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Abstract

Schistosomiasis is one of the most devastating parasitic disease in the world. Schistosoma spp. survive for decades within the
vasculature of their human hosts. They have evolved a vast array of mechanisms to avoid the immune reaction of the host. Due to
their sexual dimorphism, with the female worm lying within the gynecophoric canal of the male worm, it is the male that is exposed to
the immediate environment and the soluble parts of the host’s immune response. To understand how the worms are so successful in
fending off the immune attacks of the host, comparative analyses of both worm sexes in human serum (with or without Praziquantel)
were performed using scanning electron microscopy, transmission electron microscopy, and immunohistochemistry. Further, gene
expression analyses of tegument-specific genes were performed. Following the incubation in human serum, males and females out of
pairs show morphological changes such as an altered structure of the pits below the surface and an increased number of pits per area. In
addition, female schistosomes presented a marked tuft-like repulsion of their opsonized surface. The observed resistance of females to
Praziquantel seemed to depend on active proteins in the human serum. Moreover, different expression profiles of tegument-specific
genes indicate different functions of female single and male_single teguments in response to human serum. Our results indicate that
female schistosomes developed different evasion strategies toward the host’s immune system in comparison to males that might lead to
more robustness and has to be taken into account for the development of new anti-schistosomal drugs.
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Introduction been treated (WHO 2018). Disease causing pathogens are par-

asitic flatworms of the genus Schistosoma spp. A characteristic

Schistosomiasis is considered the most important helminthic
disease of humanity in terms of morbidity and mortality rates,
affecting more than 200 million people mainly in the tropics
and subtropics (Hotez et al. 2014). Estimates show that at least
229 million people required preventive treatment in 2018, out
of which more than 97 million people were reported to have
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of these parasites is their ability to survive for decades within
the vasculature of their human hosts (Harris et al. 1984,
Hornstein et al. 1990; Payet et al. 2006). Schistosomes exhibit
a distinct sexual dimorphism between male and female worms.
The female worm lies hidden in the gynecophoric canal of its
male partner and is closely surrounded by it. Consequently, the
tegument of the male worm is the first point of attack of the
human immune system.

Matured schistosomes not only successfully fend off cellular
and humoral immune, they use the host’s immune responses for
their development and survival (Kusel et al. 2007; Maizels et al.
1993; McKerrow 1997; Pearce and MacDonald 2002; Pearce
and Sher 1987). Schistosomes exhibit an astonishing variety of
mechanisms that regulate their interactions with their host, in-
cluding strategies of assimilation and attenuation of immune re-
sponses and the induction of immune tolerance that enable their
long-term survival. Schistosomes can evade immune defense
mechanisms in different ways. Well characterized is the antigen
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masking by the absorption of host serum proteins to the parasite
surface (Loukas et al. 2001; Krautz-Peterson et al. 2017,
Sepulveda et al. 2010). Second, molecular mimicry was consid-
ered as an important strategy to evade the host immune attack
(Lehr et al. 2008; Salzet et al. 2000; Thompson 2001). Third,
schistosomes are able to alter the host’s immune response, either
directly through secretion of immune active proteins, or indirect-
ly by deregulation of host effector cells and molecules (Han et al.
2009). It is known that they protect themselves from
complement-dependent cytotoxicity by using inhibitory proteins
like SCIP-1 (Angeles et al. 2020; Parizade et al. 1994). Other
processes could also contribute to bypassing of the host immune
system. For example, several enzymes involved in redox homeo-
stasis, including glutathione-S-transferase, antioxidative
thioredoxin peroxidases, and manganese superoxide dismutase,
are located in the tegument (Liu et al. 2006). These enzymes are
assumed to protect against environmental toxins, products of
oxidative stress, and also innate immune attack through detoxi-
fication pathways (Kumagai et al. 2006; Loverde 1998; Mei and
Loverde 1997; Sayed et al. 2006; Vermeire and Yoshino 2007,
Williams et al. 2001).

The tegument of schistosomes plays a central role for the
masking and therefore surviving within the host. It displays a
continuous syncytium covering the entire outer surface of the
worm. Numerous ridges and invaginations considerably en-
large the tegumental surface. A high concentration of different
sensory papillae on the entire surface enables the worms to
perceive a variety of stimuli from their environment. The teg-
ument surface consists of two bilayers, an inner apical plasma
membrane and an outer secreted membranocalyx. Below
these surface membranes is the tegumental cytoplasmic layer.
The tegument itself lacks many basic cellular components
(e.g. ribosomes, nuclei, endoplasmic reticulum) and is con-
nected via cytoplasmic bridges to thousands of individual cell
bodies located under the muscle layers of the parasite. These
tegumental cell bodies, called “cytons,” have nuclei and sup-
ply the tegument with proteins and secreted material to main-
tain its function (Wilson and Barnes 1974). Proteome analyses
have shown that many schistosomal proteins such as trans-
porters and enzymes are located within the inner membrane,
whereas the host immunoglobulins and complement frag-
ments are exclusively located in the outer membrane
(Braschi and Wilson 2006). There is evidence that surface
membrane turnover can be crucial for the immune evasion
(Han et al. 2009). Previous work has focused on the immune
evasion strategies of male worms (Han et al. 2009). Due to
their hidden position, less is known about the evasion strate-
gies of female worms.

It has been shown that the effectiveness of anti-
schistosomal Praziquantel (PZQ) depends on the sex of schis-
tosomes (Pica-Mattoccia and Cioli 2004). The mechanism of
action of PZQ is not yet fully understood. However, early
effects exerted by the drug can be summarized under three
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main headings: (1) calcium influx into the parasites, (2) mus-
cle contraction, and (3) surface modifications (Cioli and Pica-
Mattoccia 2003). It is most likely that calcium influx repre-
sents the key event, which in turn causes muscle contraction
and tegument alterations. In vivo PZQ causes extensive struc-
tural changes to both male and female worms within 15 min of
treatment. Nevertheless, variations in extent of drug-induced
damage were observed in male and female worms. Apart of
some tegumental vacuolization within the first 15 min, in fe-
male worms, the major structural changes are extensive
vacuolization of the subtegumental tissue followed by varying
degrees of structural damage of the subtegumental and
gastrodermal musculature. In male worms, the initial effects
are vacuolization of the dorsal tegument and loss of
tegumental cytoplasm due to the pinching off of outer surface
protrusions (Shaw and Erasmus 1983). The damaged tegu-
ment is utmost vulnerable to the host immune system.

The gender-specific differences in tegument alteration after
PZQ treatment and the subsequent immune response of the
host led to the assumption that female worms may have de-
veloped specific evasion strategies toward the host’s immune
system. To test this hypothesis, we investigated whether hu-
man serum influences the male and female tegument differ-
ently. We used ultrastructural analysis and immunohisto-
chemistry to visualize the changes in the tegument caused
by human serum and tested the sex-specific motility of adult
schistosomes in human serum in a time-dependent manner.
Furthermore, we analyzed the gene transcription of
tegument-specific proteins during incubation in human serum.

Materials and methods
Ethics statement

All animal experiments were performed in strict accordance
with the regulations of the German Society for Laboratory
Animal Science and with the European health guidelines is-
sued by the Federation of Laboratory Animal Science
Associations. The protocol was approved by the local com-
mittee on animal care and use (7221.3-2-022/17). All efforts
were made to minimize animal suffering. Normal human se-
rum (NHS) was obtained from a healthy donor, who has
signed a declaration of consent. The research project was ap-
proved by the ethics committee of Rostock University
Medical Center (A2018-0175).

Schistosoma mansoni life cycle and worm isolation

Schistosoma mansoni (Belo Horizonte strain) was kept in a
life cycle using Biomphalaria glabrata (B. glabrata) fresh
water snails (Brazilian strain) as intermediate hosts and 6- to
8-week-old female NMRI mice as definitive hosts, as
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previously described (Sombetzki et al. 2015). To obtain either
male or female cercariae for subsequent infection of mice,
individual B. glabrata were exposed to single S. mansoni mi-
racidia. Single sex cercariae were harvested 6 weeks later. The
sex of the cercariae was determined by DNA amplification of
sex-related chromosome segments using female-specific
primers as previously described (Koslowski et al. 2017;
Boissier et al. 2001). The mice were percutaneously infected
with 300 S. mansoni cercariae, either male only, female only,
or both. Adult worms were collected from infected mice at day
49 post infection by perfusion of the portal system with rins-
ing buffer [RPMI medium 1640 (Thermo Fisher Scientific,
Germany), with 100 U/ml penicillin (Thermo Fisher
Scientific, Germany), 100 pug/ml streptomycin (Thermo
Fisher Scientific, Germany), and 1% heparin sodium salt
(Sigma-Aldrich, Germany)]. Worms were washed three times
with washing buffer (RPMI with 100 U/ml penicillin and
100 pg/ml streptomycin), and incubated in culture medium
[RPMI with 100 U/ml penicillin, 100 pg/ml streptomycin,
and 10% inactivated fetal bovine serum (Thermo Fisher
Scientific, Germany)] at 37 °C in a humid atmosphere con-
taining 5% CO, until further use.

Experimental groups

For the following experiments, isolated and separated female and
male worms (female pair, male pair) were used as well as fe-
males and males out of a single-sex infection (female single and
male_single). These main comparison groups were selected to
determine both gender-specific and mating independent effects.
For further analyses, all experimental groups of ~60 adult worms
each were exposed to undiluted normal human serum (NHS). As
negative controls, we used the respective groups of worms incu-
bated in heat inactivated serum (NHSi, heat-inactivated 30 min at
56 °C) as well as undiluted NHSi after overnight incubation in
10 uM Praziquantel (Sigma—Aldrich, Germany) (NHSi after
PZQ) (Da'dara and Krautz-Peterson 2014). Positive controls for
electron microscopy and motility assay were analyzed in undi-
luted NHS following overnight incubation in 10 pM
Praziquantel (NHS after PZQ).

Electron microscopy of the tegument of adult worms
exposed to human serum

Female single, male single, female pair, or male pair were ex-
posed to normal human serum (NHS) at 37 °C in a humid atmo-
sphere containing 5% CO, for 30 min followed by three times
washing in PBS (pH 7.4; ThermoFisher Scientific, Germany).
The respective control groups were analyzed in NHSi, NHSi
after PZQ (negative controls), and NHS after PZQ (positive con-
trol) under the same conditions. After incubation within the re-
spective medium and subsequent washing steps, the adult worms
were stored in fixative solution containing 2% glutaraldehyde

(EMS) and 1% paraformaldehyde in 0.1 M phosphate buffer
pH 7.3 until further use. The worms were cut in two halves.
One half was processed for transmission electron microscopy
(TEM) and the other half for scanning electron microscopy
(SEM). The medial posterior portion of five adult worms per
group was analyzed at their cutting sites. From each group, the
surface of three worms was imaged using SEM and one worm
was analyzed via TEM. The specimen embedding for TEM
involved a post fixation step using a buffered solution of 1%
osmium tetroxide for 1 h followed by washing steps in distilled
water and subsequent dehydration in an ascending series of ace-
tone prior to the infiltration with epoxy resin (Epon 812, Serva,
Germany) starting in a 1:1 mixture of acetone and resin overnight
and with pure resin for 4 h. After transfer to rubber molds, the
resin blocks were cured at 60 °C for 2 days. Both semithin
sections (approximately 0.5 pum, stained with toluidine blue for
light microscopy) and thin sections (5070 nm, applied on cop-
per grids with three slits for ultrastructural inspection) were cut
on an ultramicrotome (Ultracut S, Reichert, Austria) with a dia-
mond knife (Diatome, Switzerland). After treatment with uranyl
acetate and lead citrate for contrasting, thin sections were exam-
ined in a Zeiss EM902 transmission electron microscope operat-
ed at 80 kV (Carl Zeiss AG, Germany). Digital images were
acquired with a side-mounted 1x2k FT-CCD Camera (Proscan,
Germany) using iTEM camera control and imaging software
(Olympus Soft Imaging Solutions, Germany). For SEM prepa-
ration, worm tissues were dehydrated with a graded series of
acetone for subsequent critical point drying using CO, as an
intermedium in an Emitech K850 critical point dryer (Emitech/
Quorum Technologies Ltd., Laughton, UK). Specimens were
flat mounted on SEM stubs with adhesive carbon tape (Plano,
Germany) and sputter-coated with a gold layer (approximately
15-20 nm thickness) using a Bal-Tec SCD004 sputter coater
(Balzers Union Ltd., Balzers, Liechtenstein). Specimen surfaces
were analyzed with the field-emission SEM Zeiss Merlin VP
compact (Carl Zeiss Microscopy, Germany) operated at 5 kV.
Digital images with a size of 1024 x 768 pixels were recorded.

Immunohistochemical staining of complement factor
C3b bound to the tegument of adult worms exposed
to human serum

Female single, male_single, female pair, or male pair were ex-
posed to normal human serum (NHS) at 37 °C in a humid atmo-
sphere containing 5% CO, for 30 min followed by triple washing
with washing buffer. The negative control was incubated in heat-
inactivated normal human serum (NHSi, 30 min at 56 °C) under
the same conditions. After incubation, adult worms were incu-
bated at room temperature for 30 min with 1 pg/ml mouse/anti
human C3b antibody, clone H11 (Bio-Rad Laboratories,
Germany). Adult worms were washed three times with washing
buffer enriched with 0.2% bovine serum albumin (washing buff-
er + BSA) and incubated for 30 min at room temperature with
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5 pg/ml a goat/anti-mouse IgG labeled with Alexa-Fluor 488
(Bio-Rad Laboratories, Germany). Following three times wash-
ing with washing buffer + BSA, the worms were transferred to
PBS (pH 7.4; Thermo Fisher Scientific, Germany). Fluorescence
signal was detected using a fluorescent microscope (Axio
Scope.Al; Carl Zeiss Microscopy, Germany) equipped with an
AxioCam MRc camera (Carl Zeiss Microscopy, Germany).

Motility of adult worms exposed to human serum

For the assessment of the motility of adult worms, eight intact
worms per group and time point were transferred into 96-well
plates (Thermo Fisher Scientific, Germany), one single worm
per well. Worms were incubated in 100 pl of NHS at 37 °C in
a humid atmosphere containing 5% CO,. Controls were incu-
bated in NHSi, NHSi after PZQ, and NHS after PZQ under the
same conditions. The motility was monitored macroscopically
after 0.5, 1, 24, and 72 h of incubation using a binocular
microscope (Stemi 2000-C, Carl Zeiss Microscopy GmbH,
Germany). Motility of worms was assessed using a viability
scale of 0-3 described by Horiuchi et al. (2005): 3 = unaffect-
ed body movement; 1.5 = partial body movement; 0 =no
worm movement observable for more than 2 min.

Gene expression analysis of tegument-specific genes
after exposition of adult worms to human serum

Adult worms were exposed to NHS or to NHSi (control) for
0.5, 1, 24, and 72 h. Five worms were analyzed for each time
point. Worms were frozen (— 80 °C) in lysis buffer (RNeasy
Micro Kit, Qiagen, Germany) until further usage. Five worms
were pooled for RNA isolation (one biological replicate).
RNA was isolated (RNeasy Micro Kit) and quantity of RNA
was measured on a Colibri Microvolume Spectrometer
(Titertek-Berthold, Germany) and 500 ng of total RNA was
used to be reversely transcribed into cDNA using High-
Capacity cDNA Reverse Transcriptase Kit (ThermoFisher,
Germany) according to the manufacturer’s instructions. All
primers and probes were purchased from Eurofins
Genomics, Germany (Table S1). Gene candidates have been
selected with regard to their suspected involvement in tegu-
ment integrity, renewal, or repair processes of the tegument or
immune evasion strategies of adult schistosomes. As an en-
dogenous control, we used the housekeeping S. mansoni alpha
tubulin gene for relative quantification. Each qRT-PCR reac-
tion was performed using 2 pl of the cDNA, in a final volume
of 10 ul. All samples were run in triplicate. QPCR was per-
formed using the QuantStudio 3 (Thermo Fisher Scientific,
Germany) under the following reaction conditions: 50 °C for
2 min followed by 95 °C for 10 min, 45 cycles at 95 °C for
15 s, and at 59 °C for 1 min. The AACt method was
employed for relative quantification (Livak and Schmittgen
2001). For graphical representation, AACt values in NHS
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were normalized to the endogenous control and presented as
normalized, expression values of NHSi controls.

Statistics

Statistical analysis was performed using GraphPad Prism 5.0
(GraphPad Software, La Jolla, CA, USA). Values are
expressed as mean + SEyan. The samples were compared
using the Kruskal-Wallis test followed by a Dunn’s correc-
tion. For all statistical analyses, p values <0.05 were consid-
ered significant (# piuskai-wais < 0.05).

Results

Ultrastructural analysis of human serum-induced
surface modifications in adult male and female
S. mansoni

In order to investigate phenotypical changes due to the incu-
bation in human serum, the tegument morphology of the adult
worms was evaluated by scanning electron microscopy
(SEM) and transmission electron microscopy (TEM). The me-
dial posterior portion of the tegument was observed for each
group of adult worms.

Tegumental ridges, some sensory papillae, and numerous
pits characterize the outer surface of the adult worms in NHS
(Fig. 1a). Both groups, worms out of pairing, male pair and
female pair, showed an increased number of pits per area in
NHS compared to NHSi. Below the surface, changes due to
the incubation in NHS could be detected in these groups:
male pair showed deeper pits, while female pair displayed
more shallow pits (Fig. 1b). NHS after PZQ causes consider-
ably less pits per area at the surface of male single and
female single compared to NHSi after PZQ (Fig. 2).
Furthermore, the tubercles of male_single appeared to be col-
lapsed in NHS after PZQ. The tegumental ridges of
female_single in NHS after PZQ have a regular and thin ap-
pearance with undefined irregularities, while in NHSi after
PZQ the surface seemed to be inflated but intact.
Female pair showed thinner tegumental ridges in NHS after
PZQ compared to NHSi after PZQ (Fig. 2a). When looking at
the structures below by TEM (Fig. 2b), in male worms the
degeneration of the tegumental and subtegumental layers and
muscle shrinkage with widespread vacuolization as well as
large membrane bodies were visible. The vacuolization is
most pronounced in male single in NHS after PZQ and, sur-
prisingly, also found in female single after incubation in
NHSi after PZQ. In contrast, the tegument of female single
in NHS after PZQ is profuse with deep reaching pits and
apparently intact subtegumentary region. TEM imaging for
female pair in NHS after PZQ revealed the thinner
tegumental ridges compared to NHSi after PZQ.
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Fig. 1 Ultrastructural analysis of surface modifications in adult male and
female S. mansoni after incubation in human serum. a Scanning electron
microscopy (SEM; 2500x) with details of tegument structure (10,000x)
and b transmission electron microscopy (TEM; 7100%) of the medial
posterior portion of adult male (male_single, male pair) and female
(female_single, female pair) S. mansoni after 0.5-h incubation in NHS

In conclusion, the sex-specific morphological differences
observed in this study seem to depend more on mating status
than on active serum proteins (Fig. 1a). Female adult worms
showed a pronounced enlargement of their surface structure
compared to the males. Female single displayed the highest
enlargement with significantly more slit-shaped pits and
deeper tegumental ridges, while female pair worms displayed
a smoother surface with flatter ridges and less rounded pits. In
contrast to the females, the surfaces of male worms displayed
well-developed tubercules with spines.

female_single female_pair

female_pair

and NHSi. Presence of tegumental ridges (R), tubercles (TU), spines (S),
sensory papillae (SP), blebs (B), circular musculature (CM), longitudinal
musculature (LM), cytoplasmic bridge (CB), membranous body (MB),
vesicles (V), and pits of the outer surface (arrows) are indicated.
Representative pictures out of five adult worms per group. Conspicuous
areas as a result of NHS treatment encircled in green

Female schistosomes show a marked tuft-like repul-
sion of their opsonized surface after incubation in
human serum in vitro

For visualization of reorganization processes of the tegument,
we performed immunohistochemistry for complement factor
C3b at the surface of adult schistosomes after incubation in
human serum. Female schistosomes presented a marked tuft-
like repulsion of their opsonized surface compared to male
and the NHSi control. It appears that part of the surface, made
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Fig. 2 Ultrastructural analysis of surface modifications in adult male and
female S. mansoni after Praziquantel treatment. Scanning electron
microscopy (SEM; 2500x) with details of tegument structure (10,000x)
and transmission electron microscopy (TEM; 7100%) of the medial
posterior portion of adult male (male_single, male pair) and female
(female_single, female pair) S. mansoni after 0.5-h incubation in a

visible by fluorescence marked C3b, is peeling or repelled.
The repulsion is most pronounced in female pair worms and
absent in the male groups (Fig. 3).

Human serum has a regenerative effect on adult male
and female S. mansoni following Praziquantel
challenge in vitro

We analyzed the motility of adult worms as marker for their
viability in the respective medium. As demonstrated in
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female_single

female_pair

(R), tubercles (TU), spines (S), sensory papillae (SP), blebs (B), muscle
fibers (MF), membranous body (MB), vacuoles (VA), vesicles (V), and
pits of the outer surface (arrows) are indicated. Representative pictures
out of five adult worms per group. Conspicuous areas as a result of NHS
treatment encircled in green

Table 1, analysis of the motility revealed no differences for
adult worms treated with normal human serum (NHS).
Throughout the measurement (0.5, 1, 24, and 72 h), NHS
incubated worms showed peristaltic movements and charac-
teristic waves through the body, suckers in constant move-
ments, and temporarily adherence to the plate bottom (score =
3). In contrast, adult worms in NHS after PZQ displayed a
restricted motility at the earlier time points. Slow movements
or intestinal peristalsis were seen by all the female groups after
0.5 h in NHS (score = 1.5), although they appeared contracted
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male_single male_pair

NHS

NHSi

Fig. 3 Female schistosomes show a marked tuft-like repulsion of their
opsonized surface after incubation in human serum in vitro. Fluorescence
microscopy (100x: females in NHSi, 200%:) of adult male (male_single,

and curled. In contrast, during the first hour of observation,
both the male groups, male_single and male pair, showed no
body movement (score = 0), appear heavily contracted shaped
as half-moons. Fifty percent of female single displayed a
score of 1.5 after 1 h in NHS, whereas the male groups
reached this score only after 24 h. After 24 h, female worms
showed a normalized motility as well as normal body shape
and length. Contrary to this, the male groups displayed at this
time point a slightly movement of some body parts (score =
1.5), such as the oral suckers and/or the posterior extremity.
Interestingly, adult worms in NHSi after PZQ did not show
any movement within the first 24 h. After 24 h 50% of
female single and 62.5% of female pair displayed a score
of 3.0, whereas the male groups did not reach this score in
NHSi after PZQ. Male_pair showed no motility at all in NHSi
after PZQ, while 50% of male single showed restricted to
completely inhibited motility over the course of time. In fe-
males, no motility was observed after 72 h in 50% of
female single and for 100% of female pair. In summary, con-
trary to our expectations, NHS seemed to have a positive
effect on the motility of adult schistosomes after pre-
incubation with praziquantel. In addition, female schisto-
somes regenerate faster in NHS and also in NHSi after pre-
incubation in Praziquantel compared to male worms.

Expression profiles of tegument-associated genes in-
dicate different functions of female_single and
male_single teguments in response to human serum

Expression levels of genes associated with the tegument were
analyzed in adult male and female schistosomes incubated with

female_single female_pair

male pair) and female (female single, female pair) S. mansoni after
0.5-h incubation in NHS or NHSi with following immunohistochemical
staining of human complement factor C3b

NHS (Fig. 4) at different time points. The expression of all tested
genes in all experimental groups (male single, male pair,
female single, female pair) is upregulated in the presence of
NHS. In female single, significant differences were detected
for the expression of two genes over time: zinc finger protein-
1-1 (zfp-1-1) and vesicular integral-membrane protein 36
(vip36) were initially upregulated by incubation in NHS (0.5 h)
followed by a rapid decrease of the gene expression levels. A
comparable trend was observed for family S28 unassigned
peptidase (s28), tetraspanin-2 (tsp-2), calpain and dysferlin, with
strongest expression levels in female single worms. In contrast,
the expression of enolase was only upregulated in male single
after 0.5 h in NHS. Interestingly, while the adult worms out of a
single-sex infection, female single and male single, show
changes in the gene expression in NHS over time, but no signif-
icant differences were found in adult worms out of pairs,
female pair and male pair. The expression of endophilin Bl
and smcl2-like peptidase (cl2) did not show any significant dif-
ferences within the experimental groups in NHS over time.

Discussion

This study was conducted to characterize the effect of human
serum (NHS) on the tegument turnover/replacement of
female schistosomes compared to male schistosomes.
Immunohistochemical staining for complement factor C3b re-
vealed a binding of C3b to female and male teguments.
However, a marked shedding of the tegument was exclusively
observed in female worms, most pronounced in the female pair
group (Fig. 3). Herein, we demonstrated that male pair and
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Fig. 4 Human serum differentially impacts gene expression profiles of
male and female S. mansoni. Relative gene expression of Calpain,
SmCL2-like peptidase (CL2), Dysferlin, EndophilinB1, Enolase,
Family S28 unassigned peptidase (S28), Tetraspanin-2 (TSP-2),
Vesicular integral-membrane protein 36 (mannose-binding lectin 2)-

female pair display morphological changes at their surfaces fol-
lowing incubation in NHS shown by an increased number of pits
per area of tegument and below. Furthermore, we could show that
female worms are significantly more resistant to incubation with
PZQ than male worms, regardless of whether they originate from
a single-sex or natural infection. Interestingly, NHS seems to
promote regeneration of the worms after a PZQ challenge, espe-
cially in regard to the female worms. In addition, our findings
indicate that the expression levels of genes associated with tegu-
ment maintenance are the most pronounced in female single
worms.

related (Vip36), and Zinc finger protein-1-1 (ZFP-1-1) treated with nor-
mal human serum (NHS) at different time points was determined by real-
time PCR. Data are presented as mean + SEygan; 72 =3 (0 2) each group;
# PKruskal-Wallis < 0.05

The herein observed tuft-like repulsion of the opsonized
surface of female worms was described so far during the early
development of schistosomula. As part of the transformation
process during skin penetration, the outer cercariac membrane
is transformed into microvilli that are subsequently shed.
Meanwhile, multilaminate vacuoles are translocated from the
subtegumental cell body into the tegument to build up a new
outer membrane of the tegument (Jones et al. 2004,
Ressurreicdo et al. 2016; Hockley and McLaren 1973). It is
conceivable that the observed repulsion of the tegument of
female worms is part of a rebuilding process from the inside
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out and old components are repelled to the outside (Wilson
and Barnes 1977). Cercariac and newly transformed
schistosomula are highly sensitive to the binding of comple-
ment factors and subsequent cytotoxic mechanisms.
However, this vulnerability is lost within a few hours
(Marikovsky et al. 1990). It has also been described that adult
schistosomes, transferred from one host to another (here from
mouse to human), survive with adaptation difficulties at
first (Smithers et al. 1969). With regard to adult female
schistosomes, it is most likely that the tegument-
repulsion after contact with NHS is a kind of adaptation
to the host/hostile environment.

Single sex infection studies revealed that male schisto-
somes undergo normal morphological development, while fe-
male worms show stunted and undeveloped maturation
(Popiel and Basch 1986; Loverde and Chen 1991; Kunz
2001; LoVerde 2002). To our knowledge, this is the first time
that the ultrastructure of the tegument of adult worms out of a
pair has been described in direct comparison to worms origi-
nated from single-sex infections following confrontation with
NHS of a new host. In our study, female and male schisto-
somes out of a pair showed marked morphological changes
due to the incubation with NHS compared to NHSi. We ob-
served a great surface enlargement seen by the increasement
of numbers of pits per area tegument combined with an altered
structure of the pits below the surface. This invaginations of
the tegumental surface might be a part of caveolae-like struc-
tures known to play a role in endocytosis and transcytosis of
plasma proteins (Racoosin et al. 1999; Cheng and Nichols
2016). It is known that adult schistosomes utilizes components
from the host’s blood for their own purposes, such as proteins
and carbohydrates (Brindley et al. 1997; Camacho and Agnew
1995; Halton 1997). The observed surface enlargement fol-
lowing the NHS incubation described by us could thus indi-
cate increased metabolic activity of adult schistosomes.
Caveolae were also been described to be part of specific sig-
naling pathways or mechanosensitivity and therefore potent
communication tools at the interface between the adult schis-
tosomes and their host (Parton and Simons 2007).

The enlargement of the tegumental surface is most pro-
nounced in female schistosomes in response to NHS after
PZQ and goes in line with the ability of female schistosomes
to recover faster than male worms after in vitro PZQ treat-
ment. It has been shown that female single are largely and
male_single moderately resistant to treatment with PZQ when
exposed to the drug and an incubation in drug-free medium
afterwards (Pica-Mattoccia and Cioli 2004; Inal 2004). Our
data confirmed these findings. It was also demonstrated that
male cercariae of S. mansoni had significantly higher tail-
shedding rates than female cercariac when exposed to the
same concentration of PZQ (Liang et al. 2010). The herein
demonstrated motility scores showed a faster restoration of the
motility for female schistosomes compared to males. Park
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et al. (2019) demonstrated that PZQ activates a schistosome
transient receptor potential channel, Sm.TRPMPZQ, present
in schistosomes and other PZQ-sensitive parasites. However,
nothing is known so far about a gender-specific protein ex-
pression of this channel following a PZQ challenge. In our
study, NHS seems to promote regeneration after PZQ in con-
trast to NHSi. This effect is most pronounced in female schis-
tosomes. It seems that females, unlike males, can utilize a
component from active serum to recover after PZQ challenge.
However, so far, we can only speculate on possible mecha-
nisms. Male and female single schistosomes in NHSi after
PZQ showed pronounced alterations of the tegument and the
structures below including muscle shrinkage, vacuolization,
blebs, and production of membrane bodies after PZQ expo-
sure. Due to the sublethal dose of PZQ, used in this study,
these alterations are less severe than described previously
(Shaw and Erasmus 1983; Mendonga et al. 2016; Matos-
Rocha et al. 2016). Taken into account the increased mem-
brane activity in combination with the pronounced surface
enlargement of female worms, it could be assumed that this
might be advantageous for the survival within the human
blood as well as the regeneration capacity after PZQ compared
to male worms.

In contrast to our morphological observations on changes of
the tegument of female and male worms after incubation in NHS,
on molecular level only female worms from unisexual infection
showed significant changes of genes associated with tegument
maintenance. For example, a zinc finger protein called ZFP-1-1,
with high expression levels in female single after 0.5 h in NHS,
has been proven to be crucial for the control of tegumental
neoblast-driven maintenance and tegumental cell specification
(Wendt et al. 2018). Comparable expression levels were present-
ed for genes encoding for vesicular integral-membrane protein
36 (Vip36), shown to participate in the complex secretory activ-
ity of tegument proteins (Ornelas et al. 2017), family S28 unas-
signed peptidase (S28), tetraspanin-2 (TSP-2), calpain, and
dysferlin. The latter have been identified as part of protein com-
plexes known as tetraspanin-enriched microdomains that medi-
ate a range of processes at the surface of the plasma membrane
(Jia et al. 2014; Schulte et al. 2013). In addition, calpain was
shown to modify the worm’s local environment by cleaving
the host clotting protein fibronectin and the coagulation protein
high molecular weight kininogen to ensure parasite survival, and
dysferlin is reported to be involved in membrane repair mecha-
nisms (Wang et al. 2018; Xiong et al. 2013). In contrast, the
expression of enolase was only increased in male single after
0.5 h in NHS. The tegumental enzyme enolase is able to promote
blood clot degradation around the worm (Figueiredo et al. 2015).
Further, it has been shown that host proteins are able to bind to
enolase and are integrated into the outer membrane of the tegu-
ment suggesting to be an important part of their immune evasion
strategy (Angeles et al. 2020). In principal, we herein observed
higher gene expression levels for all genes tested after contact
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with NHS compared to NHSi. This might be at least related to
adaptation processes following host change (mouse to human
serum). The tuft-like repulsion of the female tegument, the faster
regeneration toward PZQ, and the upregulation of genes associ-
ated with tegument maintenance after contact to NHS might
indicate that female worms are equipped with different
protection mechanisms against soluble factors of NHS.
Due to the observed faster regeneration in NHS after
PZQ compared to NHSi, one might speculate on the
ability of female worms to utilize serum proteins for
their survival in contrast to male worms. Nevertheless,
more in-depth and comprehensive analyses must be car-
ried out in order to understand how the tegument of
both worm sexes is interacting with and is influenced
by the host serum.

Conclusion

We herein demonstrated that following the incubation in
human serum, female schistosomes repel their outer op-
sonized surface. We demonstrated that males and females
out of a pair display pronounced morphological changes
at their surfaces following incubation with NHS seen by
an increased number of pits per area tegument and below
resulting in an altered structure of the pits. Furthermore,
we could show that female worms are significantly more
resistant to incubation with PZQ than male worms. The
female tegument showed a pronounced enlargement of
their surface structure compared to male worms with a
great regenerative capacity after incubation in NHS and
PZQ. Following PZQ incubation, male worms display a
degeneration of the tegumental and subtegumental layers
as well as muscle shrinkage with widespread
vacuolization leading to a prolonged recovery time com-
pared to the female worms. We were also able to show
that both female and male schistosomes regenerate poorly
or not at all after PZQ in NHSi. On molecular level, anal-
yses of expression profiles of tegument-associated genes
showed an upregulation of genes involved in the mainte-
nance of the tegument that was most conspicuous in
female single worms after NHS. Our findings provide
evidence that female schistosomes evolved different eva-
sion strategies toward the host’s immune system in com-
parison to male schistosomes that might lead to more ro-
bustness and has to be taken into account for the devel-
opment of new anti-schistosomal drugs.
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