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Abstract

Members of the genus Lueheia Travassos, 1919, are endoparasites of birds, particularly passerines, throughout the Americas.
Adults of Lueheia sp., (Plagiorhynchidae Golvan, 1960; Porrorchinae Golvan, 1956) were recovered from the intestine of the
American robin (Turdus migratorius phillipsi Bangs) in Mexico City, and two other species of acanthocephalans identified as
Porrorchis nickoli, (Plagiorhynchidae: Porrorchinae) Salgado-Maldonado and Cruz-Reyes, 2002 and Centrorhynchus
microcephalus (Bravo-Hollis, 1947) Golvan, 1956 (Centrorhynchidac Van Cleave, 1916), were recovered from the Virginia
opossum (Didelphis virginiana Allen) and groove-billed ani (Crofophaga sulcirostris Swainson), respectively in southeastern
Mexico. Specimens of three species were sequenced at two molecular markers, the small subunit (SSU) and large subunit (LSU)
of the nuclear IDNA and compared with other sequences available in GenBank. Maximum likelihood and Bayesian inference
analyses of the combined (LSU + SSU) dataset and each individual dataset revealed that the specimens of Lueheia sp. formed an
independent lineage, which is recognized herein as a new species, Lueheia aztecae n. sp., representing the fifth species of the
genus in the Americas, and the second in the Nearctic region. The new species can be morphologically distinguished from the
other five species in the genus by having a cylindrical proboscis, armed with 24-26 longitudinal rows with 9-10 hooks each.
Phylogenetic inference performed with the combined dataset consisting of two genes (LSU + SSU) revealed that Lueheia aztecae
n. sp. and P. nickoli belonging to subfamily Porrorchinae, formed two independent lineages, indicating that the subfamily is
paraphyletic. Porrorchis nickoli and C. microcephalus formed a clade with other species of the genus Centrorhynchus, suggest-
ing that P. nickoli should be transferred to genus Centrorhynchus, to form C. nickoli n. comb. In addition, we briefly discuss the
ecological associations between the members of the families Plagiorhynchidae and Centrorhynchidae.
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Porrorchis Fukui, 1929; Oligoterorhynchus Monticelli, 1914;
Lueheia Travassos, 1919; Pseudolueheia Schmidt and Kuntz
1967; Owilfordia Schmidt and Kuntz, 1967; and
Pseudogordiorhynchus Golvan, 1957 (Amin 2013). The ge-
nus Lueheia is morphologically diagnosed by having a large
cylindrical body with a small subglobular to semispherical
proboscis armed with numerous strong hooks, a short and
spineless neck, a double-walled cylindrical proboscis recepta-
cle, a cerebral ganglion located in the middle of proboscis
receptacle, and 4 to 10 long and slender lemnisci. The male
possesses 2 spherical to oblique testes in tandem, placed in the
anterior region of the body and long, tubular cement glands.
The genital pore is terminal or subterminal, the eggs are oval
or elongated, and the fertilization membrane exhibits polar
prolongation (Smales 2013). The taxonomy of the genus
Lueheia was evaluated recently by Smales (2013), recogniz-
ing five species: one distributed in North America (Lueheia
adlueheia, (Werby 1938)), three in South America, (Lueheia
lueheia Travassos, 1919; Lueheia cajabambensis Machado
Filho and Nicanor Ibafiez, 1967; Lueheia inscripta
(Westrumb 1821)), and one in Asia (Lueheia karachiensis
Khan, Bilgees and Muti-ur-Rahman, 2005).

The acanthocephalans in Mexico have received a great at-
tention recently, and much effort has been made to incorporate
morphological and molecular characters in order to describe
and delineate the biodiversity of this group of parasites (see
Monks 2001; Garcia-Varela and Nadler 2005; Guillén-
Hernandez et al. 2008; Garcia-Varela and Pérez-Ponce de
Leon 2008; Lopez-Caballero et al. 2015; Pinacho-Pinacho
et al. 2018; Garcia-Varela et al. 2019). In a checklist of acan-
thocephalans from Mexico, a total of 77 taxa were recognized
(Garcia-Prieto et al. 2010). In the current study, adult acantho-
cephalans were collected from the intestine of the groove-
billed ani (Crotophaga sulcirostris Swainson), and were iden-
tified as Centrorhynchus microcephalus (Bravo-Hollis, 1947)
Golvan, 1956. The acanthocephalans associated with the
Virginia opossum (Didelphis virginiana Allen) were identi-
fied as Porrorchis nickoli Salgado-Maldonado and Cruz-
Reyes, 2002, and finally, the acanthocephalans found in the
American robin (Turdus migratorius phillipsi Bangs)
corresponded to an undescribed species of the genus Lueheia.

The objectives of the present research were to (1)
provide a morphological description of the new species
(2) identify the systematic position of the genera
Lueheia and Porrorchis belonging to subfamily
Porrorchinae, and (3) reconstruct the phylogenetic rela-
tionships among members of the families,
Centrorhynchidae and Plagiorhynchidae by using se-
quences of the near-complete small (SSU) and large
(LSU) subunit of the nuclear rDNA. We then used the
resulting phylogenetic trees as a framework to discuss
host-parasite associations and begin to understand the
evolutionary history of this group of acanthocephalans.
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Material and methods

Specimens collecting, DNA isolation, and
morphological analyses

During a helminthological survey in central and southeastern
Mexico, acanthocephalans were collected from intestine of the
groove-billed ani (C. sulcirostris), in Tlacatalpan, Veracruz (18°
36' 0" N; 95°39' 0" W), the Virginia opossum (D. virginiana) in
Los Tuxtlas, Veracruz (18° 34’ 21" N; 95° 04’ 30" W), and an
American robin (7. migratorius phillipsi) found dead in Mexico
City (see Table 1). The acanthocephalans recovered were im-
mersed in distilled water for 10—12 h at 4 °C. Specimens were
subsequently preserved in 100% ethanol and stored at 4 °C. For
taxonomic identification, some specimens were stained with
Mayer’s paracarmine, dehydrated in graded ethanol series,
cleared in methyl salicylate, and mounted as permanent slides
using Canada balsam. All the specimens were examined using a
bright-field Leica DM 1000 LED microscope (Leica, Wetzlar,
Germany). Measurements were taken using the Leica
Application Suite microscope software. The measurements are
presented in micrometers (im) unless otherwise stated; with the
mean followed by the range in parenthesis. Drawings were
made with the aid of a drawing tube. For scanning electron
microscope (SEM) observations, some individuals were
dehydrated through a graded series of ethyl alcohol, and then
critical-point dried with carbon dioxide. These specimens were
mounted on metal stubs with silver paste, coated with gold, and
examined in a Hitachi Stereoscan model SU1510 (Hitachi High-
Technologies, Tokyo, Japan) at 15 kV. The acanthocephalans
recovered from groove-billed ani were identified as
Centrorhynchus microcephalus, and the parasites from
Virginia opossum were identified as Porrorchis nickoli.
Finally, the specimens from the American robin were assigned
to the genus Lueheia. All the specimens were deposited in the
Coleccion Nacional de Helmintos (CNHE: C.microcephalus No.
7074; P. nickoli Nos. 9512, 9513), Instituto de Biologia,
Universidad Nacional Auténoma de México, Mexico City.
Definitive avian hosts were identified using the field guides of
Howell and Webb (1995) and the American Ornithologists’
Union (1998). The mammals were shot by local hunters or
caught with tomahawk traps and then injected intraperitoneally
with an overdose of sodium pentobarbital. The opossums were
dissected within the following 4 h, and all organs were examined
under a stereomicroscope (see Acosta-Virgen et al. 2015).

DNA extraction, PCR amplification, sequencing, and
phylogenetic analyses

Specimens of each species were placed individually in tubes
and digested overnight at 56 °C in a solution containing 10 mM
Tris-HCI (pH 7.6), 20 mM NaCl, 100 mM Na2-EDTA
(pH 8.0), 1% Sarkosyl, and 0.1 mg/ml proteinase K.
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Following digestion, DNA was extracted using DNAzol re-
agent (Molecular Research Center, Cincinnati, Ohio) according
to the manufacturer’s instructions. Two regions of nuclear ribo-
somal DNA (rDNA) were amplified using the polymerase
chain reaction (PCR). Near-complete 18S rDNA (~ 1,800 bp)
was amplified using 2 overlapping PCR fragments of 1,000 bp.
The primers used for SSU amplicon 1 were forward 5-AGAT
TAAGCCATGCATGCGT-3" and reverse 5'-AACT
TTTCGTTCTTGATTAATG-3'; for amplicon 2, forward 5'-
GCAGCGCGGTAATTCCAGCTC-3" and reverse 5'-GCAG
GTTCACCTACGGAAA-3'. Near-complete 28S rDNA (~
2,900 bp) was amplified using 3 overlapping PCR fragments
0f 1200-1300 bp. Primers for LSU amplicon 1 were forward 5'-
CAAGTACCGTGAGGGAAAGTTGC-3' and reverse 5'-
CAGCTATCCTGAGGGAAAC-3'; amplicon 2 were forward
5'-ACCCGAAAGATGGTGAACTATG-3' and reverse 5'-
CTTCTCCAACGTCAGTCTTCAA-3'"; and for amplicon 3,
forward 5'- CTAAGGAGTGTGTAACAACTCACC-3' and
reverse 5'-CTTCGCAATGATAGGAAGAGCC-3' (Garcia-
Varela and Nadler 2005). The PCRs (25-ul final volume)
consisted of 10 uM of each primer, 2.5 pl of 10x buffer,
2 mM MgCl,, and 1 U of Taq DNA polymerase (Platinum
Taq, Invitrogen Corporation, Carlsbad, California, USA).
PCR cycling parameters for IDNA amplifications included de-
naturation at 94 °C for 3 min, followed by 35 cycles of 94 °C
for 1 min, annealing at 50-58 °C (optimized for each rDNA
amplification) for 1 min, and extension at 72 °C for 1 min,
followed by a post-amplification incubation at 72 °C for
7 min. Sequencing reactions were performed with the primers
mentioned above using ABI Big Dye (Applied Biosystems,
Boston, Massachusetts) terminator sequencing chemistry, and
reaction products were separated and detected using an ABI
3730 capillary DNA sequencer. Contigs were assembled and
base-calling differences resolved using Codoncode Aligner ver-
sion 5.1.5 (Codoncode Corporation, Dedham, Massachusetts).
Sequences obtained in the current research for SSU and LSU of
C. microcephalus, P. nickoli, and Lueheia sp. were aligned with
other sequences downloaded from GenBank dataset (see
Table 1). Sequences of each molecular marker were aligned
separately using the software Clustal W (Thompson et al.
1997) after a combined alignment (LSU + SSU) was per-
formed. A nucleotide substitution model was selected for each
molecular marker and the combined dataset using jModelTest
version 2.1.7 (Posada 2008) applying the Akaike criterion. The
best nucleotide substitution models for each and the combined
dataset were GTR + G + 1. Phylogenetic trees were inferred
through maximum likelihood (ML) with the program
RAXML version 7.0.4 (Stamatakis 2006). A GTRGAMMAI
substitution model was used, and 10,000 bootstrap replicates
were run to assess nodal support. We also analyzed our data in a
Bayesian framework using MrBayes 3.2.2 (Ronquist et al.
2012), with two Markov chain (MCMC) runs for 10 million
generations, sampled every 1000 generations, a heating
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parameter value of 0.2 and burn-in of (25%). Trees were edited
using FigTree version 1.4.0 (Rambaut 2012).

Results
Morphological description

Class Palaeacanthocephala Meyer, 1931.

Order Polymorphida Petrochenko, 1956.

Family Plagiorhynchidae Golvan,1960.

Subfamily Porrorchinae Golvan, 1956.

Lueheia aztecae n. sp. Garcia-Varela and Andrade-Gomez;
Figs. la—f

Description based on 14 specimens (seven males and seven
females).

General: Porrorchinae with characters of the genus
Lueheia. Living specimens of white color. Sexual dimorphism
evident; females larger than males. Proboscis subglobular,
armed with 24-26 longitudinal rows, with 8—10 hooks with
simple roots per row; largest hooks located at the mid-
proboscis (42—61 long). First hooks in row 29-34 long, last
hooks in row 42—48 long, other hooks 38—52 long. Neck small
and spineless, cone shaped. Proboscis receptacle double-
walled, with an oval cephalic ganglion in the middle.
Lemnisci 4-6, slender, of different lengths, inserted at the base
of the neck. Genital pore subterminal in both sexes.

Male: (Based on seven mounted adult specimens and one
analyzed by SEM.) Trunk 7.1 mm (4-10.5 mm) x 1.5 mm
(1.0-2.3 mm); maximum width at hind-trunk level.
Proboscis 430 (287-531) x 348 (291-520). Proboscis
subglobular, armed with 24-26 longitudinal rows of hooks,
with 8—10 hooks each row (Fig. 2a), largest hooks located at
the mid-proboscis (42—61 long). First hooks in row 29-34
long, last two hooks in row 42-48 long, other hooks 38-52
long. Neck 228 (178-272) x 344 (244-433). Proboscis recep-
tacle 1.13 mm (0.83—1.35 mm) x 287 (228-357). Lemnisci
1.9 mm (1.5-2.6 mm). Testes ovoid, in tandem, posterior to
the proboscis receptacle. Anterior testis 1.18 mm (0.69—
1.5 mm) x 501 (215-818). Posterior testis 1.09 mm (0.73—
1.31 mm) % 469 (334-625). Cement glands, four tubular,
2.25 mm (1.6-3.1 mm) long. Sifftigen’s pouch 729 (552—
983) long. Copulatory bursa 519 (351-680) x 576 (364-700).

Female: (Based on seven mounted gravid specimens and
one analyzed by SEM.) Trunk 12.4 mm (10.2—15.3 mm) x 2.0
(1.4-2.3 mm) (Fig. 1b). Proboscis 555 (505-628) x 365 (333—
418). Proboscis subglobular, armed with 24-26 longitudinal
rows of hooks, with 8—10 hooks each row. Largest hooks
located at the mid-proboscis (43—48 long). First hooks in
row 28-35 long, last two hooks in row 2942 long, other
hooks 32-53 long. Neck 260 (213-302) x 366 (343-400).
Proboscis receptacle 1.3 mm (1.26—1.37 mm). Lemnisci of
unequal lengths. Uterine bell with a thick body wall 539
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Fig. 1 Lueheia aztecae n. sp.,
from Turdus migratorius phillipsi
a Adult male, whole worm
(holotype), lateral view; b Adult
female whole worm (allotype),
lateral view; ¢ Proboscis; d Hooks
with roots; e Female reproductive
system; f Egg

Scale bars=1.0 mm (a, b);
400 um (¢, d); 500 um (e);
20 pm (f)

Fig. 2 Scanning electron
micrographs of Lueheia aztecae
n. sp., from Turdus migratorius
phillipsi. a Proboscis adult male
ventral view. b Proboscis adult
male horizontal view. ¢ Hooks.
Scale bars =300 um (a, b);

50 um (c). The hooks rows are
numbered 1-24

5
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15,16
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(473-606) long. Uterus long 870 (723-964); vagina complex
with two sphincter muscles 255 (220-276) long; gonopore
subterminal (Fig. 3¢). Mature eggs, containing a fully devel-
oped acanthor, fusiform, with polar prolongations in the mid-
dle fertilization membrane 67 (60-72) x 24 (22-27) (Fig. 3d).

Taxonomic summary

Host: Turdus migratorius phillipsi (Bangs) (American robin),
Passeriformes.

Site of infection: Intestine.

Locality: Border between Tlalpan and Xochimilco municipal-
ities, Mexico City, Mexico (19°16" 34.63" N 99° 08" 30.46"” W).

Type-material: Holotype; (CNHE: 11247), allotype
(CNHE: 11248); Paratype (CNHE: 11249).

Representative DNA sequences: MT161620 (SSU),
MT161665 (LSU).

Etymology: The specific epithet refers to the Azteca, a
Mesoamerican civilization who dominated Central Mexico
during the early thirteenth century and founders of
Tenochtitlan (where Mexico City is currently located).
ZooBank registration: The Life Science Identifier (LSID) of
the article is urn:lsid: zoobank.org:pub: CE6ABC27-DF7D-
4DE6-9815-BCF52538978B. The LSID for the new name
Lueheia aztecae n. sp. is urn:lsid:zoobank.org:act:
1334EDE1-8E00-40BB-B25E-2CF833C66B03.

Taxonomic remarks

The new species belongs to the genus Lueheia in having a
subglobular proboscis, small and spineless neck, double-walled
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Fig. 3 Phylogenetic trees using maximum likelihood and consensus
Bayesian Inference for the combined (LSU + SSU) data set (a), LSU
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)
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-Koronacantha mexicana
. ’ .

o

proboscis receptacle with an oval cephalic ganglion in the mid-
dle, 4-6 slender lemnisci of different lengths inserted at the base
of the neck and eggs with polar prolongations in the middle
fertilization membrane. Lueheia aztecae n. sp. can be morpho-
logically distinguished by its cylindrical proboscis armed with
24-26 longitudinal rows with 9—10 hooks each (vs 20-22 longi-
tudinal rows with 89 hooks each in L. lueheia (Table 2), 28-30
longitudinal rows with 9—12 hooks each in L. inscripta, 28 lon-
gitudinal rows with 9-10 hooks each in L. adlueheia, and 20-40
longitudinal rows with 10-14 hooks each in L. karachiensis;
Table 2). The new species also differs from L. adlueheia from
North America by having larger eggs (60—72 x 22-27 vs 36—
41 x 12-15; see Table 2).

Phylogenetic analyses

The combined dataset including two genes (LSU + SSU)
consisted of 30 terminals with 4888 sites (including gaps), with
GTR + G +1 as the best model. The phylogenetic tree inferred
with ML and Bayesian inference (BI) recovered Polymorphida
as a monophyletic group with strong bootstrap support (100%)
and Bayesian posterior probability (1.0). The phylogenetics
trees showed three main clades (Fig. 3a). The first clade
contained 10 genera of Polymorphidae, (Andracantha
Schmidt, 1975; Corynosoma Liihe, 1904; Bolbosoma Porta,
1908; Southwellina Witenberg, 1932; Hexaglandula
Petrochenko, 1950; Ibirhynchus Garcia-Varela, Pérez-Ponce
de Leon, Aznar and Nadler, 2011; Arhythmorhynchus Liihe,
1911; Profilicollis Meyer, 1931; Pseudocorynosoma Aznar,
Pérez-Ponce de Ledn and Raga 2006; and Polymorphus
Liithe, 191, with strong bootstrap support (100%) and

Fisoma buceriun SSU

tcanthocephalus lucii

LSU c
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)
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Bayesian posterior probability (1.0). The second clade had
strong bootstrap support (100%) and a high Bayesian posterior
probability (1.0) and included Plagiorhynchus Luhé 1911 with
two subgenera (Plagiorhynchus Luh&, 1911 and
Prosthorhynchus Kostylew, 1915), which are members of
Plagiorhynchidae. The third clade included six species of
Centrorhynchidae (Centrorhynchus globocaudatus (Zeder,
1800); Centrorhynchus aluconis (Miiller, 1780);
Centrorhynchus conspectus Van Cleave and Pratt, 1940;
Centrorhynchus microcephalus; Centrorhynchus globirostris
Amin, Hechmann Wilson Keele and Khan, 2015;
Centrorhynchus nahuelhuapensis Steinauer, Flores and
Rauque 2020; and Centrorhynchus sp.) plus Porrorchis nickoli
(Plagiorhynchidae), with a high bootstrap support (100%) and a
high Bayesian posterior probability (1.0). The phylogenetic po-
sition of Lueheia aztecae . sp., as sister to Centrorhynchus and
Porrorchis was supported, with only 58% bootstrap in maxi-
mum likelihood analysis and an 0.88 posterior probability in the
Bayesian analysis. The LSU dataset consisted of 29 terminals
and 3093 sites (including gaps), with GTR + G +1 as the best
model. The tree topologies inferred with LSU dataset from
rDNA (Fig. 3b) had the same branching order among the fam-
ilies from Polymorphida as the ML and Bayesians trees inferred
with the combined (LSU + SSU) dataset, with minor differ-
ences regarding the position of C. aluconis. The SSU dataset
consisted of 28 terminals with 1795 sites (including gaps), with
GTR + G +1 as the best model. The tree topologies inferred
with SSU dataset were not the same because their taxon sam-
pling differed. Nevertheless, they were similar to the topologies
inferred with the combined (LSU + SSU) dataset, i.e., the SSU
tree also recognized the three families from Polymorphida (Fig.
3c). One of the major differences between the trees inferred
with SSU and combined (LSU + SSU) datasets was the system-
atic position of Lueheia aztecae n. sp. which was placed sister
taxa to Polymorphidae with a weak bootstrap support (55%)
and Bayesian posterior probability (0.52). The other taxa sam-
pled in this study, namely, C. microcephalus and P. nickoli
were consistently placed within the genus Centrorhynchus
Liihe 1911, in all phylogenetic analyses (see Figs. 3a—).

Discussion

The taxonomic history and species composition of Lueheia
are complex and problematic, due in part to the incomplete
morphological descriptions of the adult worms. Smales (2013)
reviewed the taxonomy and recognized five species,
L. lueheia, L. adlueheia, L. cajabambensis, L. inscripta, and
L. karachiensis. However, the same author considered L.
karachiensis to potentially belong to genus Centrorhynchus
due to the morphological and ecological similarities between
the two genera. Additionally, L. karachiensis was described
from Asia, whereas the other congeneric species are

@ Springer

distributed in the Americas. Given the current evidences, we
agree with Smales (2013), that L. karachiensis may not belong
to genus Lueheia; however, this hypothesis should be tested in
a formal phylogenetic analysis. Therefore, the species de-
scribed herein, Lueheia aztecae n. sp. represents the fifth spe-
cies of the genus distributed in the Americas, and the second
species of this genus recorded in the Nearctic region.
Morphologically, Lueheia aztecae n. sp. is distinguished from
L. adlueheia, which is also distributed in the Nearctic region
by having a cylindrical proboscis, armed with 24-26 longitu-
dinal rows with 9—10 hooks (vs 28 longitudinal rows with 9—
10 hooks in L. adlueheia). The species L. adlueheia was de-
scribed from the western robin (Turdus migratorius
propinquus Ridgway), in Seattle, Washington, USA (Werby
1938). This bird occurs from British Columbia to southwest-
ern Mexico (Kemper and Taylor 1981; American
Ornithologists’ Union 1998). Lueheia aztecae n. sp. was
found in a subspecies of the American robin (Turdus
migratorius phillipsi). This passerine bird has a distribution
from central to southern Mexico (see American
Ormnithologists’ Union 1998).

The phylogenetic analyses obtained with the combined
dataset of two genes (LSU + SSU) revealed that Lueheia
aztecae n. sp. and P. nickoli, both members of the subfamily
Porrorchinae Golvan, 1956 were not grouped together. For
instance, Lueheia aztecae n. sp. was placed in an independent
lineage (Fig. 3a), whereas P. nickoli was nested within the
genus Centrorhynchus (Fig. 3a). Porrorchis nickoli was orig-
inally described from the gray four-eyed opossum, (Philander
opossum Linnaeus) in southeastern Mexico (Salgado-
Maldonado and Cruz-Reyes 2002). This is the only recorded
species of the genus in the Americas, whereas the other 21
species of Porrorchis Fukui, 1929 are distributed in Eurasia,
Madagascar, and Australia, mostly in association with birds
and rarely, with terrestrial mammals (Lisitsyna et al. 2012).
Morphologically, our specimens of P. nickoli possessed a cy-
lindrical trunk, a subglobular proboscis armed with 22-24
rows of 7-8 hooks each (Figs. 4a—c), a cylindrical and
double-walled proboscis receptacle, a cerebral ganglion locat-
ed at the mid-receptacle, lemnisci of equal size, oval testes
arranged in tandem, four elongate cement glands, and ellipti-
cal eggs without polar prolongation. These characteristics of
our newly collected material clearly correspond with those
reported in the original description by Salgado-Maldonado
and Cruz-Reyes (2002). In addition, Amin et al. (2015)
reviewed and emended the genus Centrorhynchus to include
species with a globular proboscis, a character also present in
P. nickoli. Based on the current morphological evidence plus
the phylogenetic position of P. nickoli in our analyses, P.
nickoli should most likely be transferred to Centrorhynchus
to form Centrorhynchus nickoli n. comb. To date, seven spe-
cies of Centrorhynchus have been described from North
America, primarily in association with birds of prey:
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Fig. 4 Scanning electron
micrographs of Porrorchis nickoli
from Didelphis virginiana. a
Proboscis adult male ventral
view. b Proboscis adult male
horizontal view. ¢ Hooks. Scale
bars =300 wum (a, b); 50 um (c)

Centrorhynchus spinosus (Kaiser, 1893) Van Cleave, 1924;
Centrorhynchus californicus Millzner, 1924; Centrorhynchus
conspectus, C. microcephalus; Centrorhynchus wardae
Holloway, 1958 (junior synonym of C. conspectus);
Centrorhynchus kuntzi Schmidt and Neiland, 1966, and
Centrorhynchus robustus Richardson and Nickol, 1995
(Richardson and Nickol 1995; Amin 2013). In the current
study, specimens of C. microcephalus were collected from

Fig. 5 Scanning electron
micrographs of Centrorhynchus
microcephalus from Crotophaga
sulcirostris. a Proboscis adult
male ventral view. b Proboscis
adult male horizontal view. ¢
Hooks. Scale bars =100 pum (a,
b); 20 pm (¢)

groove-billed ani (C. sulcirostris). Morphologically,
C. microcephalus is characterized by having a constricted,
cylindrical proboscis armed with 30-33 longitudinal rows of
16-17 hooks each (Figs. 5a—c). The proboscis receptacle is
double walled, the lemnisci are equal in size, and the cerebral
ganglion is located at the mid-receptacle, two elliptoid testes,
and four elongate cement glands. The eggs display polar pro-
longations (Bravo-Hollis, 1947; Richardson and Nickol 1995;

@ Springer
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Richardson et al. 2010). The phylogenetic analyses inferred
with each molecular marker and the combined (LSU + SSU)
dataset, consistently placed C. microcephalus within a clade
with other species of Centrorhynchus, such as C. nickoli n.
comb, Centrorhynchus aluconis (type species),
Centrorhynchus globocaudatus, Centrorhynchus conspectus,
Centrorhynchus globirostris, and Centrorhynchus
nahuelhuapensis.

The phylogenetic relationships inferred with the combined
dataset of two molecular markers, (LSU + SSU), represents
the most compressive analysis to date and provides the first
insight into the ecological associations between the parasites
and their definitive hosts. We inferred that birds were the
ancestral definitive hosts for Centrorhynchidae and
Plagiorhynchidae with a secondary and independently event
of colonization of mammals.
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