary and sampling
cone voltages were set at 2 kV and 40 V, respectively. The
mass to charge ratios (m/z) between 50 and 1200 Da were
recorded and the scan time was 0.2 s. Parent ion of the me-
tabolite was fragmented using 20–40 eV and scan for 0.2 s.

Metabolite identification, bioinformatics, and
statistical analysis

Raw data processing, including peak alignment, normaliza-
tion, and metabolite identification were carried out using
Progenesis QI software. The m/z and retention time of the
metabolite ions were mapped to the substance database of
BGI-Shenzhen. Centroid MSE (mean square error) mode
was used for data collection and analysis of the relative quan-
tity of metabolites in both (ESI+) and (ESI−) ion modes.
Differential metabolite (DM) analyses between infected and
uninfected hippocampi were performed using Student’s t-test
and the metabolites withP-value < 0.05were deemed as DMs.

The identified DMs were mapped to HMDB (http://www.
hmdb.ca/) and KEGG (www.genome.jp/kegg/) to detect the
pathways that are involved in the infection. SIMCA 13.0
software was used to perform multivariate statistical analysis
and the normalized data of all metabolites were used as input
data for partial least squares-discriminant analysis (PLS-DA).
Weighted correlation network analysis (WGCNA) was per-
formed to identify the metabolites that are significantly corre-
lated with T. gondii infection in the hippocampi. In the
WGCNA, infected samples were assigned 1, while non-
infected control samples were assigned 0. Normalized abun-
dance of the metabolites was used as input data for WGCNA,
and the soft power that showed scale-free topology model
fitting index R^2 > 0.8 was selected for analysis of soft
thresholding adjacency matrix of WGCNA. The WGCNA
protocol was performed according to WGCNA tutorials
( h t t p s : / / h o r v a t h . g e n e t i c s . u c l a . e d u / h t m l /
CoexpressionNetwork/Rpackages/WGCNA/Tutorials/index.
html). Receiver operating characteristic (ROC) test and area
under the curve (AUC) were used to identify the potential
biomarkers of the infected hippocampi. ROC and AUC were
analyzed using pROC R package as described previously
(Robin et al. 2011). The metabolites that were significantly
associated with T. gondii infection with an AUC value > 0.7
were deemed as potential biomarkers for T. gondii infection.

Results

Confirmation of T. gondii infection

At 14 dpi, all mice in the infected groups showed clear clinical
manifestations, such as decreased appetite, hunched back and
ruffled fur. However, at 21 dpi, all infected mice exhibited
signs of recovery. All mice in control groups showed no clin-
ical signs of infection at any time point in the experiment. All
hippocampi of infected mice collected at 7 dpi, 14 dpi, and 21
dpi were T. gondii B1 gene positive, whereas no amplified B1
gene product was detected in the hippocampi of the non-
infected mice (Fig. S1).

Overall metabolic features of the infected hippocampi

A total of 3200 and 6198 metabolite ions were detected in the
negative electrospray ionization (ESI−) mode and positive
electrospray ionization (ESI+) mode, respectively. We exam-
ined whether the metabolic profiles of the infected hippocam-
pi were different from that of the non-infected hippocampi
using PLS-DA. In both ESI− and ESI+ modes, the infected
and non-infected hippocampi were clustered separately, indi-
cating infection-specific metabolic signatures of the hippo-
campi (Fig. 1).
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Differential metabolites in the infected hippocampi

We identified 25, 82, and 105 DMs in the infected hippocampi
at 7 dpi, 14 dpi, and 21 dpi, respectively. Most of the DMs at
14 dpi and 21 dpi were upregulated (Fig. 2a). The details of
the DMs are listed in Table S1. Intersection analysis showed
that most of the DMs were time specific and only one com-
mon DM (sphingosyl-phosphocholine) was found at all three
time points after infection (Fig. 2b). Five DMs were common

between 7 dpi and 21 dpi, including sphingosyl-
phosphocholine, 2”,4”,6”-triacetylglycitin, lecithin,
tetrahydrodeoxycorticosterone, and trans-hexadec-2-enoyl
carnitine. However, at 14 dpi and 21 dpi, 34 DMs were com-
mon. These included sphingosyl-phosphocholine, phosphati-
dylethanolamine, psychosine, arachidonic acid, palmitate,
oleic acid, ricinoleic acid, tridecyl phloretate, stearoylglycine,
l i noe l a i dy l c a rn i t i n e , L -pa lm i toy l ca rn i t i n e , 2 -
arachidonylglycerol, cervonyl carnitine, ceramide (d18:1/

Fig. 1 PLS-DA plots of the metabolomic features of the hippocampi of
T. gondii-infected mice at 7, 14, and 21 dpi compared to those of the
corresponding control mouse groups. POS and NEG denote the PLS-DA

plots of the positive and negative ion modes, respectively. The number of
dots within the plots corresponds to the number of analyzed hippocampal
samples per mouse group

Fig. 2 Differential metabolites (DMs) and the pathway numbers. a The number of DMs at 7, 14, and 21 dpi. b Venn diagram of the DMs showing the
common and unique DMs at 7, 14, and 21 dpi. c Venn diagram of the number of pathways mapped to the DMs at 7, 14, and 21 dpi
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16:0), 3alpha,7alpha,12alpha,26-tetrahydroxy-5beta-
cholestane, calcitetrol, heptadecanoyl carnitine, 3-
hyd roxy t e t r adecanoy l c a rn i t i n e , 3 -hyd roxy -9 -
hexadecenoylcarnitine, MG(22:2(13Z,16Z)/0:0/0:0), 2-
hydroxymyristoylcarnitine, (17alpha,23S)-Epoxy-28,29-di-
hydroxy-27-norlanost-8-ene-3,24-dione, lstamycin A3,
MG(20:3(5Z,8Z,11Z)/0:0/0:0), arachidyl carnitine,
paederoside, leontogenin, Nb-palmitoyltryptamine, 12-hy-
droxy-12-octadecanoylcarnitine, 7alpha-hydroxy-3-oxo-4-
cholestenoate, persin, methyl acetyl ricinoleate, SM(d18:0/
16:1(9Z)), and 25-hydroxyvitamin D3-26,23-lactone.

Hippocampus pathways affected by T. gondii

As shown in Fig. 2c, at 7 dpi, 14 dpi, and 21 dpi, the DMs
were mapped to 17, 77, and 57 pathways, respectively. Three
pathways were exclusively found at 7 dpi, including thiamine
metabolism, sulfur relay system, and 2-oxocarboxylic acid
metabolism. At 14 dpi, 39 pathways were exclusively identi-
fied, such as EGFR tyrosine kinase inhibitor resistance,
MAPK signaling pathway, calcium signaling pathway, che-
mokine signaling pathway, NF-kappa B signaling pathway,
VEGF signaling pathway, gap junction, natural killer cell-
mediated cytotoxicity, T cell receptor signaling pathway, B

cell receptor signaling pathway, circadian entrainment, long-
term potentiation, glutamatergic synapse, cholinergic synapse,
dopaminergic synapse, estrogen signaling pathway, thyroid
hormone signaling pathway, glioma, and non-small cell lung
cancer. At 21 dpi, 16 pathways were exclusively detected,
such as arginine and proline metabolism, D-arginine and D-
ornithine metabolism, drug metabolism-cytochrome P450,
histidine metabolism, biosynthesis of amino acids, pyruvate
metabolism, galactose metabolism, starch and sucrose metab-
olism, pyrimidine metabolism, and purine metabolism.
Although many altered pathways were related to a specific
infection time, 11 pathways were common at 7, 14, and 21
dpi. These included neuroactive ligand-receptor interaction,
retrograde endocannabinoid signaling, inflammatorymediator
regulation of TRP channels, glycerophospholipid metabolism,
arachidonic acid metabolism, linoleic acid metabolism, cho-
line metabolism in cancer, sphingolipid metabolism, steroid
hormone biosynthesis, glycosylphosphatidylinositol (GPI)-
anchor biosynthesis, and regulation of autophagy. The rela-
tionships between DMs and the common 11 pathways are
shown in Fig. 3, and the number of DMs in each of the 11
common pathways is shown in Table 1. Pathways were iden-
tified by at least 1 metabolite and most of the metabolites in
these pathways were upregulated.
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Fig. 3 The relationships among differential metabolites and the 11 common pathways at 7, 14, and 21 dpi. Red and green triangles represent upregulated
and downregulated metabolites, respectively. The blue ovals represent the pathways
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Identification of potential biomarkers for T. gondii
infection

To further identify the metabolites that are strongly linked to
T. gondii infection in the hippocampi, WGCNA was per-
formed. A soft threshold power 4 was selected for WGCNA
analysis to produce a hierarchical clustering dendrogram be-
cause it was the lowest power at which the scale-free topology
fit index reached 0.8 (Fig. 4a). Additionally, soft threshold
power 4 has a relatively high mean metabolite connectivity
(Fig. 4b). Metabolites were categorized into 7 modules, in-
cluding red, green, turquoise, brown, blue, yellow, and gray
(Fig. 4c). As shown in Fig. 4d, the turquoise module was the
most significantly associated with T. gondii infection (corre-
lation index = 0.66, P value = 1e-05). In this module, 33
metabolites were significantly associated with T. gondii infec-
tion (Table 2). All 33 metabolites were upregulated in the
infected hippocampi (Fig. 5). Of these, 30metabolites showed
an area under the ROC curve > 0.7 and were identified as
potential infection-specific biomarkers (Fig. 6). These 30 po-
tential biomarkers included leontogenin, arachidonic acid,
sphingosyl-phosphocholine, linoelaidyl carnitine, 7alpha-hy-
droxy-3-oxo-4-cholestenoate, 25-hydroxyvitamin D3-26,23-
lactone, cervonyl carnitine, MG(20:3(5Z,8Z,11Z)/0:0/0:0),
ricinoleic acid, 3-hydroxy-9-hexadecenoylcarnitine, 3-
hydroxytetradecanoyl carnitine, MG(22:2(13Z,16Z)/0:0/0:0),
persin, L-palmitoylcarnitine, arachidyl carnitine, 12-hydroxy-
12-octadecanoylcarnitine, 3alpha,7alpha,12alpha,26-
tetrahydroxy-5beta-cholestane, 2-hydroxymyristoylcarnitine,
Nb-palmitoyltryptamine, (17alpha,23S)-epoxy-28,29-dihy-
droxy-27-norlanost-8-ene-3,24-dione, calci tetrol ,
heptadecanoyl carnitine, ceramide (d18:1/16:0), oleic acid,
methyl acetyl ricinoleate, psychosine, (9S)-(10E,12Z,15Z)-9-
hydroxyoctadecatri-10,12,15-enoic acid, lstamycin A3,

palmitate, and sandoricin. Pathway analysis showed that 12
of the potential biomarkers are involved in 32 pathways (Fig.
7).

Discussion

We examined the differences in the hippocampal metabolic
profiles between T. gondii-infected and uninfected BALB/c
mice using an ultra-high-performance LC-MS/MS-based
metabolomics approach. Clear differences were detected be-
tween the metabolic patterns of the hippocampus of infected
and uninfected mice (Fig. 1). Infection induced significant
metabolomic changes in the hippocampus, where 25, 82,
and 105 DMs were detected in infected hippocampi at 7, 14,
and 21 dpi, respectively. Previous studies have shown that the
abundance of metabolites changed significantly (fold change
4–20) in mice post-mortem (Murphy 2010; Wasek et al.
2018). In the present study, only 9 out of the 137 identified
differential metabolites had fold changes 4–8 (Table S1).
Also, our results identified specific, altered metabolites and
biochemical pathways that were specific to the hippocampi
of infected mice compared with those of the control mice.
Therefore, the limited metabolic alterations and their specific
association with infection status suggest that the observed
changes are not related to the post-mortem changes in metab-
olites. Additionally, the metabolic disturbances detected dur-
ing T. gondii infection were consistent with the role played by
the hippocampus in learning and memory processes, as
discussed below.

Most of the identified DMs were time dependent; however,
sphingosyl-phosphocholine was significantly upregulated in
infected hippocampi at 7, 14, and 21 dpi, suggesting a crucial
role of this metabolite in the neuropathogenesis of T. gondii

Table 1 The number of differentially abundant metabolites of the 11 common pathways

7 dpi 14 dpi 21 dpi Total Number

Up Down Up Down Up Down

Sphingolipid metabolism 1 0 4 0 7 2 14

Retrograde endocannabinoid signaling 2 1 4 0 3 2 12

Arachidonic acid metabolism 1 0 1 0 4 2 8

Glycerophospholipid metabolism 2 0 3 0 2 1 8

Linoleic acid metabolism 1 0 2 0 2 1 6

Choline metabolism in cancer 1 0 3 0 0 1 5

Inflammatory mediator regulation of TRP channels 0 1 2 0 2 0 5

Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 1 0 1 0 2 0 4

Regulation of autophagy 1 0 1 0 2 0 4

Neuroactive ligand-receptor interaction 0 1 1 0 0 2 4

Steroid hormone biosynthesis 0 1 1 0 1 0 3
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infection. The behavioral changes related to schizophrenia
are associated with alterations of glycerophospholipid me-
tabolism in mice (Liang et al. 2019). Also, a reduction in
glycerophospholipid metabolism is reported in schizophre-
nia, autism, and Down syndrome (Yu et al. 2020).
Sphingosyl-phosphocholine, the deacylated derivative of
sphingomyelin, is an important lipid mediator that plays a
role in the regulation of brain functions (Nixon et al. 2008).

Previous studies have shown that the metabolism of
sphingosyl-phosphocholine is associated with neurite out-
growth in mice (Sugiyama et al. 1993), via increasing AP-1
DNA-binding activity (Berger et al. 1995). Chronic stimu-
lation by sphingosyl-phosphocholine also increases the
proliferation of astrocytes and the release of neurotransmit-
ter glutamate (Chiulli et al. 2007). Alteration of glutamate
transportation and the resultant excitotoxicity of

Fig. 4 Weighted correlation network analysis, selection of the soft
thresholding powers, and module detection of the metabolites. a The
influence of different soft thresholding powers (x-axis) on scale-free to-
pology fit index (y-axis). b The relationship between soft thresholding
power (x-axis) and the mean connectivity (degree, y-axis), which shows

the strength of the connection between different metabolites. c Cluster
dendrogram and assignment of functional modules (ME). Colors in the
horizontal bar represent the modules. The branches correspond to mod-
ules of the highly interconnected groups of metabolites. d Global corre-
lation index between the ME and T. gondii infection status.
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postsynaptic neurons have been shown in T. gondii infec-
tion (David et al. 2016; Mendez and Koshy 2017).
Additionally, alteration of neuron subpopulations has been
reported in T. gondii-infected pigs (Odorizzi et al. 2010).

To further identify the pathways that could contribute to the
host behavioral alteration during T. gondii infection, all DMs
of the infected hippocampi were mapped to the pathways in
the KEGG database. As shown in Fig. 2c, 17, 77, and 57
pathways were enriched at 7, 14, and 21 dpi, respectively. A
total of 11 common pathways were altered at all infection
stages. Interestingly, most of the common pathways were re-
lated to neural activity, such as sphingolipid metabolism, ret-
rograde endocannabinoid signaling, inflammatory mediator
regulation of TRP channels, steroid hormone biosynthesis

pathway, arachidonic acid metabolism, and linoleic acid
metabolism.

Pathway analysis showed that sphingosyl-phosphocholine
is a crucial metabolite of sphingolipid metabolism pathway.
Most of the DMs involved in the sphingolipid metabolism
pathway were upregulated in the infected hippocampi and
the number of DMs increased as infection progressed. At 7
dpi, sphingolipid pathway was regulated by one upregulated
metabolite (sphingosyl-phosphocholine). At 14 dpi, the path-
way was regulated by 4 DMs (upregulated psychosine, cer-
amide (d18:1/16:0), sphingosyl-phosphocholine and
SM(d18:0/16:1(9Z))). At 21 dpi, this pathway was regulated
by 9 DMs (including 7 upregulated psychosine, SM(d18:0/
16:1(9Z)), SM(d18:1/18:1(9Z)), SM(d18:0/18:1(9Z)),

Table 2 The metabolites in mice
hippocampi that were
significantly associated with
Toxoplasma gondii infection

Metabolites Correlation
index

P value of
correlation index

Leontogenin 0.72 6.19E-07

Arachidonic acid 0.72 7.73E-07

Sphingosyl-phosphocholine 0.71 1.20E-06

MG(22:4(7Z,10Z,13Z,16Z)/0:0/0:0) 0.69 2.64E-06

7alpha-Hydroxy-3-oxo-4-cholestenoate 0.69 3.29E-06

25-Hydroxyvitamin D3-26,23-lactone 0.68 4.70E-06

Cervonyl carnitine 0.68 4.75E-06

MG(20:3(5Z,8Z,11Z)/0:0/0:0) 0.68 4.83E-06

Ricinoleic acid 0.68 6.20E-06

3-Hydroxy-9-hexadecenoylcarnitine 0.64 2.34E-05

3-Hydroxytetradecanoyl carnitine 0.64 2.97E-05

MG(22:2(13Z,16Z)/0:0/0:0) 0.62 5.27E-05

Persin 0.62 5.47E-05

L-Palmitoylcarnitine 0.61 8.33E-05

Arachidyl carnitine 0.60 0.000104

12-Hydroxy-12-octadecanoylcarnitine 0.60 0.000116

3alpha,7alpha,12alpha,26-Tetrahydroxy-5beta-cholestane 0.58 0.000215

2-Hydroxymyristoylcarnitine 0.57 0.000248

Nb-Palmitoyltryptamine 0.56 0.000353

(17alpha,23S)-Epoxy-28,29-dihydroxy-27-norlanost-8-ene-3,24-dione 0.54 0.000732

Calcitetrol 0.52 0.001129

Heptadecanoyl carnitine 0.51 0.001455

Ceramide (d18:1/16:0) 0.51 0.001588

Oleic acid 0.48 0.002991

Methyl acetyl ricinoleate 0.47 0.003999

Psychosine 0.45 0.005539

(9S)-(10E,12Z,15Z)-9-Hydroxyoctadecatri-10,12,15-enoic acid 0.45 0.006051

Lstamycin A3 0.43 0.009683

(9Z,11E)-13-Oxooctadeca-9,11-dienoic acid 0.42 0.011203

SM(d18:0/16:1(9Z)) 0.42 0.011364

Paederoside 0.40 0.014782

Palmitate 0.40 0.015261

Sandoricin 0.33 0.049254
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sphingosyl-phosphocholine, ceramide (d18:1/16:0), 3-O-
sulfogalactosylceramide (d18:1/20:0), and 2 downregulated
glucosylceramide (d18:1/18:0), 3-O-sulfogalactosylceramide
(d18:1/16:0)) (Table 1 and Fig. 3).

Several DMs of the sphingolipid metabolism pathway reg-
ulate neuronal function. For example, the neurotoxic
lysosphingol ip id psychosine is a by-product of
galactosylceramide metabolism and can disrupt lipid rafts
and vesicular transport, all are critical processes for the func-
tion of glia and neurons (Spassieva and Bieberich 2016).
Accumulation of psychosine induces apoptosis in murine ol-
igodendrocyte progenitor cells (Zaka and Wenger 2004).
Also, ceramide and glucosylceramide play a role in the regu-
lation of the progression of different neurodegenerative dis-
eases (Farfel-Becker et al. 2014; Mencarelli and Martinez-
Martinez 2013). Given that sphingosyl-phosphocholine and
sphingolipid metabolism were altered during acute and chron-
ic infections, and given their abovementioned neuroregulatory
functions, it is possible that they are implicated in the patho-
physiology of behavior alteration in the infected mice.

Toxoplasma gondii infection is infamous for causing loss of
aversion of rodents to the cat urine, which might be related to
disruption of the innate anti-predator adrenocorticotropic hor-
monal response (Yin et al. 2017), increase in testosterone syn-
thesis mediated by steroid hormones (Vyas 2015), or dysregula-
tion of anxiety, stress, and fear, which are mediated by the
endocannabinoid system (Lutz et al . 2015). The
endocannabinoid signaling pathway was shown to reduce the
GABAergic synaptic transmission to gonadotropin-releasing
hormone neurons (Farkas et al. 2010). In our study, the metabo-
lites linked to the steroid hormone biosynthesis pathway and
retrograde endocannabinoid signaling pathway were altered in
the infected hippocampi (Fig. 3). In the steroid hormone biosyn-
thesis pathway, tetrahydrodeoxycorticosteronewas downregulat-
ed at 7 dpi but was upregulated at 21 dpi, and 17α,21-
dihydroxypregnenolone was upregulated at 14 dpi. In the

retrograde endocannabinoid signaling pathway, two significantly
altered metabolites (downregulated anandamide and upregulated
lecithin) were detected at 7 dpi. At 14 dpi, four upregulated
metabolites (phosphatidylethanolamine, diacylglycerol, 2-
arachidonoylglycerol, and arachidonic acid) were detected.

At 21 dpi, there were three upregulated metabolites
((PE(20:3(5Z,8Z,11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)),
PE(20:3(5Z,8Z,11Z)/16:0), and arachidonic acid) and two
d own r e g u l a t e d m e t a b o l i t e s ( l e c i t h i n a n d 2 -
arachidonoylglycerol). The 2-arachidonoylglycerol and anan-
damide play roles in the regulation of synaptic functions and
plasticity, learning and memory, reward and addiction,
antinociception, and anxiety (Luchicchi and Pistis 2012).
They can also inhibit the release of neurotransmitters, such
as γ-aminobutyric acid (GABA) and glutamate in the hippo-
campi (Gerdeman and Lovinger 2001; Hoffman and Lupica
2000; Piomelli 2003). Furthermore, phosphatidylethanol-
amine regulates the biosynthesis of endocannabinoids
(Leung et al. 2006) and arachidonic acid plays a role in the
regulation of neurological and immune responses (Bosetti
2007; Grimble and Tappia 1998; Levick et al. 2007). The
alterations of the aforementioned metabolites in the steroid
hormone biosynthesis and retrograde endocannabinoid signal-
ing pathways are consistent with the adverse effects of infec-
tion on mouse learning and memory, which may contribute to
the loss of innate aversion to cat urine (Evans et al. 2014;
Ingram et al. 2013).

Transient receptor potential (TRP) channels are ligand-gated
ion channels that act as transducers for thermal, chemical, and
mechanical stimuli, and play roles in the regulation of immuno-
modulatory neuropeptide release, chronic pain, thermoregula-
tion, and nociception (Shibasaki et al. 2007). TRP channels are
directlymodulated by immune cytokines and other inflammatory
mediators. In the present study, the endogenous cannabinoid
anandamide that serves as an agonist of human ligand-gated
ion channel vanilloid receptor, which plays a role in nociception

Fig. 5 Log2 (fold change) data of the metabolites that were significantly
correlated with T. gondii infection. A: Leontogenin; B: arachidonic acid;
C: sphingosyl-phosphocholine; D: linoelaidyl carnitine; E: 7alpha-
Hydroxy-3-oxo-4-cholestenoate; F: 25-hydroxyvitamin D3-26,23-lac-
tone; G: cervonyl carnitine; H: MG(20:3(5Z,8Z,11Z)/0:0/0:0); I:
ricinoleic acid; J: 3-hydroxy-9-hexadecenoylcarnitine; K: 3-
hydroxytetradecanoyl carnitine; L: MG(22:2(13Z,16Z)/0:0/0:0); M:
persin; N: L-palmitoylcarnitine; O: arachidyl carnitine; P: 12-hydroxy-
12-octadecanoylcarnitine; Q: 3alpha,7alpha,12alpha,26-Tetrahydroxy-

5beta-cholestane; R: 2-hydroxymyristoylcarnit ine; S: Nb-
palmitoyltryptamine; T: (17alpha,23S)-epoxy-28,29-dihydroxy-27-
norlanost-8-ene-3,24-dione; U: calcitetrol; V: heptadecanoyl carnitine;
W: ceramide (d18:1/16:0); S: oleic acid; Y: methyl acetyl ricinoleate; Z:
psychosine; AA: (9S)-(10E,12Z,15Z)-9-hydroxyoctadecatri-10,12,15-
enoic acid; AB: lstamycin A3; AC: (9Z,11E)-13-oxooctadeca-9,11-
dienoic acid; AD: SM(d18:0/16:1(9Z)); AE: paederoside; AF: palmitate;
and AG: sandoricin; *p value < 0.05
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and regulation of feeding behavior, and neural generation of
motivation and pleasure, was downregulated at 7 dpi. The down-
regulation of this metabolite at 7 dpi seems to underpin the pain
associated with acute infection. At 14 dpi, arachidonic acid and

diacylglycerol were upregulated, and arachidonic acid and 5(S)-
HETE were upregulated at 21 dpi (Fig. 3). Arachidonic acid,
5(S)-HETE, and diacylglycerol are important inflammatory me-
diators (Balboa et al. 2019; Bittleman and Casale 1995).

Fig. 6 Receiver operating characteristics curve analysis of 33 metabolites
that were significantly correlated with T. gondii infection. A: leontogenin;
B: arachidonic acid; C: sphingosyl-phosphocholine; D: linoelaidyl carni-
tine; E: 7alpha-hydroxy-3-oxo-4-cholestenoate; F: 25-hydroxyvitamin
D3-26,23-lactone; G: cervonyl carnitine; H: MG(20:3(5Z,8Z,11Z)/0:0/
0:0); I: ricinoleic acid; J: 3-hydroxy-9-hexadecenoylcarnitine; K: 3-
hydroxytetradecanoyl carnitine; L: MG(22:2(13Z,16Z)/0:0/0:0); M:
persin; N: L-palmitoylcarnitine; O: arachidyl carnitine; P: 12-hydroxy-
12-octadecanoylcarnitine; Q: 3alpha,7alpha,12alpha,26-Tetrahydroxy-

5beta-cholestane; R: 2-hydroxymyristoylcarnit ine; S: Nb-
palmitoyltryptamine; T: (17alpha,23S)-Epoxy-28,29-dihydroxy-27-
norlanost-8-ene-3,24-dione; U: calcitetrol; V: heptadecanoyl carnitine;
W: ceramide (d18:1/16:0); S: oleic acid; Y: methyl acetyl ricinoleate; Z:
psychosine; AA: (9S)-(10E,12Z,15Z)-9-hydroxyoctadecatri-10,12,15-
enoic acid; AB: lstamycin A3; AC: (9Z,11E)-13-oxooctadeca-9,11-
dienoic acid; AD: SM(d18:0/16:1(9Z)); AE: paederoside; AF: palmitate;
and AG: sandoricin
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Diacylglycerol is also involved in dopaminergic and glutamater-
gic synapse pathways (Table S1). Therefore, the increase of these
inflammatory mediators at 14 and 21 dpi seem to play a dual role
in limiting the parasite proliferation while promoting latent toxo-
plasmosis, which contributes to neurocognitive manifestations
particularly memory impairment in the infected rats (Daniels
et al. 2015).

In humans, brain infection with T. gondii is associated with
Th1 immune response and production of proinflammatory
factors (e.g., interleukin (IL)-1, IL-6, tumor necrosis
factor-α, and inducible nitric oxide synthase) which are relat-
ed to anxiety and depression disorder (Gale et al. 2014). A
correlation was found between stress-related inflammation
and alterations in the functions of the excitatory neurotrans-
mitter glutamate in the hippocampus and behavioral abnor-
malities in BALB/c (Sathyanesan et al. 2017). Also,
T. gondii caused anxiety-like symptoms and impaired cogni-
tive functions in BALB/c mice. These adverse effects were
ameliorated with pioglitazone, which attenuates oxidative
damage and inflammation (Mahmoudvand et al. 2015).
Therefore, metabolites of the inflammatory mediator regula-
tion of the TRP channels pathway identified in the present
study may play a role in the neurogenic inflammation that
underpins the pathophysiology of both toxoplasmosis and be-
havioral modification. Further investigation of the effect of the
interplay between T. gondii infection, inflammatory mediator
regulation of TRP channels, and body temperature in hippo-
campus on the host behavior is warranted.

Our WGCNA analysis identified a subset of 33 hippocam-
pus metabolites that may serve as potential biomarkers for
cerebral toxoplasmosis (correlation index = 0.66, P value =
1e-05). The 33 metabolites responsive to T. gondii infection
were all upregulated in the infected hippocampi (Fig. 5). We
tested the sensitivity and specificity of the 33 metabolites
using ROC analysis. As shown in Fig. 6, 30 of the 33 metab-
olites had an area under curve > 0.7, suggesting that these 30
metabolites are good candidates for predicting T. gondii infec-
tion. Leontogenin had the highest correlation value (correla-
tion index = 0.72, P value = 6.19E-07) and AUC value (AUC
= 0.90). However, the role of this metabolite in the
neuropathogenesis of T. gondii or behavioral abnormalities
is unknown. Arachidonic acid has been identified as a poten-
tial biomarker in previous metabolomic studies of T. gondii
infection (Chen et al. 2018; Chen et al. 2017; Ma et al. 2020;
Ma et al. 2019; Zhou et al. 2015; Zhou et al. 2016). In agree-
ment with the previous studies, arachidonic acid was also
significantly associated with T. gondii infection in the hippo-
campi (correlation index = 0.72, P = 7.73E-07). Arachidonic
acid was involved in 4 (arachidonic acid metabolism, inflam-
matory mediator regulation of TRP channels, linoleic acid
metabolism, and retrograde endocannabinoid signaling) out
of the 11 common pathways.

All the identified potential biomarkers were mapped to the
KEGG pathway database in order to identify their function.
Twelve of the potential biomarkers were involved in 32
KEGG pathways (Fig. 7). Arachidonic acid was found to
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regulate most of these pathways; however, sphingolipid me-
tabolism pathway was regulated by three potential biomarkers
(ceramide (d18:1/16:0), psychosine, and sphingosyl-
phosphocholine). Arachidonic acid regulates various neuro-
logical and immunological mechanisms (Bosetti 2007;
Grimble and Tappia 1998; Levick et al. 2007). Ceramide
(d18:1/16:0) is involved in inflammatory processes and neu-
rodegenerative diseases (Gertow et al. 2014; Mencarelli and
Martinez-Martinez 2013). Alterations of psychosine and
sphingosyl-phosphocholine can disrupt the sphingolipid me-
tabolism, resulting in neurotoxicity (Sugiyama et al. 1993;
Zaka and Wenger 2004). Further characterization of these
potential biomarkers should expand our understanding of their
roles in both T. gondii infection and behavioral modifications
in the infected hosts.

Conclusions

This is the first study to characterize the global metabolic
changes in mouse hippocampus following T. gondii infection.
The metabolomic profiles of the infected hippocampi were
significantly different from that of the non-infected hippocam-
pi. Although most of the differentially abundant metabolites
were related to a certain stage of infection, sphingosyl-
phosphocholine and 11 metabolic pathways were commonly
detected at all stages of infection. Most of these common
pathways are related to neuronal functions and/or immune
responses, which play roles in the neuropathogenesis of
T. gondii infection and in the neurobiology of behavioral ab-
normalities. We also identified a panel of 33 metabolites
strongly correlated with infection and 30 of these were iden-
tified as potential biomarkers for T. gondii infection. Future
research is required to validate the clinical predictive utility of
the identified biomarkers.
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