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Abstract
The aim of this study was to survey the Cryptosporidium species in peafowls (Pavo cristatus) in Henan Province, China. A total
of 143 fecal specimens collected from a breeding farm were tested for Cryptosporidium by nested PCR targeting the small
subunit rRNA (SSU rRNA), 70-kDa heat shock protein (HSP70), and actin genes of Cryptosporidium followed by sequence
analysis. Only one isolate from an asymptomatic host was obtained, and the isolate differed from a newC. xiaoi–like genotype by
one nucleotide and from C. xiaoi or C. bovis at the SSU rRNA locus by six nucleotides. Likewise, the actin gene shared 99%
identity with the C. xiaoi–like genotype, accompanied by four nucleotide mutations. A complete sequence of the HSP70 gene
was obtained, and exhibited 96% similarity with that fromC. xiaoi and differed by one nucleotide from that with theC. xiaoi–like
genotype. Phylogenetic analysis of the current isolate revealed genetic relatedness to the C. xiaoi–like genotype and distinction
from C. xiaoi and C. bovis. Therefore, our results provided the first documentation of avian infection with a C. xiaoi–like
genotype in China and further insight into the diversity of Cryptosporidium spp. in avians.
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Introduction

Cryptosporidium, an intracellular and parasitic protist, can
infect a wide variety of vertebrates, including humans (Ryan
and Hijjawi 2015). The various transmission modes for
Cryptosporidium spp. between humans and other vertebrates
represent an important public health threat (Xiao 2010). To
date, of the near 40 valid Cryptosporidium species, at least
nine have been documented in a wide range of birds world-
wide, including C. meleagridis, C. baileyi, C. galli, C. avium,

C. proventriculi, C. hominis, C. parvum, C. andersoni, and
C. muris (Condlova et al. 2018; Cui et al. 2018; Holubova
et al. 2019; Kvac et al. 2018; Ryan et al. 2016). Only the first
five are bird-specific species causing natural infections. In
addition, more than 14 Cryptosporidium genotypes have been
recorded, comprising avian genotypes I–II, IV, and VI–IX;
black duck genotype; goose genotypes I–V; and Eurasian
woodcock genotype (Cui et al. 2018). Recently, a new
Cryptosporidium genotype was described in chicken from
Brazil, temporarily named as C. xiaoi–like genotype (Ewald
et al. 2017; Santana et al. 2018). However, there are no data on
infection by this genotype in other bird species.

Because research on avian Cryptosporidium spp. is scarce
compared to that on mammals, our understanding of the ge-
notypic diversity of the pathogens in birds, especially in wild
species, is poor (Baroudi et al. 2013; Elkarim Laatamna et al.
2017). Previously, an asymptomatic white peafowl was diag-
nosed as Cryptosporidium-positive through immunofluores-
cence microscopy and PCR assays in China, but the genotype
was unknown; afterwards, Cryptosporidium was reported in
an Indian peafowl with no clinical symptoms and the parasite
was avian genotype I (Karanis et al. 2007; Nakamura et al.
2009). Recently, Feng et al. (2019) identified C. proventriculi
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and goose genotype I in peafowl in Beijing and Jiangxi.
However, to the best of our knowledge, limited data are avail-
able on the prevalence and genetic characteristics of
Cryptosporidium infection in peafowl in Henan Province.
Therefore, this study employed molecular tools to determine
the occurrence and genetic identity of Cryptosporidium in
peafowl in captivity in Henan Province, China.

Materials and methods

Fecal samples

This study was performed in compliance with the Chinese law
on the Protection of Wildlife (modified by Henan Province,
no. 005253090). The enclosure of each peafowl was cleaned
before sample collection. From every peafowl, the feces that
had not contacted the ground was collected using a medical
cotton swab, placed in sampling bags, and stored at 4 °C for
PCR detection. Synchronously, the clinical symptoms of each
peafowl were recorded.

A total of 143 fecal samples were obtained from a breeding
farm in Henan Province, China, and no clinical signs were
noted for all peafowls at the time of sampling. Genomic
DNA was extracted immediately in our laboratory using a
Stool DNAKit (Omega Bio-Tek Inc., D4015-2, USA) follow-
ing the manufacturer’s instructions and stored at – 20 °C for
subsequent PCR assay.

Species determination and genotyping

Genomic DNAwas used to detect Cryptosporidium by nested
PCR amplification targeting the small subunit rRNA (SSU
rRNA) gene followed by amplification of the 70-kDa heat
shock protein (HSP70), oocyst wall protein (COWP), and
actin genes to further determine species/genotype. Primers
and amplification conditions were chosen according to previ-
ous studies (Sulaiman et al. 2002; Sulaiman et al. 2000; Xiao
et al. 1999; Xiao et al. 2000). To neutralize PCR inhibitors,
non-acetylated bovine serum albumin (400 ng/mL, TaKaRa,
China) was used in both PCRs. The nucleotide sequences of
secondary PCR products of the four loci were obtained direct-
ly in both directions using secondary PCR primers. To verify
sequence accuracy, a new secondary PCR product was se-
quenced again.

DNA sequence analysis

Nucleotide sequences obtained from the nested PCR
amplicons in this study were aligned with homologous se-
quences and reference sequences published in the NCBI
GenBank database at each locus using ClustalX 1.83 software
(ftp://ftpigbmc.u-strasbg.fr/pub/ClustalX/) and adjusted

manually by BioEdit 7.04 software (www.mbio.ncsu.edu/
BioEdit/bioedit.html). Phylogenetic relationships were
inferred to support the grouping of Cryptosporidium species/
genotypes in MEGA 7.0 using neighbor-joining analysis
(Kumar et al. 2016). Based on the estimated evolutionary
distances, phylograms were constructed for each genotyped
locus using the Kimura 2-parameter model and drawn by
MEGA 7.0 software, with bootstrap values of greater than
50% reported using 1000 pseudoreplicates.

The unique partial nucleotide sequences of the SSU rRNA,
HSP70, and actin genes generated in this study were deposited
in the GenBank database under accession numbers
MK095941–MK095943.

Results and discussion

In the current study, only one sample (isolate HN74) was
found to be positive by PCR amplification of the SSU rRNA
gene. Similarly, one case of an Indian peafowl was found to be
infected with Cryptosporidiumin Brazil, along with a white
peafowl in Qinghai Province, China (Karanis et al. 2007;
Nakamura et al. 2009). Recently, Cryptosporidium preva-
lences of 4.58% and 9.52% were reported in Beijing and
Jiangxi Province, China (Feng et al. 2019).

Several molecular tools, especially the SSU rRNA, HSP70,
COWP, and actin genes, are typically used to identify and
differentiate the genetic characteristics of species/genotypes
(Xiao 2010). In our study, no COWP fragments were detected,
and the sequences of other loci were amplified successfully,
indicating infection by only one Cryptosporidium sp./geno-
type in peafowl. DNA sequencing and a nucleotide BLAST
search identified sequence heterogeneity with 6 sporadically
distributed nucleotide substitutions and insertions intoC. xiaoi
and C. bovis (FJ896050 and JX51556), which shared 99%
genetic similarity. However, compared to an emerging
C. xiaoi–like genotype (MF627417 and MG243625 from a
chicken isolate, EU825742 from a water isolate), there was
only onemutation (T to C) at nucleotide 447 in the SSU rRNA
gene, resulting in 99.9% homology through manual align-
ment. Likewise, for the actin gene, 4 nucleotide mutations
were observed in theC. xiaoi–like genotype (MF627416 from
the chicken isolate OPSJ1), and a maximum similarity of
99.6% was noted. Significantly, the complete HSP70 gene
obtained from this study exhibited at least 78 nucleotide
changes, with a maximum identity of 96% (C. xiaoi Tibetan
sheep isolate, KF907826), followed by an identify of 90%
with other reported HSP70 sequences based on BLAST re-
sults. In addition, the incomplete HSP70 fragment published
for C. xiaoi (FJ896041) and the C. xiaoi–like genotype
(MG243695) shared 5 nucleotide changes and no differences
with the current HN74 isolate, respectively, based on manual
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comparative analysis. Therefore, the peafowl isolate was like-
ly the C. xiaoi–like genotype.

In the phylogenetic tree of the three genes, the similar to-
pological structures determined the genetic relationship and
revealed that the peafowl isolate was most closely related to
the C. xiaoi–like genotype and formed a sperate branch inde-
pendent ofC. xiaoi andC. bovis, with strong bootstrap support
(Fig. 1). Therefore, our isolate, HN74, was demonstrated to be
the most recent C. xiaoi–like genotype. Prior to this identifi-
cation, a nearly identical SSU rRNAgene from awater sample
(W26 isolate) was genotyped as C. bovis–like (Yang et al.

2008). Nevertheless, in free-range chickens in Brazil, the same
sequence was identified recently and considered to be the first
case of the C. xiaoi–like genotype in chickens; the genotype
was subsequently reported in domestic chickens (Ewald et al.
2017; Santana et al. 2018). Significantly, the occurrence of the
C. xiaoi–like genotype in peafowl strongly suggests that the
emerging C. xiaoi–like genotype infects other avians.

Based on the surveys of Cryptosporidium infection in
China, five bird-adapted species, including C. baileyi,
C. galli, C. meleagridis, C. avium, and C. proventriculi, were
reported from 25 bird species. In addition, goose genotype I,

Fig. 1 Phylogenetic relationship of the SSU rRNA and actin genes of
Cryptosporidium peafowl isolate in this study to other known
Cryptosporidium species/genotype as inferred by a neighbor-joining

analysis based on evolutionary distances calculated using the Kimura
two-parameter model. Bootstrap values were obtained using 1000
pseudoreplicates. Bar = substitutions/site
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ferret genotype, avian genotype I, andC. ubiquitum have been
found occasionally in cockatiel, red-billed blue magpie, bud-
gerigar, peafowl, and hill myna (Amer et al. 2010; Feng et al.
2019; Li et al. 2015; Li et al. 2016; Nakamura et al. 2009; Qi
et al. 2011; Wang et al. 2011; Wang et al. 2012; Zhang et al.
2015). Combined with those findings, our results expand the
Cryptosporidium range in birds.

In conclusion, infection by a C. xiaoi–like genotype was
confirmed in peafowl for the first time in China, and the
emerging genotype provided further insight into
Cryptosporidium in avian species. However, the host specific-
ity of the C. xiaoi–like genotype remains unclear and requires
further research.
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