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Molecular characterization of surface antigen 10 of Eimeria tenella
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Abstract
Chicken coccidiosis is caused by the apicomplexan parasite Eimeria spp. At present, drug resistance of Eimeria is
common because of the indiscriminate use of anticoccidial drugs. The gene encoding surface antigen 10 of Eimeria
tenella (EtSAG10) is differentially expressed between drug-resistant and drug-sensitive strains. RNA-seq analysis
indicated that this gene was downregulated in strains resistant to maduramicin and diclazuril compared to susceptible
strains. EtSAG10 DNA sequence alignment revealed that they contained one and ten mutations in MRR and DZR,
compared with DS, respectively. A full-length EtSAG10 cDNA was successfully cloned and expressed, and the
polyclonal antibody was prepared. The transcription and translation levels of EtSAG10 were analyzed by quantitative
real-time PCR (qPCR) and Western blotting. The localization of EtSAG10 in Spz, Mrz, and parasites in the first
asexual stage was determined by indirect immunofluorescence. The potential association of EtSAG10 with sporozoite
invasion of host cells was assessed by invasion inhibition assays. The results showed that EtSAG10 had a predicted
transmembrane domain at the C-terminal end and a predicted signal peptide at the N-terminal end. EtSAG10 was
downregulated in drug-resistant strains, which is consistent with the RNA-seq results. The EtSAG10 protein was
localized to the parasite surface and parasitophorous vacuole membrane. This protein was shown to play a role in
the infection of chicken intestine by sporozoites.
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Introduction

Chicken coccidiosis is a parasitic disease caused by the
apicomplexan protozoan Eimeria spp. and causes consider-
able economic losses to the poultry industry worldwide.
Eimeria tenella parasitizes chicken cecal epithelial cells and
is one of the most pathogenic species among the seven iden-
tified species (Williams 2002). The current control strategies
for coccidiosis rely on anticoccidial drugs and live oocyst
vaccines (Sun et al. 2014a; Shirley et al. 2005).

However, the extensive use of anticoccidial drugs has re-
sulted in the development of resistance in Eimeria spp. And
the use of these drugs has been restricted by the emergence of
resistance (Chapman 1997). Eimeria spp. have been shown to
be resistant to all available anticoccidial agents. A Dutch study
evaluated various E. tenella strains and found that their sensi-
tivity to drugs was reduced over time (Peek and Landman
2003). Several studies investigated drug resistance in
Eimeria (Jiang et al. 2005; Chen et al. 2008; Thabet et al.
2017). Nonetheless, the underlying molecular mechanisms
of resistance are not fully understood. Therefore, exploring
the function of resistance-related genes is essential.

Our research group previously used the RNA-seq method
to compare differences between maduramicin- and diclazuril-
resistant strains and drug-sensitive strains of E. tenella and
screened for differentially expressed genes and found that
the expression of surface antigen 10 of E. tenella (EtSAG10)
was downregulated in two resistant strains (data unpublished).
Transcriptome sequencing showed that the log2Ratio (DZR/
DS) was reduced by − 1.5 and the log2Ratio (MRR/DS) was
reduced by − 2.7.

Therefore, the role of EtSAG10 in drug-resistant strains
deserves further exploration. More than 80 SAGs are
expressed in E. tenella. EtSAG10 is one of the surface antigen
(SAG) subfamily members; all known subfamilies encode
signal peptides and addition sites for GPI anchors (Reid
et al. 2014). Some SAGs induce pro-inflammatory cytokine
responses in E. tenella in vitro (Chow et al. 2011). Moreover,
SAG genes in E. tenella encode single-domain, membrane-
bound proteins tethered by GPI anchors to the surface of in-
vasive sporozoites and merozoites (Tabares et al. 2004).
E. tenella SAG1 binds to mammalian cells (Jahn et al.
2009). Several SAGA subfamily proteins, but not SAGB sub-
family proteins, can bind to cultured cells (Reid et al. 2014).
The surface antigens of other apicomplexan protozoans such
as Toxoplasma gondii (T. gondii) can be potentially used as
diagnostic antigens and vaccines (Leng et al. 2014). TgSAG1
elicited protective responses to T. gondii infection (Aosai et al.
1999), and TgSAGs can stimulate host innate and adaptive
immune responses through Toll-like receptors (Gazzinelli
and Denkers 2006). In addition, SAGs are believed to play
an important role in the early recognition of protozoa, adher-
ence to and invasion of host cells, immune regulation, and

immune escape )Cardwell and Martinez 2009; Gould et al.
2017; Leal-Sena et al. 2018). The number of studies on
SAGs has increased in recent years.

EtSAG10 had not been characterized in E. tenella to date.
In this study, EtSAG10 DNA sequences of three strains were
aligned by using the Clustal X tool, and the full-length
EtSAG10 cDNAwas cloned and expressed, and its biological
functions were determined. The differential expression of
SAG10 in drug-resistant and drug-sensitive strains of
E. tenella was evaluated. This study will lay the foundation
for identifying molecular markers of drug resistance.

Materials and methods

Animals, parasites, and cells

Day-old yellow-feathered broiler chickens were purchased
from the Shanghai Fengxian District, China, and were reared
in a coccidia-free animal facility. New Zealand rabbits were
obtained from the Songlian Experimental Animal Farm.
BALB/c mice were purchased from the Slack Laboratory
Animal Limited Company.

The Shanghai drug-sensitive (DS) strain of E. tenella was
collected and isolated in a chicken farm in Shanghai, China, in
the 1980s, and was kept in our laboratory (Huang et al. 1993).
A maduramicin-resistant strain (MRR) and diclazuril-resistant
strain (DZR) were induced and maintained in our laboratory
(Han et al. 2004). Parasites were propagated by passage
through coccidia-free 2-week-old chickens, as described pre-
viously, and stored in 2.5% potassium dichromate solution
(Tomley 1997). Sporozoites (Spz) were obtained from sporu-
lated oocysts, and unsporulated oocysts (UO) and sporulated
oocysts (SO) were obtained as previously described (Shirley
1995; Han et al. 2010). Second-generation merozoites (Mrz)
were collected and purified using Percoll density gradient
centrifugation (Zhou et al. 2010).

The chicken embryo fibroblast cell line DF-1 was kept in
our laboratory and cultured in Dulbecco’s modified Eagle’s
medium (DMEM) (Invitrogen, Carlsbad, USA) containing
10% fetal bovine serum (FBS) (Invitrogen, Carlsbad, USA),
100 U/mL penicillin/streptomycin (Invitrogen), and 2.0 mM
L-glutamine (Invitrogen).

Analysis of the DNA sequence of EtSAG10 in three
strains

Genomic DNAwas extracted from sporulated oocysts of two
drug-resistant strains and the drug-sensitive strain of E. tenella
according to the instructions of TIANamp Genomic DNA Kit
(Tiangen, China), respectively. The DNA sequence of
EtSAG10 (ID: ETH_00034975) was amplified using the fol-
lowing primers: 5 ′-ATGCTGCAGCGGAAGCTACC
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ACCCA-3′, 5′-TCATAAAGTCATAATGCCGAACGTC-3′.
The 1168-bp amplified DNA sequences were cloned into the
pGEM-T easy cloning vector (Promega, Madison, WI, USA)
and sent to Sangon Biotech (China) for sequencing. Further,
the DNA sequences of the three strains were aligned by using
Clustal X tool. The DNA sequences were sequenced and
aligned in triplicate.

RNA extraction, cDNA synthesis, and gene cloning

Total RNA was extracted from sporulated oocysts of a drug-
sensitive strain of E. tenella using Trizol (Invitrogen). The
concentration and purity of RNAwere determined by measur-
ing the optical density at 260 and 280 nm using an ultraviolet
spectrophotometer (Eppendorf, Hamburg, Germany). The
RNAwas treated with DNase I (Invitrogen) and reverse tran-
scribed into cDNA using a SuperScript™ III reverse transcrip-
tase kit (Invitrogen) and Oligo (dT) primers.

The full-length coding region of the EtSAG10 gene (ID:
ETH_00034975) was amplified from the cDNA of E. tenella
using the following primers with the BamHI and SalI restriction
sites (underlined): 5′-GCGGATCC ATGCTGCAGCGGAA
GCTACCACCCA-3′, 5′-GCGTCGACTCATAAAGTCATAA
TGCCGAACGTC-3′. The 786-bp amplified DNA fragment
was cloned into the pGEM-T easy cloning vector (Promega,
Madison, WI, USA) and transformed into Escherichia coli
Top10. The bacteria transformed with recombinant plasmid
pGEM-T-EtSAG10 was sent to Sangon Biotech (China) for
sequencing. The gene sequences and deduced amino acid se-
quences of EtSAG10 were analyzed using BLAST programs
from the National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/BLAST/), the genome sequence of E.
tenella (http://www.genedb.org/Homepage/Etenella),
translation tools from the ExPASy server (http://www.expasy.
org/tools/protparam.html), a prediction tool for membrane
protein topology and signal peptides (http://octopus.cbr.su.se/
index.php), and Motif Scan (https://myhits.isb-sib.ch/cgi-bin/
motif_scan) (Zhai et al. 2016).

Protein expression and purification

The ORF was excised from recombinant pGEM-T-EtSAG10
plasmids by digestion with BamHI and Sal I after sequencing
and ligated into the prokaryotic expression vector pGEX-4T-2
(Novagen, Germany) digested with the same restriction endo-
nucleases. Recombinant expressed plasmids were extracted
from the clones and subjected to DNA sequencing to confirm
the sequence and orientation of the inserts. The pGEX-4T-
EtSAG10 plasmids were expressed using an E. coli BL21
(DE3) expression system (Tiangen). Bacteria carrying
pGEX-4T-EtSAG10 were grown in 200 mL Luria Broth me-
dium containing 50mg/mL at 37 °C.When the culture growth
reached an optical density of 0.6 at 600 nm, protein expression

was induced with 0.5 mM isopropyl-β-D-thiogalactopyrano-
side (IPTG; Sigma-Aldrich, St. Louis, USA) at 37 °C for 8 h.
The recombinant bacteria were isolated by centrifugation at
10,000g for 15 min, and the pellet was then suspended in
20 mL phosphate-buffered saline (PBS, pH 7.4) and extracted
using an ultrasonic processor to release the fusion proteins.
Lysates were centrifuged at 10,000g for 10 min to separate
inclusion bodies and cellular debris from the remaining solu-
ble substances. The pellet was resuspended in 5 mL 1× bind-
ing buffer plus 6 M urea. Analysis by 12% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) dem-
onstrated that recombinant EtSAG10 (rEtSAG10) was
expressed in soluble form. The soluble rEtSAG10 was puri-
fied by using GST-bind resin (Merck, Darmstadt, Germany)
according to the manufacturer’s instructions. The purified pro-
tein was separated on 12% SDS-PAGE and stained with
Coomassie Blue. Protein concentration was determined using
a BCA protein assay kit (Beyotime, Haimen, China).

Preparation of polyclonal antibodies against EtSAG10

Two-month-old rabbits and 6-week-old mice were immunized
with 0.2 mg and 0.05 mg of purified rEtSAG10 per animal,
respectively. rEtSAG10 was emulsified with the same volume
of Freund’s complete adjuvant (Sigma-Aldrich) used at the
immunization. After that, experimental animals were injected
with rEtSAG10 emulsified with the same volume of Freund’s
incomplete adjuvant (Sigma-Aldrich). After three immuniza-
tions, the sera of rabbits and mice were collected.
Reactogenicity of rEtSAG10 was determined by Western
blotting.

Quantitative real-time PCR (qPCR)

The expression profile of EtSAG10 mRNAwas examined at
different developmental stages (UO, SO, Spz, and Mrz) in the
DS strain of E. tenella and in SO of the strains DS, DZR, and
MRR using qPCR. Total RNAs were isolated using TRIzol
reagent (Invitrogen, USA) following the manufacturer’s in-
structions. All samples were treated with deoxyribonuclease
I (Invitrogen). Total RNAs (35 μg/reaction) were reverse tran-
scribed into cDNA using the SuperScript™ III Reverse
Transcriptase kit (Invitrogen) and random primers, respective-
ly. The housekeeping gene 18S rRNAwas used as an internal
control (Livak and Schmittgen 2001; Kumar et al. 2012;
Wang et al. 2016). The qPCR primers for EtSAG10 were 5′-
TCCAGCACCAGAGGAAGGAGAACTA-3′ (sense) and 5′-
TGAAGGCGGGAGTCCAGTGAAGTTT-3′ (antisense).
The qPCR primers for 18S rRNA were 5 ′-TGTA
GTGGAGTCTTGGTGATTC-3′ (sense) and 5′-CCTG
CTGCCTTCCTTAGATG-3′ (antisense). qPCR was per-
formed using the SYBR® Premix DimerEraser™ (Perfect
Real Time) (TaKaRa, Japan) kit in a QuantStudio®5 Real-
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Time PCR system. The 2−ΔΔCt method (Geysen et al. 1991;
Livak and Schmittgen 2001) was applied for measuring rela-
tive changes in gene expression.

Western blotting

Parasites at four developmental stages (UO, SO, Spz, and
Mrz) of E. tenella DS strain and parasites at the SO stage in
strains DS, DZR, and MRR were lysed in RIPA buffer
(Beyotime) and Protease Inhibitor Cocktail (Sigma) and cen-
trifuged at 4000g for 10 min. The supernatants or purified
rEtSAG10 were incubated with SDS sample buffer and dena-
tured by heating. The protein samples were separated on a
12% SDS-PAGE gel electrophoresis and blotted onto
Immobilon-P transfer membranes (Millipore). The mem-
branes were blocked with phosphate-buffered saline (PBS)
containing 5% skimmedmilk powder for 2 h at 37 °C, washed
three times with PBS for 5 min, and incubated with anti-α-
tubulin monoclonal antibody (1:400 dilution), GST-
monoclonal antibody, polyclonal anti-rEtSAG10 (1:200 dilu-
tion) and anti-sporozoite rabbit serum (1:200 dilution) which
observed in our lab (Han et al. 2015) for 2 h at 37 °C. After
that, the membranes were washed three times with PBST for
5 min and incubated with IRDye® 680RD donkey anti-mouse
IgG and IRDye® 800CW goat anti-rabbit antibody IgG (LI-
COR Biosciences, USA, 1:10,000) diluted in PBS for 1 h at
37 °C in the dark and visualized using an Odyssey® Infrared
Imaging System (LI-COR Biosciences). Alpha-tubulin
(Sigma) was used as a reference protein for normalization.

Localization of EtSAG10 by immunofluorescence
microscopy

The immunolocalization of EtSAG10 at different develop-
mental stages of E. tenella was performed as described previ-
ously (Peroval et al. 2006; Jiang et al. 2012). To confirm the
location of EtSAG10 in the parasite, purified sporozoites and
second-generation merozoites were transferred to glass slides
and air-dried. The chicken embryo fibroblast cell line DF-1
was used for in vitro infection experiments. The cells were
cultured in six-well plates (Corning, NY, USA) with
Φ25mm Circle Microsope Cover Glass (NEST) and cultured
in complete medium [DMEM (Invitrogen) containing 10%
FBS, 100 U/mL penicillin/streptomycin] at 37 °C and 5%
CO2 for 10 h. Freshly purified sporozoites were incubated in
complete medium for 2 h at 41 °C and were added to the
cultured cells. At the indicated post-inoculation time points,
infected DF-1 cells were fixed, washed, and transferred to
glass slides. The slides were fixed in 2% paraformaldehyde
in PBS, air-dried, and permeabilized in 1% Triton X-100 in
PBS for 15 min. The slides were blocked with 2% (w/v) bo-
vine serum albumin in PBS overnight at 4 °C and incubated
with polyclonal anti-rEtSAG10 diluted 1:100 in PBS for 1 h at

37 °C. The slides were incubated with a 1:500 dilution of goat
anti-rabbit IgG fluorescein isothiocyanate-conjugated anti-
body (Sigma-Aldrich) for 1 h at 37 °C. Nuclei were stained
wi th 2- (4 -amid inopheny l ) -6 - indo leca rbamid ine
dihydrochloride (Beyotime) (10 mg/mL) for 30 min at room
temperature. After each step, the slides were washed three
times for 10 min with PBS containing 0.05% Tween 20.
After that, the slides were mounted using 60 μL
Fluoromount Aqueous Mounting Medium (Sigma-Aldrich)
and observed under a laser scanning confocal microscope
(ZEISS, Germany) and a fluorescence microscope
(OLYMPUS, Japan).

Invasion inhibition assays

Invasion inhibition assays were carried out as described pre-
viously (Jiang et al. 2012; Wilson et al. 2015). DF-1 cells (2 ×
105 cells per well) were cultivated in 24-well plates in com-
plete medium for 12 h at 37 °C and 5% CO2. Freshly purified
sporozoites were labeled using the dye carboxyfluorescein
d iace t a t e succ in imidy l e s t e r (CFSE; Beyo t ime
Biotechnology), according to the manufacturer’s instructions
and resuspended in DMEM containing 5% FBS and 500 U/
mL penicillin/streptomycin and preincubated with 50 μg/mL,
100 μg/mL, 200 μg/mL, or 400 μg/mL purified anti-
rEtSAG10 IgG for 2 h at 37 °C. Sporozoites (6.0 × 105 per
well) were added to infected DF-1 cells for 12 h at 41 °C and
5% CO2. The same concentration of rabbit IgG (Sigma-
Aldrich, USA) was used as the negative control, and sporozo-
ites incubated without antibodies were used as the positive
control. Cells were washed, trypsinized, collected, and detect-
ed using a Cytomics FC500 flow cytometer (Beckman
Coulter, USA). All assays were performed in triplicate.

Statistical analysis

The relative expression ratio of a target gene was calculated
from the PCR efficiency and Ct of the treated sample versus
the untreated sample using the ΔΔCt method. The 18S rRNA
gene was used as a reference for normalization. Native rabbit
IgG was used as a control in invasion inhibition assays.
Statistical analyses were performed using SPSS software ver-
sion 22.0 (SPSS). Differences between the groups were cal-
culated by one-way analysis of variance, followed by
Duncan’s multiple range tests, and the differences were con-
sidered statistically significant at P < 0.05.

Ethics statements

The animals were used according to the protocol approved by
the Animal Care and Use Committee of the Shanghai
Veterinary Research Institute, Chinese Academy of
Agricultural Sciences.
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Results

EtSAG10 DNA sequence analysis of three strains

The 1168-bp full-length DNA sequences of EtSAG10
were obtained from three strains (DS, DZR, and MRR)
of E. tenella, respectively, which included three introns
(111 bp to 293 bp, 445 bp to 522 bp, and 899 bp to
994 bp). Three DNA sequences of EtSAG10 of three
strains were compared by Clustal X tool (Fig. S1). The
results showed that ten point mutations were observed in
the EtSAG10 DNA sequence of DZR at the 247th, 660th,
684th, 707th, 712th, 716th, 721st, 757th, 833th, and
946th position and one point mutation was recorded in
the EtSAG10 DNA sequence of MRR at the 591th posi-
tion, compared with DS (Fig. 1). One synonymous muta-
tion in the EtSAG10 DNA sequence, CGA to CGC cod-
ing for arginine (Arg) amino acid residue at the 591st
position, was found in MRR. Three synonymous

mutations in the EtSAG10 DNA sequence was found in
DZR, ACG to ACA coding for threonine (Thr) amino
acid residue at the 684th position, CAA to CAG coding
for glutamine (Gln) amino acid residue at the 660th posi-
tion, and TTG to CTG coding for leucine (Leu) amino
acid residue at the 757th position. Moreover, five mis-
sense mutations in the EtSAG10 DNA sequence were
found in DZR, CTT to CAT coding for leucine (Leu)
amino acid residue changed into histidine (His) amino
acid residue at the 707th position, AGA to GGA coding
for arginine (Arg) amino acid residue changed into gly-
cine (Gly) amino acid residue at the 712th position, AGG
to AAG coding for arginine (Arg) amino acid residue
changed into lysine (Lys) amino acid residue at the
716th position, GTG to ATG coding for valine (Val) ami-
no acid residue changed into methionine (Met) amino acid
residue at the 721st position, and CCA to CTA coding for
proline (Pro) amino acid residue changed into leucine
(Leu) amino acid residue at the 833th position.

Fig. 1 Nucleotide sequence of the
genomic DNA of EtSAG10 of
DS, DZR, and MRR. The
missense mutation is in a blue
rectangle. The synonymous
mutation is in a black rectangle
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Sequence analysis of EtSAG10 cDNA

The full-length coding sequence of the EtSAG10 gene in the
DS strain of E. tenella was amplified, cloned, and sequenced,
and a 786-bp product was obtained. This sequence presented
99% similarity with EtSAG10 previously isolated from
E. tenella (GenBank: XM_013375905.1). The newly identi-
fied gene encodes a putative protein of 261 amino acid resi-
dues with a predicted molecular weight of 27.9 kDa, a theo-
retical isoelectric point 4.7, a predicted transmembrane do-
main at the C-terminal end, and a predicted signal peptide at
the N-terminal end. The analysis of the predicted motif struc-
ture indicated that EtSAG10 contained two casein kinase II
phosphorylation sites (residues 143–146 and 149–152), three
N-myristoylation sites (residues 61–66, 139–144, and 197–
202), three protein kinase C phosphorylation sites (residues
80–82, 143–145, and 201–203), three N-glycosylation sites
(residues 136–139, 156–159, and 182–185), and one
threonine-rich domain (residues 177–202) (Fig. S2).

Expression and purification of rEtSAG10

E. tenella SAG10 cDNA was amplified and cloned into a
pGEM-T easy cloning vector, subcloned into the expression
vector pGEX-4T-2, and expressed in E. coli BL21 (DE3). The
bacterial culture was incubated at 37 °C and induced with
0.5 mM IPTG. The SDS-PAGE results demonstrated that the
rEtSAG10 was expressed as a soluble protein (Fig. 2a). The
experimental size of rEtSAG10 agreed with the predicted size
above 53.9 kDa (including 26 kDa the GST tag protein). The
expressed protein was purified by immobilized nickel affinity
chromatography under native conditions. The Western blot
results indicated that the purified protein was recognized by
the anti-sporozoite rabbit serum and the GST-monoclonal an-
tibody. Native rabbit IgG failed to detect any protein of the
expected size of rEtSAG10. These results indicated that
rEtSAG10 has good reactogenicity and that protein
rEtSAG10 had been degraded into peptides (Fig. 2b).

Transcription and translation of EtSAG10 in three
E. tenella strains

The mRNA levels of EtSAG10 were measured in the DS,
DZR, and MRR strains by qPCR. mRNA transcription in
the DZR andMRR strains was lower than that in the DS strain
(Fig. 3a). The presence of EtSAG10 in the DS, DZR, and
MRR strains was determined by immunoblotting using rabbit
antiserum against rEtSAG10. Western blot analysis showed
that the protein in the DZR and MRR strains was downregu-
lated compared with that of the DS strain (Fig. 3b, c), and
these results agree with the RNA-seq results.

Transcription and translation levels of EtSAG10 at
different developmental stages of the DS strain

The mRNA expression profile of EtSAG10 was examined in
UO, SO, Spz, and Mrz in the DS strain by qPCR. The
EtSAG10 mRNA level in SO was higher than that at the other
three stages (Fig. 3d). Moreover, the presence of EtSAG10 at
four developmental stages in the drug-sensitive strain was
determined by immunoblotting using rabbit antiserum against
rEtSAG10. Western blotting detected proteins in SO (two
bands of approximately 27.9 kDa and greater than 34 kDa),
Spz (two bands of approximately 27.9 kDa and greater than
34 kDa), Mrz (two bands of approximately 27.9 kDa and
34 kDa), and UO (one band of approximately 27.9 kDa).
Protein expression was higher in SO and UO than in Spz
and Mrz (Fig. 3e, f).

Immunofluorescence localization of EtSAG10
in E. tenella-infected DF-1 cells, merozoites,
and sporozoites

The localization and distribution of EtSAG10 protein in Spz,
Mrz, and parasites in the first asexual stage were evaluated by
immunofluorescence. EtSAG10 was predominantly localized
to the surface of Spz and Mrz, and green fluorescence

Fig. 2 a The solubility analysis rEtSAG10, b Western blot analysis of
purified rEtSAG10. Rabbit antiserum against E. tenella sporozoite or
monoclonal anti-GST antibody was used as the primary antibody. P, pel-
let; S, supernatant. Lane 1, rEtSAG10 was probed with the naive rabbit

serum. Lane 2, rEtSAG10 was probed with the monoclonal anti-GST
antibody. Lane 3, rEtSAG10 was probed with the anti-sporozoite rabbit
serum
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intensity on the surface of Mrz was higher than that on the
surface of Spz (Fig. 4a, b). After infection of DF-1 cells by
sporozoites for 24 h, EtSAG10 was mainly localized to the
surface of trophozoites, and green fluorescence intensity was
also enhanced at this stage (Fig. 4c). As parasite development
progressed in the cells, EtSAG10 was localized to the cyto-
plasm of immature schizonts, and the intensity of EtSAG10
staining was increased (Fig. 4d–f). EtSAG10 was also detect-
ed in the parasitophorous vacuole membrane (PVM) at 60 h
(Fig. 4d).

Inhibition of E. tenella sporozoite invasion
by rEtSAG10 polyclonal antibodies

The degree with which the rabbit anti-rEtSAG10 inhibited the
invasion of DF-1 cells by E. tenella sporozoites was deter-
mined using invasion inhibition assays. Native rabbit IgG
was used as a control. Under experimental conditions, the
inhibition rate appeared to increase as the antibody concentra-
tion increased. The invasion rate was approximately 60% after
pretreatment with 400 μg/mL of the anti-rEtSAG10 polyclon-
al antibody. In contrast, invasion was not significantly
inhibited by native rabbit IgG (Fig. 5).

Discussion

At present, Eimeria spp. resistance to drugs is widespread;
therefore, it is crucial to quickly diagnose resistance in para-
sites. In this study, we compared the DNA sequences of

EtSAG10 of three strains (DZR, MRR, and DS). Sequence
alignment found that they contained missense mutations and
synonymous mutations in DZR and MRR, compared with DS.
Previous reports showed that mutations in some genes deter-
mining resistance to drugs such as artemisinin and antifolates
have been identified inPlasmodium (Gregson and Plowe 2005;
Mbengue et al. 2015). And it was reported that the mutations
were associated with mRNA and protein expression levels (Jia
and Zhao 2017). So we speculated that the mutations in two
drug-resistant strains may be associated with mRNA and pro-
tein expression levels and contribute to the resistance to these
two drugs. Moreover, we compared the expression of the
EtSAG10 gene between drug-resistant and sensitive strains
using different methods. qPCR andWestern blot analysis dem-
onstrated that the expression of EtSAG10 in two resistant
strains was downregulated compared with susceptible strains.
These results agree with previous findings, wherein surface
antigens were downregulated in E. tenella MRR (Chen et al.
2008). Similarly, the expression of surface antigens in drug-
resistant strains of Plasmodium falciparum and T. gondii was
lower than that in sensitive strains (Doliwa et al. 2013; Antony
et al. 2016). The results of these studies and the present study
evidenced that drug resistance in Eimeria spp. may be related to
the downregulation of the expression of SAGs. Therefore, we
speculated that the downregulation of EtSAG10 was essential
for drug resistance inE. tenella. A previous study found that the
downregulation of the surface antigen CD53 in human neutro-
phils was the result of the activation of a proteolytic mechanism
(Mollinedo et al. 1998), which is consistent with our
hypothesis.

Fig. 3 Transcription and translation levels of EtSAG10. DS, drug-
sensitive strain; DZR, diclazuril-resistant strain; MRR, maduramicin-
resistant strain; UO, unsporulated oocysts; SO, sporulated oocysts; Spz,
sporozoites;Mrz, second-generationmerozoites. Anti-α-tubulin antibody
was used as a loading control. EtSAG10 was recognized by rabbit anti-
rEtSAG10. a Transcription level of EtSAG10 in DS, DZR, and MRR. b

and c EtSAG10 translation level in DS, DZR, and MRR. d mRNA level
of EtSAG10 at different developmental stages in the DS strain of
E. tenella. e and f EtSAG10 protein expression level at different devel-
opmental stages of the DS strain of E. tenella. The data represent the
mean ± S.D. of triplicate determinations and are representative of three
independent experiments
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The function of EtSAG10 was further investigated
by determining its expression at different developmen-
tal stages of E. tenella by qPCR. EtSAG10 mRNA
expression was higher in SO than the other three
stages, and these results agreed with Western blotting
results. We hypothesized that this result was related to
changes in the environment of SO. For instance, it has
been reported that the expression of sHSPs is increased

under different stress conditions, including heat, cold,
chemical intoxication, and nutritional stress (Montero
et al. 2008; Perez-Morales et al. 2009; Liu et al.
2012; Sun et al. 2014b). Nonetheless, compared with
qPCR results, Western blot results also showed that
EtSAG10 protein expression was higher in UO and
Mrz; we speculated that the time and location of tran-
scription and translation of eukaryotic genes may be

Fig. 4 Indirect
immunofluorescence to localize
EtSAG10 at different
developmental stages of Eimeria
tenella using rabbit sera against
rEtSAG10. a Sporozoites (Spz) in
PBS; b second-generation mero-
zoites (Mrz) from infected chick-
en caeca in PBS; c trophozoites
(Tropho) at 24-h post-infection
(pi); d immature schizonts at 60 h
pi; e immature schizonts at 72 h
pi; f immature schizonts at 84 h pi
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separated by time and space and that the mRNA might
have been degraded when the protein levels peaked at
different time points of detection (Ben-Ari et al. 2010).
In addition, Western blot analysis revealed two bands
in SO, Spz, and Mrz, and the size of one of these
bands was larger than the predicted size of 27.9 kDa.
A previous study has shown that the amino acid se-
quence of EtSAG10 has a high frequency of change
between amino acid residues 140 and 160, which
may change the spatial conformation and hydrophilicity
of the protein (Qiu et al. 2017). This change in protein
size may also be due to post-translational modifica-
tions, including acylation, alkylation, and methylation.
A study on T. gondii found that rhoptry protein 2 and
microneme protein 2 had two bands on Western blots,
corresponding to a precursor form and an active form
(Entzeroth et al. 1998).

Indirect immunofluorescence using an antibody
against rEtSAG10 showed that the protein was mainly
localized to the parasite surface. Furthermore, EtSAG10
expression was higher in Mrz than Spz, and this result
was consistent with the Western blot results. EtSAG10
expression was increased as parasite development
progressed in DF-1 cells. Parasite surface proteins are
particularly interesting because of their potential role in
resisting the external environment and adapting to new
environments. For instance, the trypomastigote small
surface antigen (TSSA) plays a critical role in the in-
fectivity and differentiation of T. cruzi trypomastigotes
and the phenotypic variability of parasite strains
(Camara et al. 2017). Moreover, the expression of a
parasite surface antigen may cause a protective immune
response in the host (Tabares et al. 2004; Chow et al.
2011; Petitdidier et al. 2016). Major changes in gene
expression of surface antigen 10 in MRR and DZR
may be involved in pathogenesis and immune evasion.
The immune evasion mechanism of parasites involves
(1) constantly changing the antigenicity of the parasite,
(2) reducing the host immune response, and (3)

avoiding or resisting the site of immune attack (Saito
et al. 2017; Yam and Preiser 2017; Belachew 2018).
In addition, EtSAG10 was detected in the PVM. The
parasitophorous vacuole is crucial to protect the parasite
against the host cell environment, and the PVM is a
major route of communication between the intracellular
parasite and the host cell by allowing the exchange of
metabolites between them (Entzeroth et al. 1998; Beyer
et al. 2002). Therefore, we hypothesized that EtSAG10
might escape the host immune response to protect the
parasite against the intracellular environment.

EtSAG10 might also be involved in host cell inva-
sion because invasion inhibition assays indicated that
pretreatment with the anti-rEtSAG10 polyclonal anti-
body reduced the capacity of sporozoites to invade
DF-1 cells in vitro. In a previous study, TSSA served
as an anchor for invading parasites (Canepa et al.
2012). EtSAG10 is one of the SAG family members.
Proteins from all SAG subfamilies contain signal pep-
tides and GPI anchors (Reid et al. 2014). These GPI-
anchored proteins are present at several developmental
stages in T. gondii, Plasmodium, Cryptosporidium, and
Neospora, and are essential for the adhesion of parasites
to host cells (Lekutis et al. 2001; Leal-Sena et al.
2018). The present results supported these findings.
However, the changes in surface antigens upon drug-
stimulated coccidial invasion of host cells need to be
better explored.

Conclusions

In this study, a full-length EtSAG10 cDNA from E. tenella
was cloned, expressed, and characterized. The mRNA level
was higher in sporulated oocysts than at other developmental
stages. The present results suggested that EtSAG10 may be
important in pathogenesis and immune evasion and may play
a fundamental role in the invasion of host cells by sporozoites
in vitro. Importantly, the difference between drug-resistant
and sensitive strains may be related to E. tenella drug resis-
tance to maduramicin and diclazuril, and this differential ex-
pression and mutations may provide a basis for seeking a
marker of coccidial resistance. However, the function of this
molecule needs to be further explored.
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