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Abstract
This study reports on the status of metazoan fish parasites in Lake Victoria following the establishment of introduced Lates niloticus
(Latidae) and Oreochromis niloticus (Cichlidae) and changes in environmental quality. For this study, 412 fish specimens were
examined for parasites: 103 L. niloticus, 165 O. niloticus, 82 Haplochromis piceatus and 62 H. humilior (endemic cichlids). In total,
25 parasite taxa were identified: Lates niloticus (6), O. niloticus (19) and Haplochromis spp. (13). The myxosporean Henneguya
ghaffari, prevalence (P) = 79% and the monogenean Diplectanum lacustris (P = 34%), were the dominant parasites on L. niloticus.
Myxobolus sp. (P = 44%) was dominant onO. niloticuswhile for the haplochromines, metacercariae of ‘Neascus’ sp. (Diplostomidae)
was dominant (P = 37%). Contrary to reports of high diversity of monogeneans on endemic species, the haplochromines harboured
only Cichlidogyrus gillardinae (P = 6.9%).Oreochromis niloticus harboured seven monogenean species: Cichlidogyrus sclerosus, C.
halli, C. tilapiae, C. quaestio, Scutogyrus longicornis, Gyrodactylus cichlidarum and G. malalai—they appear to have been co-
introduced with the fish. Cichlidogyrus gillardinae, C. quaestio, G. malalai and the acanthocephalan Acanthogyrus (Acathosentis)
tilapiae are recorded for the first time in Lake Victoria, representing new geographical records. Presence of A. (A) tilapiae in
Haplochromis spp. indicates possible spillover from O. niloticus. Low prevalence and diversity of monogeneans, crustaceans and
glochidia on the fish corresponded with increased pollution in the lake. Overall, changing environmental conditions and introductions
of fish species have contributed to parasite community changes in Lake Victoria.
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Introduction

Lake Victoria, situated in East Africa, is the largest lake in
Africa and the most important freshwater resource for the
local population (Crul 1995). The lake serves more than 30
million people and is used as a source of food, domestic drink-
ing water, irrigation, transport and recreation and as a

repository for domestic and industrial waste (Okungu et al.
2005). The ecology of the lake has been greatly influenced
by pollution, overfishing and introduction of fish species such
as Nile perch Lates niloticus (L. 1758) and cichlid tilapiines
Oreochromis niloticus (L. 1758), Oreochromis leucostictus
(Trewavas, 1933), Coptodon zillii (Gervais, 1848) and
Tilapia rendalii (Boulenger, 1897) (Ogutu-Ohwayo 1990;
Kitchell et al. 1997; Njiru et al. 2005). These species were
introduced into the lake in the 1950s and caused the reduction
in the stocks of several native cichlids through ecological
competition from the tilapiines and predation by L. niloticus
(Ogutu-Ohwayo 1990). Lates niloticus and O. niloticus are
two of the three dominant fish species in Lake Victoria and
the silver cyprinid Rastrineobola argentea (Pellegrin, 1904)
being the other (Mkuna and Baiyegunhi 2019). These species
contribute approximately 139,500 tonnes accounting for at
least 75% of Kenya’s total fish production for internal and
external markets (FAO 2015).

Fish parasites represent a major part of aquatic biodiversity
(Palm 2011) and can cause alterations in the physiology and
behaviour of their hosts (Lafferty 2008). Furthermore, some
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fish parasites are agents of zoonotic diseases worldwide
(Paperna 1996; Toledo and Esteban 2016). A variety of inves-
tigations have been carried out on parasite fauna of fishes from
inland water bodies of East Africa. A total of 21 host species
have been studied from the genera Oreochromis, Coptodon,
Hap l o c h r om i s , A s t a t o t i l a p i a , T y l o c h r om i s ,
Boulengerochromis, Gnathochromis, Limnochromis,
Pundamila, Hydrocynus, Clarias, Clariallabes, Bagrus and
Lates, and from them at least 17 monogeneans, 5 crustaceans
and 32 endohelminths have been recorded (Thurston and
Paperna 1969; Paperna 1996; Maan et al. 2008; Mwita and
Nkwengulila 2008; Akoll et al. 2012a; Muterezi-Bukinga
et al. 2012; Mwita 2014; Otachi et al. 2014, 2015;
Kmentová et al. 2016). However, there is still very little data
on parasite fauna of L. niloticus and cichlids from Lake
Victoria.

Extensive anthropogenic activities subject inland surface
waters to various stressors that directly affect the species com-
position and diversity of aquatic biota (Palm 2011). In Lake
Victoria, anthropogenic pressures have led to eutrophication
and heavy metal pollution (Kitchell et al. 1997; Outa et al.
2020). Sensitivity to pollutants and environmental distur-
bances makes many parasite taxa useful indicators of environ-
mental health and anthropogenic impact (Sures et al. 2017).
Studies have shown that different fish parasites respond dif-
ferently to pollution. Gilbert and Avenant-Oldewage (2017)
noted that endoparasite infection levels become elevatedwhile
ectoparasites decline in relation to poorer water quality condi-
tions. According to Sures (2001), ectoparasitic monogeneans
have direct contact with the surrounding environment and
have short life cycles, hence can react immediately on changes
in environmental factors. For parasites with heteroxenous life
cycles, perturbations may lead to the loss of the appropriate
intermediate hosts, triggering the disappearance of some spe-
cies under polluted conditions (Overstreet 1997). In Lake
Victoria, there is no information on how environmental deg-
radation and the introductions of new fish species may have
influenced the diversity of parasites of the native species.
According to Chalkowski et al. (2018), invasive species can
influence the ecosystem through the introduction of parasites
from the native range or by amplifying parasites already
existing in the introduced range. In the case of Lake
Victoria, precautions were not taken against transferring par-
asites from Lake Albert during the introduction of L. niloticus
(Thurston and Paperna 1969).

The current study aimed to investigate the diversity of fish
parasites in the Kenyan part of Lake Victoria following the
establishment of introduced species and changes in the
physico-chemical environment. We focussed on metazoan
parasites of the dominant introduced commercially important
fish species L. niloticus and O. niloticus and endemic cichlids
Haplochromis piceatus Greenwood & Gee, 1969 and
Haplochromis humilior (Boulenger, 1911). The study was

conducted at five sampling areas faced by different levels of
anthropogenic pressures. O. niloticus and the haplochromines
are inshore dwelling (Witte and Oijen 1990; Njiru et al.
2005)—their parasite fauna therefore helps to demonstrate
the potential influence of environmental conditions on parasite
prevalence and species richness.

Material and methods

Study area descriptions

Lake Victoria, shared by Kenya (6%), Uganda (43%) and
Tanzania (51%), is the world’s largest tropical lake and the
second largest freshwater lake in the world, covering a total of
68,000 km2 with a mean depth of 40 m, and maximum depth
of 79 m (Okungu et al. 2005). It is located along the equator
between 0.5° N and 2.5° S and 32° E and 34° E at an elevation
of 1134 m above sea level. The main river inlet (Kagera)
drains through Burundi, Rwanda, Tanzania and Uganda,
while the main river outlet is the Nile (Crul 1995). The
Kenyan part of Lake Victoria lies just south of the equator
between 0° 6′ S to 0° 32′ S and 34° 13′ E to 34° 52′ E. It
covers an area of about 4200 km2 of which 1400 km2 com-
prises the Winam Gulf (Crul 1995). The lake’s basin has an
equatorial climate, with temperatures ranging between 20 and
35 °C, and the mean annual rainfall ranges between 1000 mm
and 1500 mm (Okungu et al. 2005).

As indicated in Fig. 1, the study was carried out in the
Kenyan part of the lake: four regions in Winam Gulf;
Asembo Bay (AB), Kisumu City harbour (KM), Kisumu
City outskirt (KK), Mainuga (MN) and a site in the main lake
body; Rusinga Island (RS). The sites at the gulf suffer from
various anthropogenic pressures such as agricultural,
industrial and municipal wastewater discharge. Outa et al.
(2020) reported that contamination of water with dissolved
organic carbon, bound nitrogen, potassium, iron and nickel,
and sediments with chromium, copper, zinc, silver, cadmium
and lead was particularly pronounced around Kisumu City
andMainuga. The site at RS had the least direct anthropogenic
influence and had the lowest levels of electrical conductivity,
dissolved organic carbon, bound nitrogen, iron, zinc, silver
and lead (Outa et al. 2020). The five sampling stations were
therefore dissimilar in their physico-chemical characteristics.

Sampling and parasitological analyses

Sampling in the lake was conducted over two periods:
September 2016–July 2017 and October–December 2018.
Fish were collected with gill nets and transported alive in aer-
ated tanks with lake water to the Maseno University laboratory.
The fish were euthanized by cervical dislocation and their total
length was measured. Identification of cichlids using
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morphological features followed the identification keys as per
Witte and van Oijen (1990). The fish were dissected and
inspected for parasites according to standard procedures
(Schäperclaus 1990). The skin, fins, gills, eyes, buccal and ab-
dominal cavities were inspected for parasites. Freshly detached
gill filaments were placed in petri dishes with freshwater while
the eyes, digestive tract, liver, kidneys, gonads, heart, spleen
and swim bladder were placed into separate petri dishes with
saline water and were examined under a dissecting microscope
for parasites. Isolated parasites were mounted on temporary
slides and studied under higher magnifications (× 40–× 400).
Myxosporean cysts were detached from the gills, placed on a
slide and crushed under a cover slip to study the spore mor-
phology. Monogeneans were detached from the gills using fine
forceps and transferred individually with a needle into a drop of
ammonium picrate-glycerine on a slide, flattened with a cover
slip and sealed with clear nail polish. Digenean metacercariae
were excysted by breaking the cysts gently using dissection
needles and examined alive. Prior to fixation, acanthocephalans
were transferred to freshwater until the proboscis everted (Palm
2011). Isolated parasite specimens were fixed in 4% formalde-
hyde and 80% ethanol respectively for further analyses at the
University of Johannesburg, South Africa, and University of
Vienna, Austria. Morphological identification of parasites was
to the lowest taxa possible using identification keys as per
(Douëllou 1993; Paperna 1996; Ali 1999; Přikrylová et al.
2012; Otachi et al. 2015). The parasite specimens have been
preserved in ethanol for deposition at the National Museum
(NMK) parasitology collections Nairobi, Kenya, and with the
Natural History Museum of Vienna, Austria.

Molecular identification of selected monogenean speci-
mens was done at the University of Johannesburg, South
Africa. The specimens preserved in 80% ethanol were
rehydrated, dried and genomic DNA extracted using a
DNeasy Blood and Tissue kit following the manufacturer’s
protocols. Fragments of the ITS1 and 28S rDNA were ampli-
fied using primer sets S1 (5′- ATTCCGATAACGAA
CGAGACT -3′; Sinnappah et al. (2001)) and ITS3A (5′-
GAGCCGAGTGATCCACC -3′; Matějusová et al. (2001)),
and C1 (5′- ACCCGCTGAATTTAAGCAT -3′; Hassouna
et al. (1984)) and D2 (5′- TCCGTGTTTCAAGACGG -3′,
Hassouna et al. (1984)) respectively. PCR profiles for the
amplification of the ITS1 and 28S fragments were those of
Matějusová et al. (2001) and Jovelin and Justine (2001), re-
spectively. Successful amplification was verified in 1%
GelRed (Biotuim) impregnated agarose gel and amplicons
sequenced using BigDye v3.1 chemistry (Applied
Biosystems) following Avenant-Oldewage et al. (2014).
Sequencing was performed on an ABI3730 automated se-
quencer (Applied Biosystems). Electropherograms were
inspected and edited manually using Geneious R6 (Kearse
et al. 2012). Sequences were blasted to identify the most sim-
ilar sequences published in GenBank.

Statistical analyses

Prevalence and mean intensities of parasites on/in fish hosts
were determined according to Rozsa et al. (2000). Measures
of parasite community structure of the introduced and endemic
fish species were described using the Shannon-Wiener index,

Fig. 1 Map of Lake Victoria, indicating the study area, and the sampling
sites. Modified from Okungu et al. (2005). AB, Asembo Bay (0° 11′
10.2″ S 34° 23′ 35.8″ E); KM, Kisumu City (0° 05′ 16.4″ S 34° 44′

59.0″ E); KK, Kisumu City outskirt (0° 09′ 41.4″ S 34° 44′ 51.6″ E);
MN, Mainuga (0° 20′ 48.7″ S 34° 29′ 09.1″ E); and RS, Rusinga Island
(0° 23′ 20.5″ S 34° 11′ 48.9″ E)
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Simpson’s index, Margalef richness index and Berger-Parker
dominance (Magurran 1988). This was applied also for the O.
niloticus Monogenea data from study sites with different an-
thropogenic stressors. Further statistical analyses were done
using IBM SPSS 21. Data were tested for normality of distri-
bution using the Shapiro-Wilk test, and correlations between
fish total length (TL) and the abundance of parasites were tested
through non-parametric Spearman’s rank correlation test.

Results

In total, 412 fish were examined: 103 L. niloticus, 165
O. niloticus, 82 H. piceatus and 62 H. humilior. The mean
length and range values (in parentheses) of the fish were as
follows: L. niloticus 27.1 (11.2–66.0 cm), O. niloticus 15.3
(6.7–39.8 cm),H. piceatus 9.5 (6.9–13.9 cm) and H. humilior

11.6 (8.1–15 cm). Overall, parasites were recorded in/on
88.3% of L. niloticus, 87.3% of O. niloticus, 80.5% of
H. piceatus and 77.4% of H . humilior . Since the
haplochromines were infected by similar parasite species at
low prevalence for most of the parasites, the two species have
been treated as one sample for ease of comparison with
O. niloticus and L. niloticus. Table 1 provides a summary of
the prevalence (P) and mean intensity (MI) of the parasites
recorded from the fish. Morphological examination yielded
25 parasite species: 2 myxosporeans, 9 monogeneans, 1 ces-
tode, 5 digeneans, 2 nematodes, 1 acanthocephalan, 3 crusta-
ceans, 1 leech and bivalve larvae. The micrographs showing
the haptoral and copulatory structures of the monogeneans are
in the electronic supplementary material . Sequences generat-
ed for fourmonogenean species were identical with data avail-
able on GenBank for Cichlidogyrus sclerosus Paperna &
Thurston, 1969; C. halli (Price & Kirk, 1967); Gyrodactylus

Table 1 Parasites of L. niloticus,
O. niloticus and Haplochromis
spp.: prevalence (P) and mean in-
tensity (MI)

Parasite taxa Location on/in host L. niloticus O. niloticus Haplochromis
spp.

P MI P MI P MI

Henneguya ghaffari cysts Gills, intestinal surface 78.6 25.7 - -

Myxobolus sp. cysts Gills, intestinal surface - 43.6 5.0 31.3 3.8

Cichlidogyrus gillardinae Gills - - 6.9 2.3

Cichlidogyrus sclerosus Gills - 18.2 3.7 -

Cichlidogyrus halli Gills - 11.5 5.1 -

Cichlidogyrus tilapiae Gills - 1.21 3.0 -

Cichlidogyrus quaestio Gills - 0.61 5.0 -

Scutogyrus longicornis Gills - 1.82 4. 7 -

Gyrodactylus cichlidarum Gills, skin - 5.66 27.7 -

Gyrodactylus malalai Gills, skin - 3.77 34.0 -

Diplectanum lacustris Gills 34.0 14.7 - -

Amirthalingamia macracantha Intestine - 31.5 5.1 12.5 2.0

Tylodelphis sp. Vitreous humour - 5.45 4.1 6.3 6.1

Diplostomidae ‘Neascus’ sp. Underneath skin, gills, - 18.2 6.4 34.7 14

Diplostomidae ‘Diplostomulum’
sp.

Liver, mesenteries - 1.21 1.0 16.0 2.5

Clinostomum tilapiae Buccal cavity, eye
socket

- 2.0 2.0 - -

Euclinostomum heterostomum Buccal cavity - 2.0 1.0 2.08 2.0

Contracaecum multipapillatum Intestine, mesenteries 1.9 5.0 1.21 2.0 8.3 1.7

Cucullanus sp. Intestine 3.9 1.8 - -

Acanthogyrus (Acanthosentis)
tilapiae

Intestine - 26.7 2.0 20.8 2.27

Bivalve glochidia Gills 1.9 2.0 9.09 4.2 2.1 3.67

Leeches (Glossiphoniidae) Skin 2.9 1.0 6.06 1.2 0.69 1.0

Lamproglena monodi Gills - - 1.4 1.0

Ergasilus lamellifer Gills - 0.61 1.0 -

Argulus sp. Gills - - 0.69 2.0

Intestinal inflammation Intestine - 1.82 1.0 -

Dash (-), parasite not detected
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malalai Přikrylová, 2012 and G. cichlidarum Paperna, 1968.
Three specimens of O. niloticus had intestinal tumour-like
proliferation (approx. 3 cm thick, extending about 8 cm along
the intestine): the cause of the aberration is unknown.

Lates niloticus had the lowest species diversity of
parasites—two and four times lower than the haplochromines
and O. niloticus respectively (Margalef richness index;
Shannon-Wiener index) (Table 2). Myxosporea was the dom-
inant taxon with Henneguya ghaffari Ali, 1999 (cysts, P =
78.6%, MI = 25.7) from L. niloticus and Myxobolus sp. cysts
from O. niloticus (P = 43.6%, MI = 5.0). For the
hap l o ch rom ine s , ‘Neas cu s ’ s p . me t a c e r c a r i a e
(Diplostomidae) was the most dominant taxon (P = 34.7%,
MI = 14.0). The monogenean species richness and infection
levels varied between the fish species. L. niloticus harboured
Diplectanum lacustris Thurston & Paperna, 1969 (P = 34.0%,
MI = 14.7). Similarly, Haplochromis spp. harboured one spe-
cies: Cichlidogyrus gillardinae Muterezi-Bukinga, 2012 (P =
6.9%, MI = 2.3). On the other hand, O. niloticus harboured 7
monogenean species dominated by C. sclerosus (P = 18.2%,
MI = 3.7) and C. halli (P = 11.5%, MI = 5.1). The other
species were C. tilapiae Paperna, 1960; C. quaestio
Douëllou, 1993; Scutogyrus longicornis (Paperna &
Thurston, 1969); G. cichlidarum and G. malalai. In L.
niloticus, the levels of infection by parasites correlated with
the total length (TL) of the fish. The number of H. ghaffari
cysts showed a significant negative correlation with the TL of
fish (Spearman’s test, rs = − 0.271, p = 0.005), while the
number of D. lacustris was positively correlated with the TL
of fish (Spearman’s test, rs = 0. 743, p < 0.0001). Figure 2
shows the P and MI of H. ghaffari and D. lacustris on small
fish (TL = 11–29 cm) and large fish (TL = 30–66 cm).
Variation was observed in the prevalence, species richness
and diversity of monogeneans on O. niloticus from the study
sites (Table 3). The overall prevalence of monogeneans was
highest in the fish fromRS (50.0%), followed by AB (47.2%),
MN (29.2%), KM (23.7%) and KK (23.1%). The lowest spe-
cies richness and diversity of parasites occurred on fish from
KM, KK and MN. Out of the 7 species, C. sclerosus and C.
halli were the only species recorded on fish from all the five
study sites. The two species were the only species recorded on
fish fromKM, KK andMN. Similarly, variation was observed

in the P and MI of bivalve glochidia on the cichlids from the
study sites. Glochidia were not found on O. niloticus and
Haplochromis spp. from KM, KK and MN. P and MI were
highest on fish from RS: P = 28.6%, MI = 4.5 for
Haplochromis spp. and P = 41.7%, MI = 5.1 for O. niloticus.
At AB, P and MI were as follows: P = 1.41%, MI = 1.0 for
Haplochromis spp. and P = 3.78%, MI = 4.0 for O. niloticus.

Discussion

The current study shows a clear distinction in species richness
and diversity of parasites between the fish taxa examined, with
L. niloticus being the most depauperate in parasites. Data from
literature indicates that a cumulative figure of 13 metazoan
parasite species have been reported from native populations
of L. niloticus (Thurston and Paperna 1969; Emere 2000; Al-
Bassel 2003; Moravec et al. 2009). In the current study, only
six species were recorded. Leeches and bivalve larvae
(glochidia) are reported for the first time. Paperna (1996) re-
ported occurrence of these parasites on cichilds and other fish
species. Compared to their data, the detection of these para-
sites on the cichlids and L. niloticus in the current study indi-
cates expansion of host range. Even though glochidia oc-
curred on all the fish species examined, the parasite occurred
with higher prevalence and intensity on Nile tilapia, suggest-
ing that this is the most preferred host. In Lake Victoria, we

Table 2 Parasite diversity of fish
species Diversity parameter L. niloticus. O. niloticus Haplochromis spp.

Number of fish (n) 103 165 144

Number of parasite taxa 6 19 13

Margalef richness index 0.63 2.47 1.72

Shannon-Wiener index 0.54 2.26 1.44

Simpson's index 0.69 0.14 0.38

Berger-Parker dominance index 0.81 0.26 0.59

Dominant taxon H. ghaffari Myxobolus sp. ‘Neascus’ sp.

Table 3 Prevalence and diversity of Monogenea on O. niloticus from
the study sites.

AB KM KK MN RS

Number of fish (n) 53 38 26 24 24

Number of parasite taxa 6 2 2 2 4

Overall parasite prevalence 47.2 23.7 23.1 29.2 50.0

Margalef richness index 0.93 0.26 0.30 0.36 0.71

Shannon-Wiener index 1.315 0.693 0.601 0.377 0.93

Simpson’s index 0.30 0.49 0.57 0.77 0.50

AB, Asembo Bay; KM, Kisumu City; KK, Kisumu City outskirt; MN,
Mainuga; RS, Rusinga Island
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observed abundant adults of unionid species Coelatura
alluaudi, C. cridlandi, C. hauttecoeuri and Nitia monceti
and mutelidMutela bourguignati at Rusinga Island; it is how-
ever not known which species produced the larvae that were
parasitic on the fish.

The occurrence of myxosporean H. ghaffari, the monoge-
nean D . lacustr is and nematodes Contracaecum
multipapillatum and Cucullanus sp. on/in L. niloticus in the
current study corresponds with other studies. Henneguya
ghaffari was the most dominant parasite of L. niloticus in
the current study and has been reported on the same species
in Lake Wadi El-Raiyan, Egypt (Ali 1999), and Nile River at
Beni-Suef, Egypt (Abdel-Baki et al. 2014). The frequent oc-
currence of H. ghaffari on L. niloticus in the entire host range
may confirm introduction of the parasite with the fish.
However, the high prevalence of H. ghaffari in the current
study compared to records from Egypt (Ali 1999, Abdel-
Baki et al. 2014) could be attributed to climatic conditions.
Indeed, low prevalence of H. ghaffari was recorded in winter
season compared to summer periods (Abdel-Baki et al. 2014).
Therefore, the tropical climatic conditions of Lake Victoria
characterized with high temperature supported rapid repro-
duction of the myxosporean. The high prevalence of H.
ghaffari poses a health threat to L. niloticus owing to intense
pathological effects of myxosporeans on the hosts (Paperna
1996; Sitja-Bobadilla 2008; Abdel-Baki et al. 2014).
Nonetheless, we recommend further studies on the histopath-
ological changes associated with H. ghaffari on Nile perch in
Lake Victoria. The results of our study showed that the prev-
alence and abundance of H. ghaffari were higher in smaller
fish and declined in larger fish. The reason for this trend is not
clear and should be the subject of further investigations. We
propose that ontogenic shifts in habitat preference and in-
creased immunity in older fish might in part explain this cor-
relation. Juvenile fish predominantly inhabit shallower littoral
zones (Schofield and Chapman 1999) where the sediment
dwelling oligochaetes harbouring infective actinospores occur
(Paperna 1996). The young fish are therefore exposed to in-
fection to a greater extent. Studies have shown that fish

develop an immune response to myxosporeans (Sitja-
Bobadilla 2008): the infection levels are therefore likely to
decline in bigger fish, with little chance of re-infection in the
pelagic zone. LikeH. ghaffari,D. lacustris specifically infects
L. niloticus. This agrees with studies from the Nile River and
Lake Albert which are natural habitats of the fish (Thurston
and Paperna 1969) and from Northern Lake Victoria where
the fish was previously introduced (Paperna 1996). The fre-
quent occurrence ofD. lacustris on L. niloticus throughout the
host range also confirms introduction of the parasite with the
fish. The results of this study revealed high prevalence and
mean intensities of D. lacustris in bigger fish compared to
smaller fish. According to Otachi et al. (2015), availability
of more attachment space is the primary reason for high abun-
dance of monogeneans on bigger fishes.

A variety of parasite taxa reported from L. niloticus in
other studies were not observed in the current study.
According to Thurston and Paperna (1969), crustaceans
Ergasilus kandti Douwe, 1912 and Dolops ranarum
(Stuhlmann, 1892) occurred in high prevalence on L.
niloticus from Lake Albert and Lake Victoria respectively.
Crustaceans were not reported on L. niloticus in the current
study. Lafferty (2008) noted that environmental degrada-
tion may lead to a decline in the abundance of parasites over
time. According to Pane et al. (2008), copepod egg produc-
tion and survival of nauplii are greatly reduced by heavy
metal pollution. In the last three decades, the Kenyan part
of Lake Victoria has experienced increased pollution pres-
sure by eutrophication and heavy metals (Outa et al. 2020):
this can in part explain the absence of ectoparasitic crusta-
ceans which are directly affected by the water quality.
Similarly, the acanthocephalan Neoechorhynchus sp., ces-
tode Proteocephalus sp. and nematode Camallanus sp.
from River Kaduna, Nigeria (Emere 2000); acanthocepha-
lan Paragorgorhynchus chariensis Troncy, 1970 from the
Nile and Lake Nasser, Egypt (Al-Bassel 2003); and nema-
todes Philometra lati and P. spiriformis from Lake Turkana,
Kenya (Moravec et al. 2009), were not observed in the cur-
rent study.

Fig. 2 Prevalence (P) and mean
intensity (MI) of H. ghaffari (a)
andD. lacustris (b) on L. niloticus
of different sizes (total lengths).
Small fish, 11–29 cm, n = 67;
large fish, 30–66, n = 36 cm).
Error bars (mean ± SD)
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There are no comprehensive records of the parasite fauna
of the cichlids from Lake Victoria, especially comparing the
native and the introduced species. Results of the current study
revealed that introducedO. niloticus harboured a high parasite
diversity compared to native haplochromines. The high spe-
cies richness could be linked to the restriction of seven mono-
geneans, namely Cichlidogyrus sclerosus, C. halli, C.
tilapiae, C. quaestio, Scutogyrus longicornis, Gyrodactylus
cichlidarum andG.malalai onO. niloticus. Like in our study,
the monogeneans Cichlidogyrus sclerosus, C. halli, C.
tilapiae, C. quaestio and Scutogyrus longicornis have been
recorded on tilapiine cichlids from other inland water bodies
across the world, e.g. Lake Kariba, Zimbabwe (Douëllou
1993); Lake Naivasha, Kenya (Rindoria et al. 2016);
Okinawa, Japan (Maneepitaksanti and Nagasawa 2012); and
Malaysia (Lim et al. 2016). Similarly, Gyrodactylus
cichlidarum and G. malalai were reported on O. niloticus
and C. zilli from Lake Turkana (Přikrylová et al. 2012). The
current study is the first report of C. quaestio and G. malalai
on fish from Lake Victoria basin. Moreover, this is the second
report of G. malalai following its identification as a new spe-
cies in 2012. Even though there has been a paucity of data on
monogeneans of the cichlids of Lake Victoria, the current
findings point to possible co-introductions of these monoge-
neans with O. niloticus and other tilapiines over the past de-
cades. During our study, O. niloticus cage cultures were ob-
served in Winam Gulf: an indication of possible cross-
infection between the cultured and wild fish. The results of
the current study further revealed that the prevalence of
Monogenea onO. niloticuswas significantly lower at the sites
near Kisumu City (KM and KK) and Mainuga (MN) com-
pared to Asembo Bay (AB) and Rusinga Island (RS).
Moreover, only two species (C. sclerosus and C. halli) were
recorded on fish from KM, KK and MN. Compared with the
AB and RS sites, the water around Kisumu City and MN had
higher values for electrical conductivity and concentrations of
dissolved components: organic carbon and bound nitrogen, as
well as major and most trace elements (Outa et al. 2020). It is
likely that the poor environmental conditions at the sites near
Kisumu City and MN contributed to the low prevalence and
number of species. Our study agrees with the findings from
other investigations which concluded that the inhibitive qual-
ity of the physico-chemical environment correlates with de-
cline in monogenean species (Paperna 1996; Sures 2001;
Gilbert and Avenant-Oldewage 2017) with one or two species
dominating (Paperna 1996). Moreover, the dominance of C.
sclerosus onOreochromis spp. from various habitats has been
reported in other studies in Africa (e.g. Paperna 1996; Akoll
et al. 2012a). This trend has been reported in cultured fish as
well. In studies of fish ponds with contrasting physico-
chemical conditions in Kenya, Ojwala et al. (2018) recorded
C. sclerosus and C. halli as the dominating monogeneans on
O. niloticus. It can be concluded that these species have lower

sensitivity to a wide range of environmental variations com-
pared to the other monogeneans in the current study.

The endemic Haplochromis spp. had only one monogene-
an species and its morphology matched C. gillardinae. This
species had been reported only on haplochromines
Astatotilapia burtoni (Günther, 1894) and Gnathochromis
permaxillaris (David, 1936) from Lake Tanganyika
(Kmentová et al. 2016; Muterezi-Bukinga et al. 2012). The
low prevalence (P = 6.9%) and low species richness of mono-
geneans on the haplochromines in the current study is a strong
contrast to reports from other studies. Maan et al. (2008) re-
ported unidentified species of Cichlidogyrus from
haplochromines Pundamila pundamila (P = 93%) and P.
nyererei (P = 88%) from Speke Gulf of Lake Victoria,
Tanzania. In Lake Tanganyika, at least 22 Cichlidogyrus
spp. have been reported from different cichlids (Kmentová
et al. 2016). Moreover, our finding contrasts reports of higher
species richness and abundance in native compared to intro-
duced cichlids, e.g. in Panama (Roche et al. 2010) and Brazil
(Bittencourt et al. 2014). We propose that poor water quality
on the Kenyan part of Lake Victoria coupled with host spec-
ificity of monogeneans and/or resistance of these endemic
cichlids to the introduced parasites might explain the low
prevalence and diversity recorded on these fish. Moreover,
the haplochromines almost completely disappeared in the
1980s as a result of predation from the introduced L. niloticus
(Witte and Oijen 1990;Witte et al. 2007). It has been observed
that such a reduction in fish population can lead to the disap-
pearance of its parasites (Lafferty 2008).

Regarding crustaceans, Argulus africanus Thiele, 1900;
Ergasilus lamellifer Fryer, 1961; Lamproglena monodi
Capart, 1944; Lernaea barnimiana (Hartmann, 1870); and
Lernaea cyprinacea L. 1758 were common on native
tilapiines and haplochromines from Lake Victoria and Nile
River (Fryer 1961). Similarly, high prevalence (14–100%)
of L . monodi and E . lamell i fer was recorded on
haplochromines P. pundamila and P. nyererei from Speke
Gulf, Tanzania (Maan et al. 2008). In the current study,
Argulus sp., L. monodi (on Haplochromis spp.) and E.
lamellifer (O. niloticus) were recorded, at very low prevalence
(< 2%) and mean intensities. We suggest that pollution in the
Kenyan part of Lake Victoria may be a contributing factor
since studies have shown that exposure to contaminated envi-
ronments can result in a decline of ectoparasite infections on
fish (Gilbert and Avenant-Oldewage 2017).

According to Mbahinzireki’s study from 1984 (Witte and
van Oijen 1990), endoparasi t ic nematode larvae
(Contracaecum sp. and Eustrongylides sp.), trematode
(Allocreadium mazoenzis Beverley-Burton, 1962) and
protocephalid cestodes were recorded in various species of
Haplochromis from Mwanza Gulf of Lake Victoria,
Tanzania. In the current study, Eustrongylides sp., A.
mazoenzis and protocephalid cestode were not observed.
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Nematode C. multipapillatum and cestode Amirthalingamia
macracantha (Joyeux & Baer, 1935) recorded in the current
study are widespread in cultured and wild cichlids across east-
ern Africa (Akoll et al. 2012c; Otachi et al. 2014; Otachi et al.
2015; Ojwala et al. 2018). The five digenean taxa (black spot
‘Neascus’ sp., ‘Diplostomulum’ sp., Clinostomum tilapiae,
Tylodelphys sp., Euclinostomum heterostomum Rudolphi,
1809) reported in the current study correspond with reports
from studies across Africa. Paperna (1996) noted that water
bodies from the Jordan system throughout the Nile basin to the
Rift Valley lakes share common snail species and similar fish
(cichlids, Barbus and Clarias) which become infected by the
same digeneans: black spot ‘Neascus’, Clinostomum spp.,
Centrocestus spp., Phagicola spp. and E. heterostomum.
Black spot Diplostomidae sp. was the dominant digenean in
the current study. Similar metacercariae have been reported in
cichlids P. pundamila and P. nyererei from Speke Gulf,
Tanzania (Maan et al. 2008), and Tilapia sparrmanii from
South Africa (Hoogendoorn et al. 2019). Diplostomidae
(‘Diplostomulum’ sp.) recovered from liver and mesenteries
of the cichlids in our study resemble Diplostomulum sp.3 re-
corded on liver of Barbus humilis from Lake Tana, Ethiopia
(Zhokhov 2012). The morphology and molecular characteri-
zation of the metacercariae recovered from the current study is
subject to further detailed analyses in comparison with
existing literature data. Future work should also target the
adult worms which according to Paperna (1996), inhabit
herons, cormorants and pelicans. A. (A.) tilapiae is endemic
to the Nile River (Amin et al. 2008). According to Paperna
(1996), it was widespread in tropical African cichlids includ-
ing from Madagascar where it was introduced, but was not
observed in East Africa, the Sudan Nile or South Africa. It has
been reported in farmedO. niloticus fromUganda (Akoll et al.
2012b) and Kenya (Ojwala et al. 2018). The current study is
the first record of this species in Lake Victoria, and more
specifically in Haplochromis spp. This indicates that the par-
asite was co-introduced with O. niloticus and eventually
established itself on the haplochromines as well. This demon-
strates the spillover concept where parasites of the invasive
species infect new hosts (Chalkowski et al. 2018).

Conclusion

In total, 25 parasite taxa were recovered from the examined
fish. L. niloticus is depauperate in parasite taxa compared to
the cichlid fishes and to records from its native habitats. The
findings indicate that the myxosporeanH. ghaffari and mono-
geneanD. lacustriswere co-introduced with L. niloticuswhile
leeches and glochidia have expanded the host range to L.
niloticus. This study shows that the monogeneans are host
specific with the highest diversity occurring on the exotic O.
niloticus. Cichlidogyrus sclerosus, C. halli, C. tilapiae, C.

quaestio, Scutogyrus longicornis, Gyrodactylus cichlidarum
and G. malalai appear to have been co-introduced with O.
niloticus. Spillover from O. niloticus is the possible explana-
tion for presence of Acanthogyrus (Acanthosentis) tilapiae in
Haplochromis spp. Finally, this study indicates that increased
pollution corresponds with a decline of monogeneans,
glochidia and crustaceans.
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