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Abstract
Cryptosporidium and Giardia are important intestinal zoonotic pathogens that can infect various hosts and cause diarrhoeal
diseases. There are few reports of the epidemiological prevalence and molecular characterization of Cryptosporidium and
Giardia in wild birds around Qinghai Lake and in the surrounding areas on the Qinghai-Tibetan Plateau, Northwest China.
Therefore, the aim of this study was to determine the Cryptosporidium spp. and Giardia duodenalis genotypes and their
epidemiological prevalence in wild birds by PCR amplification. To our knowledge, this is the first report of a variety of
Cryptosporidium spp. and G. duodenalis infections in wild birds from that area, with overall prevalence rates of 8.98% (61/
679) and 3.39% (23/679), respectively. Furthermore, PCR sequencing confirmed the presence of Cryptosporidium baileyi (n =
3), Cryptosporidium parvum (n = 58), andG. duodenalis assemblage B (n = 19) and E (n = 4) in wild birds from the areas around
Qinghai Lake. The results of the present study demonstrated the wide distribution of Cryptosporidium and Giardia among wild
birds, which has potential public health significance. Moreover, the study findings also provided useful molecular epidemiolog-
ical data for monitoring and investigating the two parasitic protozoa in wild animals and surrounding environments.
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Introduction

Cryptosporidium spp. and Giardia spp. are common zoonotic
enteric protozoan parasites that can infect a wide range of ver-
tebrate hosts, including humans, mammals, and domestic and
wild animals worldwide (Feng et al. 2018; Heyworth 2016;

Plutzer et al. 2010; Ryan et al. 2014). Currently, birds are main-
ly infected by four avian Cryptosporidium species based on
biological characteristics and genetic differences:
Cryptosporidium meleagridis, Cryptosporidium baileyi,
Cryptosporidium avium, and Cryptosporidium galli (Plutzer
and Karanis 2009; Wang et al. 2019). Meanwhile, other
Cryptosporidium species (Cryptosporidium andersoni,
Cryptosporidium parvum, Cryptosporidium hominis,
Cryptosporidium muris) and genotypes (Cryptosporidium
goose genotypes (I–IV), a Cryptosporidium duck genotype,
and Cryptosporidium avian genotypes (I–IV)) have also been
reported in birds in previous studies (Cui et al. 2018; Nakamura
and Meireles 2015; Ryan 2010). C. meleagridis is considered
the third most prevalent species known to infect humans after
C. hominis andC. parvum (Braima et al. 2019; Una et al. 2001).
Based on multiple gene loci analysis, Xiao et al. (2002) have
suggested that mammals were the original hosts of
C. meleagridis. In general, many of the Cryptosporidium spe-
cies and genotypes have a host specificity and are not usually
considered a public health concern. However, some hosts carry
zoonotic species, which contribute to cross-infection between
host species (Braima et al. 2019). Furthermore, some
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genetically distinct avian Cryptosporidium genotypes/species,
such as Cryptosporidium avian genotype I, C. avium and
C. proventriculi in Psittaciform birds (Holubova et al. 2019),
C. parvum in falcons (Azmanis et al. 2018), C. parvum and
Cryptosporidium genotype BrPR1 in free-range chickens
(Ewald et al. 2017), and Cryptosporidium duck genotype in a
mandarin duck (Aix galericulata) (da Cunha et al. 2017), have
recently been reported. Likewise, two species of Giardia have
been recognized in avian hosts based on the morphology of
trophozoites and cysts: G. ardeae and G. psittaci (Ryan and
Caccio 2013). Other species/assemblages have been described
from bird hosts; for instance, G. duodenalis assemblage A has
been detected in a toco toucan (Ramphastos toco) (da Cunha
et al. 2017) and G. duodenalis assemblage B, assemblage D,
and assemblage F in wild birds from northwest Spain
(Reboredo-Fernandez et al. 2015). Assemblages A and B are
considered to be zoonotic and pathogenic to humans (Ryan and
Caccio 2013).

Previous studies have confirmed that Cryptosporidium and
Giardia are prevalent in livestock and wild animals (Itagaki
et al. 2005; Jian et al. 2018; Oates et al. 2012; Wang et al.
2017, 2018a; Zhang et al. 2018a; Ziegler et al. 2007).
Moreover, these two parasitic pathogens have attracted in-
creasing attention, resulting in a series of epidemiological in-
vestigations focusing on public and veterinary health.
Recently,Cryptosporidium andGiardia have been considered
emerging pathogens in poultry and wild bird groups and are
becoming prevalent parasites affecting domestic, caged, orna-
mental, companion, and wild birds. Infection of economic
poultry (laying and meat chickens, ducks, and geese) with
these two parasites may lead to extensive economic losses
(Batz et al. 2012; Holubova et al. 2018; Majewska et al.
2009). Wang et al. (2012) found a 13.1% prevalence of
Cryptosporidium from 47 quail farms in Henan, China, where
C. baileyi was found in the majority of the positive samples.
C. baileyi is generally associated with the respiratory form of
cryptosporidiosis in birds and capable of infecting a variety of
avian hosts. Most studies have focused on domestic animals
(cattle, sheep, goat, yak, horse, chicken, and pig) of commer-
cial interest (Hu et al. 2017; Li et al. 2016a; Majewska et al.
2009; Petersen et al. 2015; Qi et al. 2015, 2019; Squire et al.
2017; Wang et al. 2018a, 2018b; Zhong et al. 2018). McEvoy
and Giddings (2009) have reported that while C. parvum was
detected on a large turkey farm and post slaughter, C. parvum
was not a significant reservoir forCryptosporidium species. In
comparison, relatively fewer studies involved wild birds in-
fected with Cryptosporidium and Giardia (Cano et al. 2016;
da Cunha et al. 2017; Majewska et al. 2009; Plutzer and
Tomor 2009; Reboredo-Fernandez et al. 2015). Notably, var-
ious studies have identified and demonstrated the occurrence
of the zoonotic species C. parvum in wild birds, suggesting
that infected birds may play an important role in harbouring
and disseminating this parasitic pathogen (Plutzer and Tomor

2009; Reboredo-Fernandez et al. 2015). For the zoonotic
G. duodenalis assemblages, A and B have also been reported
in birds (Cano et al. 2016; da Cunha et al. 2017; Plutzer and
Tomor 2009).

Qinghai Lake is located in the north eastern part of the
Qinghai-Tibetan Plateau (QTP), with an altitude of approximate-
ly 3200 m, covering an area of approximately 4500 km2, and
with a circumference of more than 360 km. The sources of water
for the lake are from rivers, precipitation, and a spring at the
bottom of the lake. The most important water sources are rivers,
with more than 40 rivers that, including the Buha River, Shaliu
River,WuhaAlamRiver, andHaage River, deposit into the lake.
There are many more rivers on the southwest, northwest, and
north coast, with large drainage areas and many tributaries. The
environmental conditions and geographic location of Qinghai
Lake make it a suitable habitat for wild birds; there are 220
species and more than 160,000 birds, including the bar-headed
goose (Anser indicus), brown-headed gull (Chroicocephalus
brunnicephalus), great cormorant (Phalacrocorax carbo),
Crested duck (Anas platyrhynchos domesticus), ruddy shelduck
(Tadorna ferruginea), commonmerganser (Mergus merganser),
Chinese spot-billed duck (Anas zonorhyncha), Northern pintail
(Anas acuta), whooper swan (Cygnus cygnus), and black-necked
crane (Grus nigricollis), reported from the area. Further, a small
study has identified 5/148 (3.38% prevalence) positive samples
for C. baileyi genotypes in ruddy shelducks from the Qinghai
Lake (Amer et al. 2010). Qinghai Lake has become a major
breeding site for migratory birds flying to Australia, India,
Siberia, and Southeast Asia via the Central Asian-Indian flyway
and the East Asian-Australian flyway (Dong et al. 2017).

However, very few studies on the presence of
Cryptosporidium and Giardia in wild birds have been per-
formed in this area. The aim of this study was to determine
the prevalence and molecular characterization of
Cryptosporidium and Giardia species/genotypes in fae-
cal samples from wild birds around Qinghai Lake on
the QTP of China.

Materials and methods

Study sites

The faecal samples analysed in the present study were collect-
ed from wild birds at different locations around Qinghai Lake
on the QTP of China (see Fig. 1). The sampling sites were
located in the northern (Quanji River estuary, Fairy Bay,
Shaliu River estuary, Hadatan wetlands, Naren wetlands and
Sheng River estuary) and western (bird rescue centre,
Egg Island, Bird Island Park and Cormorant Island)
parts of Qinghai Lake, including the river estuaries,
wetlands, and islands. These areas are all breeding sites
and suitable habitats for wild birds.
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Fig. 1 Distribution of the sample collection locations (●) in this study.
Qinghai Lake is located on the Qinghai-Tibetan Plateau in China. The
five-pointed star (★) represents Qinghai Lake, and the number represents
the sampling site (sampling site names: 1: Haixinshan Island, 2: Bird

Rescue Center, 3: Egg Island, 4: Bird Island Park, 5: Cormorant Island,
6: Quanji River Estuary, 7: Fairy Bay, 8: Shaliu River Estuary, 9: Hadatan
Wetlands, 10: Naren Wetlands, 11: Sheng River Estuary)
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Specimen collection

A total of 679 individual wild bird faecal samples were col-
lected from the ground around Qinghai Lake in 2016 and
2018. Fresh faecal samples were preferentially chosen when
available. The samples were collected on site in cooperation
with the staff members of the Qinghai Lake National Nature
Reserve Administration, and they were fresh at the time of
collection. Upon observing groups of birds, the observers
walked towards them and collected the faeces. The main bird
species were brown-headed gull, bar-headed goose,
great cormorant, and great black-headed gull (Larus
ichthyaetus). Each individual fresh faecal sample was placed
in a sterile polystyrene tube (50-ml centrifuge tube) with re-
cords of the date, location, and identification number. The
samples were kept in 2.5% potassium dichromate and trans-
ferred in isothermal boxes to the laboratory in Xining where
they were stored at − 20 °C until DNA extraction. The total
genomic DNA was extracted from each faecal sample with a
QIAamp Fast DNA Stool Mini Kit (Qiagen, Germany) ac-
cording to the manufacturer’s instructions, with the addition
of 10 freeze-thaw cycles.

Molecular characterization of Cryptosporidium and
Giardia spp.

A two-step nested-PCR technique was performed to amplify a
fragment of the 18S rRNA gene to detect Cryptosporidium
oocysts. The expected length fragments were obtained after
primary amplification with the primers 18SiCF2: 5′-GACA
TATCA TTCAAGTTTCTGACC-3′ and 18SiCR2: 5′-
CTGAAGGAGTAAGGAACAACC-3′; the product was ap-
proximately 763 bp. The secondary amplification was con-
ducted with the primers 18SiCF1: 5′-CCTATCAGCTTTAG
ACGGTAGG-3′ and 18SiCR1: 5′-TCTAAGAATTTCAC
CTCTGACTG-3′, generating a corresponding 587-bp prod-
uct (Ryan et al. 2003). Both PCRs were performed with stan-
dard mixtures of 50 μl containing 4 μl primer mixtures
(10 μM of each primer), 2 μl dNTP mix (10 mM of each
dNTP), 5 μl 10 × PCR buffer containing 1.5 mM MgCl2
(Qiagen), 3 μl 3 mM MgCl2 (Qiagen), 0.5 μl 5 U HotStart
Taq DNA Polymerase (Qiagen), 3 μl bovine serum albumin
(BSA; acetylated, 10 mg/mL) (Promega), 2.5 μl DNA, and
30 μl PCR-grade water. For the primary PCRs, the amplifica-
tion reactions were run according to the following PCR pro-
gramme: an initial heat-activation step at 95 °C for 15 min; 35
cycles of 94 °C for 35 s, 58 °C for 35 s, and 72 °C for 50 s;
then 72 °C for 10 min and a final hold at 4 °C. For the sec-
ondary PCRs, each reaction was prepared as for the primary
PCR, but 18SiCF1/R1 primers were used, and the following
PCR programme was run: 95 °C for 15 min; 35 cycles of
94 °C for 30 s, 58 °C for 30 s, and 72 °C for 30 s; then
72 °C for 10 min and a final hold at 4 °C. For the molecular

detection of Giardia, a nested PCR was also performed to
amplify a 292-bp fragment of the Giardia 18S rRNA gene
locus according to Appelbee et al. (2003) to detect Giardia
cysts. The protocol used to detectCryptosporidium, except the
primers and the PCR programme, was different as follows: the
primary primers used were Gia2029F: 5′-AAG TGT GGT
GCA GAC GGA CTC-3′ and Gia2150R: 5′-CTG CTG
CCGTCCTTGGATGT-3′; the secondary primers usedwere
RH11 5′-CAT CCG GTC GAT CCT GCC-3′ and RH4 5′-
AGT CGA ACC CTG ATT CTC CGC CAG G-3′; and the
annealing temperatures were 55 °C and 59 °C, respectively. A
positive control and negative control were included in each
amplification. The amplified PCR products were analysed
using 1.5% agarose gel containing ethidium bromide
(0.6 mg/mL) and were observed under UV light.

Sequencing and phylogenetic analysis

The positive PCR products were sequenced by SUZHOU
GENEWIZ Company (Suzhou, China). To confirm their ge-
notypes, the sequences were analysed by Clustal Omega
(http://www.ebi.ac.uk/Tools/msa/clustalo/) and BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) alignment with
reference sequences in GenBank. The phylogenetic analyses
of Cryptosporidium and Giardia were performed with the
neighbour-joining (NJ) method, which was calculated by the
Jukes-Cantor model with 2000 bootstrap replicates.

Results

In this study, a total of 679 fresh wild bird faecal samples were
collected from different locations around Qinghai Lake on the
QTP of China (Fig. 1) from 2016 to 2018 to study the preva-
lence of Cryptosporidium and Giardia by PCR and sequenc-
ing analysis. Among the samples, 61 specimens were
Cryptosporidium-positive, and 23 were Giardia-positive, as
confirmed by PCR amplification of the rRNA genes, with
infection rates of 8.98% (61/679) and 3.39% (23/679), respec-
tively. In detail, the results showed that Cryptosporidium spp.
infection in wild birds was prevalent at the bird rescue centre,
Egg Island, Quanji River estuary, and Fairy Bay. Notably,
Giardia infection in wild birds was found in more places:
the bird rescue centre, Egg Island, Fairy Bay, Shaliu River
estuary, the Hadatan wetlands, and the Naren wetlands. The
numbers of co-infections of Cryptosporidium and Giardia
were three for Egg Island (C. parvum, n = 3, G. duodenalis
assemblage B, n = 3) and one for Fairy Bay (C. parvum, n = 1,
G. duodenalis assemblage B, n = 1). For Cryptosporidium
spp., sequencing and phylogenetic analyses identified the fol-
lowing: fifteen Cryptosporidium-positive faecal samples were
detected from the bird rescue centre (15/153, 9.80%), 41 from
Egg Island (41/311, 13.18%), one from the Quanji River
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estuary (1/17, 5.88%), and four from Fairy Bay (4/95, 4.21%);
the species were identified as C. parvum (n = 58) and
C. baileyi (n = 3). The sequencing and phylogenetic analyses
of Giardia were as follows: five Giardia-positive faecal sam-
ples were detected from the bird rescue centre (5/153, 3.27%,
assemblage B), 12 from Egg Island (12/311, 3.86%, assem-
blages E (n = 1) and B (n = 11), three from Fairy Bay (3/95,
3.16%, assemblage B), and one each from the Shaliu River
estuary (1/21, 4.76%), Hadatan wetlands (1/10, 10.00%), and
Naren wetlands (1/14, 7.14%); all identified as assemblage E.

For Cryptosporidium spp., the partial sequences of the 18S
rRNA locus identified the species C. baileyi, with 97% simi-
larity with C. baileyi (MH062741/2, MF498750, KY448455/
6/8, KY352487/8/9) with a query coverage of 99%. For
C. parvum, there was 100% similarity with C. parvum
(MF589923, MH477699, MH074867, KY514066,
KT948751, KP994663, KP730314, KP004203, KJ808693,
KC886318, EU553550, EF175936, DQ833278, DQ656354,
AJ853993/4, AJ849463, AF308600) with a query coverage of
100%. With respect to Giardia spp., the partial sequences of
the 18S rRNA determined the presence of G. duodenalis as-
semblage E, which showed 100% similarity to assemblage E
(MK573336/28, MG958618, KF843921, JF957620,
KR048478-91) with a query coverage of 100%. Moreover,
G. duodenalis assemblage B presented 100% similarity with
assemblage B (MG018739, KY658186/7, JX972180,
HQ616612) with a query coverage of 100%. The nucleotide
sequences identified in our study were deposited in the
GenBank database under the accession numbers
MK992409-MK992469 for Cryptosporidium and
MK993304-MK993326 for Giardia. The phylogenetic anal-
yses employing the NJ method indicated that all 18S rRNA
representative gene sequences of the Cryptosporidium and
Giardia species identified in the present study formed well-
defined clusters with their respective reference sequences
(Figs. 2 and 3).

Discussion

This is the first large parasitological study involving the mo-
lecular characterization and epidemiological prevalence detec-
tion of Cryptosporidium and Giardia species in wild birds
around Qinghai Lake on the QTP in China. For this location
and the wild birds in this area, the main focus so far has been
on avian influenza. Little is known about the occurrence of
Cryptosporidium and/or Giardia in wild birds here, with only
one study to date (Amer et al. 2010). Many researchers sug-
gest to monitor migratory waterfowl as a model for potential
source contamination for water supplies that extend to
humans, farms, and wildlife (Rao et al. 2009). Most previous
studies from other locations around the world have also fo-
cused on the transmission of these two parasitic pathogens in

aquatic and migratory birds (Cano et al. 2016; Elmore et al.
2013; Plutzer and Tomor 2009).

The overall prevalence of Cryptosporidium in the samples
was 8.98%, as determined by PCR analysis. Prevalence data
from other studies on waterbirds (see Table 1) indicate a wide
scope of infection rates, ranging from 0.5% in Canada geese
(Branta canadensis) (Zhou et al. 2004) to 100% in ducks (da
Cunha et al. 2017; Kuhn et al. 2002), the black-headed gull
(Chroicocephalus ridibundus) (Medema 1999), great

Fig. 2 Phylogenetic analysis of Cryptosporidium spp. based on
sequences of the partial small subunit ribosomal RNA gene. Black
circles represent the positive samples in this study

Parasitol Res (2021) 120:615–628 619



cormorant (Plutzer and Tomor 2009), and hooded merganser
(Lophodytes cucullatus) (Kuhn et al. 2002), although in all
cases with 100% infection rates, sample size was small, with
only one to three faecal samples analysed. Similar results to
ours have been reported in various species, with infection rates
of 2% and 3.4% in the Greylag goose (Anser anser) (Plutzer
and Tomor 2009), 2.8% in the commonmerganser (Majewska
et al. 2009), 3.38% in the ruddy shelduck (Amer et al. 2010),
0.5 to 6.8% in the Canada goose (Jellison et al. 2004; Zhou
et al. 2004), 4.95% in the black-headed gull and European
herring gull (Larus argentatus) (Smith et al. 1993), 7.7% in
the White stork (Ciconia ciconia) (Reboredo-Fernandez et al.
2015), and 8% in the great cormorant (Rzymski et al. 2017).
Moreover, infection with Cryptosporidium is found in a wide
geographic range (Table 1). Most studies are from Europe,
including the Czech Republic (Pavlasek 1993), Germany
(Richter et al. 1994), Hungary (Plutzer and Tomor 2009),
the Netherlands (Medema 1999), Poland (Majewska et al.

2009; Rzymski et al. 2017), Scotland (Smith et al. 1993),
and Spain (Cano et al. 2016; Reboredo-Fernandez et al.
2015), and the Americas, with the USA (Jellison et al. 2004;
Kassa et al. 2004; Kuhn et al. 2002; Zhou et al. 2004) and
Brazil (Bomfim 2013; da Cunha et al. 2017; Nakamura et al.
2009). There are fewer studies from Asia, including China
(Amer et al. 2010; Wang et al. 2010), Iran (Larki et al. 2018;
Shemshadi et al. 2014, 2016), and Thailand (Koompapong
et al. 2014) with one study from Australia (Ng et al. 2006).
It is obvious that Cryptosporidium is a widespread parasite,
widely dispersed among waterbirds and continents.

Additionally, Cryptosporidium has been found in domes-
tic, captive and wild terrestrial avian hosts worldwide
(Nakamura and Meireles 2015). Studies on domestic birds,
for example, have reported prevalence rates of 0.82% in do-
mestic pigeons in Guangdong Province, southern China (Li
et al. 2015); 3.8% in free-ranging, captive, and domestic birds
in western Poland (Majewska et al. 2009); 7% in carrier

Fig. 3 Phylogenetic analysis of
G. duodenalis based on
sequences of the partial 16S
rRNA gene. Black circles
represent the positive samples in
this study
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pigeons in Brazil (Oliveira et al. 2017a); 7.03% in turkeys and
chickens in Germany (Helmy et al. 2017); 10.20% in farmed
chickens in Hubei Province, China (Liao et al. 2018); 12.6%
in three chicken production systems in Brazil (Santana et al.
2018); 13.1% in farmed quail in Henan, China (Wang et al.
2012); 14.8% in poultry in Brazil (da Cunha et al. 2018);
15.8% in 3 large farm turkeys flocks in America (McEvoy
and Giddings 2009); 25.6% in free-range chickens in Brazil
(Ewald et al. 2017); and 50% in domestic ducks in Ahvaz,
southwest Iran (Larki et al. 2018). Studies on captive birds
have reported prevalence rates of 2.3% in captive birds in
Brazil (da Cunha et al. 2017); 3.22% in pet parrots in North
China (Zhang et al. 2015); 5% in caged exotic psittacines in
Brazil (Ferrari et al. 2018); 9.1% in companion birds in Japan
(Iijima et al. 2018); 10.64% in wild captive psittacines in
Brazil (Oliveira et al. 2017b); and 19.1% in introduced monk
parakeets (Myiopsitta monachus) in Santiago, Chile (Briceno
et al. 2017). Studies on wild terrestrial avian hosts have re-
ported prevalence rates of 11.7% in wild quail in the rolling
plains ecoregion of Texas and Oklahoma, USA (Xiang et al.
2017); 13.42% in Java sparrows (Lonchura oryzivora) of
northern China (Yao et al. 2017); and 17.1% in North
American red-winged blackbirds (Agelaius phoeniceus) in
the USA (Chelladurai et al. 2016). Cryptosporidium seems
to be widely dispersed among all avian taxa with implications
for transmission of infections to humans via environmental
media, such as contamination of water sources by waterbirds,
and direct transmission via food and companion birds.

The prevalence of Cryptosporidium was between
Cryptosporidium infection rates found in environmental me-
dia, e.g. sewage and river water (2.2%) (Ma et al. 2019) and
water samples (27.3%) (Ma et al. 2014b). Compared to studies
on livestock, the pattern is varied, with infection rates in live-
stock ranging from lower values than this study, e.g. yaks
(2.53%) (Ren et al. 2019), to mostly similar and some higher
rates, e.g. 1–2-month-old highland yaks (11.3%) (Wang et al.
2018a), young domestic farm animals (cattle (14.4%) and
sheep (6.2%)) (Zhang et al. 2018b), Tibetan sheep (12.3%)
and yaks (28.5%) (Li et al. 2016b), yaks (30.0%) (Ma et al.
2014a), yaks (24.2%) (Mi et al. 2013), farm yaks (12.5%), and
farm goats (35.7%) (Karanis et al. 2007) on the QTP in China.
Interestingly, similar rates to this study have been found in
wild animals, e.g. Qinghai voles (8.9%), and wild plateau
pikas (6.25%) (Zhang et al. 2018a), but much higher ones
have been found in zoo animals (80%) (Karanis et al. 2007).
In comparison, the prevalence of Giardia in this study
(3.39%) was less than Giardia infection rates in environmen-
tal media, e.g. water samples (15.4%) (Ma et al. 2014b) and
sewage and river waters (21.3%) (Ma et al. 2019) and similar
to studies in livestock, e.g. 1–2-month-old highland yaks
(5.2%) (Wang et al. 2018a), Zangxiang pigs (6.2%) (Zhang
et al. 2019), cattle (10%) (Jian et al. 2018), Tibetan sheep
(13.1%) and yaks (10.4%) (Jin et al. 2017), and 4–7-month-T
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old yaks (5.4%) (Wang et al. 2017) on the QTP in China. The
large differences in the prevalence of Cryptosporidium spp.
and Giardia spp. can be attributed to factors including project
design and sample collection methods, bird population move-
ment and density, and the intervention of livestock (yaks,
cattle, and sheep) and humans.

The prevalence ofGiardia in this study (3.39%) was generally
lower than that reported in previous studies carried out in other
locations. In studies on waterbirds (see Table 2), only prevalence
rates of 1.4% in common merganser and 4.2% in White stork in
Poland (Majewska et al. 2009) and 2% in Greylag geese at Lake
Balaton in Hungary (Plutzer and Tomor 2009) were similar to the
results of this study.All other studies onwaterbirds reported higher
prevalence rates (Table 2), ranging from 8.3% in ‘waterbirds’
(Cano et al. 2016) to 100% in Northern pintail (Kuhn et al.
2002), White stork (Franssen et al. 2000), and great cormorant
(Plutzer and Tomor 2009). However, in all cases with 100% in-
fection rates, only one faecal sample was analysed per study.
Moreover, infection ofwildwaterbirdswithGiardia is widespread
but found in less regions than Cryptosporidium (Table 2). Studies
from Europe include Hungary (Plutzer and Tomor 2009), the
Netherlands (Franssen et al. 2000), Poland (Majewska et al.
2009), and Spain (Cano et al. 2016; Reboredo-Fernandez et al.
2015). Studies from other regions are fewer, with two from the
USA (Erlandsen et al. 1990; Kuhn et al. 2002) and Australia
(Forshaw et al. 1992; McRoberts et al. 1996) and one from Asia
(Iran) (Shemshadi et al. 2014).

In other avian taxa, prevalence rates ranged from 1.2% in
captive birds in Brazil (da Cunha et al. 2017) and 5.2% in free-
ranging, captive, and domestic birds in western Poland
(Majewska et al. 2009) to 25.9% in captive Psittaciformes in
Brazil (Ichikawa et al. 2019).

From the Cryptosporidium species detected in this study,
the common species infecting the birds was C. baileyi (3 iso-
lates), which was found at two sites and was also identified in
yaks from Qinghai Province on the QTP with a prevalence
rate of 3.85% (Ren et al. 2019). The zoonotic C. parvum ge-
notype (58 isolates) was predominant with 8.54% prevalence;
this genotype was also identified in water samples (Ma et al.
2019), yaks (Mi et al. 2013; Wang et al. 2018a), Qinghai
voles, wild plateau pikas (Zhang et al. 2018a), and domestic
farm animals (cattle and sheep) (Zhang et al. 2018b) on the
QTP in China. With respect to G. duodenalis detected in this
study, 19 isolates were identified as assemblage B, which was
also detected in Zangxiang pigs (Zhang et al. 2019) and yaks
(Wang et al. 2018a). Importantly, among the eight
G. duodenalis assemblages, assemblage B is primarily asso-
ciated with humans, livestock, and wild animals, which sug-
gests that the presence of assemblage B in wild birds is a cause
of public health concern. On the other hand, 4 isolates were
identified as assemblage E, which was also found in water
samples (Ma et al. 2019), Zangxiang pigs (Zhang et al.
2019), yaks (Wang et al. 2018a), cattle (Jian et al. 2018),

and Tibetan sheep and yaks (Jin et al. 2017; Wang et al.
2017) on the QTP in China.

Wild birds around Qinghai Lake are mostly migratory;
Qinghai Lake is a major breeding site on several migratory
bird flyways. Previous studies on the global transmission of
avian influenza viruses showed that the virus was spread to
Mongolia, Russia, Europe, and Africa along bird migratory
flyways (Dong et al. 2017). Similarly, these two zoonotic
parasites, Cryptosporidium and Giardia, may also be trans-
mitted during wild bird migration. Therefore, because of the
geographic location of Qinghai Lake and the bird species
present in the area, Cryptosporidium and Giardia may be of
public health concern. Importantly, the surrounding areas of
Qinghai Lake support human travel and sheep, goats, cattle,
and yak grazing, and the water sources are shared with wild
animals. In addition, if the wild birds are infected with
Cryptosporidium and Giardia, these parasitic pathogens can
spread into or out of the Qinghai Lake area when the wild
birds migrate, resulting in a potential threat of further cross-
contamination. Therefore, it is imperative to carry out epide-
miological investigations in this area.

Conclusions

The 679 faecal samples collected from wild birds in Qinghai
Lake areas were screened for the presence of Cryptosporidium
and Giardia. To our knowledge, this is the first study to report a
variety of protozoan pathogens (C. baileyi, C. parvum, and
G. duodenalis assemblages B and E) in wild birds from the
Qinghai Lake area. The results obtained in this study demonstrate
the wide prevalence of Cryptosporidium and/or Giardia in wild
birds. Further studies are needed to investigate seasonal effects
and the effects of yaks, cattle, sheep, and human environmental
factors on the transmission dynamics of Cryptosporidium and/or
Giardia in wild birds on the QTP in China.
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