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Abstract
Babesia gibsoni (B. gibsoni), an intracellular apicomplexan protozoan, poses great threat to canine health. Currently, little
information is available about the B. gibsoni (WH58) endemic to Wuhan, China. Here, the mitochondrial (mt) genome of
B. gibsoni (WH58) was amplified by five pairs of primers and sequenced and annotated by alignment with the reported mt
genome sequences of Babesia canis (B. canis, KC207822), Babesia orientalis (KF218819), Babesia bovis (AB499088), and
Theileria equi (AB499091). The evolutionary relationships were analyzed with the amino acid sequences of cytochrome c
oxidase I (cox1) and cytochrome b (cob) genes in apicomplexan parasite species. Additionally, the mt genomes of Babesia,
Theileria, and Plasmodium spp. were compared in size, host infection, form, distribution, and direction of the protein-coding
genes. The full size of the mt genome of B. gibsoni (WH58) was 5865 bp with a linear form, containing terminal-inverted repeats
on both ends, six large subunit ribosomal RNA fragments, and three protein-coding genes: cox1, cob, and cytochrome c oxidase
III (cox3). Babesia, Theileria, and Plasmodium spp. had a similar mt genome size of about 6000 bp. The mt genomes of parasites
that cause canine babesiosis showed a slightly smaller size than the other species. Moreover, Babesia microti (R1 strain) was
about 11,100 bp in size, which was twice larger than that of the other species. The mt form was linear for Babesia and Theileria
spp. but circular for Plasmodium falciparum and Plasmodium knowlesi. Additionally, all the species contained the three protein-
coding genes of cox1, cox3, and cob except Toxoplasma gondii (RH strain) which only contained the cox1 and cob genes. The
phylogenetic analysis indicated that B. gibsoni (WH58) was more identical to B. gibsoni (AB499087), B. canis (KC207822), and
Babesia rossi (KC207823) and most divergent from Babesia conradae in Babesia spp. Despite the highest similarity to
B. gibsoni (AB499087) reported in Japan, B. gibsoni (WH58) showed notable differences in the sequence of nucleotides and
amino acids and the property in virulence to host and in vitro cultivation. This study compared the mt genomes of the two
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B. gibsoni isolates and other parasites in the phylum Apicomplexa and provided new insights into their differences and evolu-
tionary relationships.

Keywords Babesia gibsoni . Apicomplexa .Mitochondria . Phylogenetic analysis . Evolutionary relationship

Introduction

Babesiosis is caused by intracellular Babesia species and can
infect a wide range of animals and even human beings, giving
rise to an enormous economic loss for farmers (El-Dakhly et al.
2015; Schnittger et al. 2012; Uilenberg 2006; Wickramasekara
Rajapakshage et al. 2012). Canine babesiosis, a common tick-
borne protozoan disease with a wide distribution mainly in
Asia, Africa, Australia, Europe, and North America, may result
in fever, anemia, hemoglobinuria, hyperthermia, pallor, anorex-
ia, jaundice, splenomegaly, and even death in serious cases
(Goo and Xuan 2014). The clinical symptoms are variable
based on the host health conditions, vector specificity, and par-
asite species. Moreover, the infected canines were chronic car-
riers and the major source of infection in most cases. This
prevalent disease is caused by three large forms of Babesia
species (Babesia canis (B. canis), Babesia rossi (B. rossi),
and Babesia vogeli (B. vogeli)) and three small forms
(Babesia gibsoni (B. gibsoni) , Babesia conradae
(B. conradae), and Babesia microti (B. microti)–like also
regarded as BB. vulpes^) (El-Dakhly et al. 2015; Goo and
Xuan 2014; Solano-Gallego et al. 2016). Among them,
B. gibsoni is well known to be more severe than the other
species and was first characterized in India in 1910 (Solano-
Gallego et al. 2016). It is commonly transmitted by tick vectors
such as R. sanguineus andHaemaphysalis longicornis and was
also reported to be transmitted probably by blood transfusion,
dog bite, and placenta (Solano-Gallego et al. 2016).

The sequencing of the whole genome of B. gibsoni has not
been completed, and its properties remain poorly understood.
In 2009, the mitochondrial (mt) genome of a B. gibsoni isolate
was reported (Hikosaka et al. 2010). However, the informa-
tion about the B. gibsoni isolates prevalent in China is very
limited. In 2017, the B. gibsoni isolate (WH58) endemic to
Wuhan, China, was identified and reported in our previous
work (He et al. 2017). However, the mt genome was not se-
quenced and annotated, and the structure was also not deter-
mined and analyzed. For Babesia and other intracellular pro-
tozoa, the mt organelle plays a significant role in energy me-
tabolism and calcium homeostasis (Cornillot et al. 2012;
Frederick and Shaw 2007; Hikosaka et al. 2010; Mogi and
Kita 2010). Under most circumstances, the mt genome of
intracellular protozoa encodes three protein-coding genes (cy-
tochrome c oxidase subunits I (cox1), cytochrome c oxidase
subunits III (cox3), and cytochrome b (cob)), large subunit
(LSU) and small subunit (SSU) ribosomal RNAs (rRNAs),
and terminal inverted repeats (TIRs) (Lin et al. 2011;

Wickramasekara Rajapakshage et al. 2012; Yang et al.
2015). However, in apicomplexan parasites, the mt genomes
vary in length, form, species, and the number of protein-
coding genes (Cornillot et al. 2013; Hikosaka et al. 2010). In
this study, the mt genomes of apicomplexan parasites were
compared in structure and organization, and the genes of
cox1 and cob were used for phylogenetic and evolutionary
analyses. All the results reported in this article may facilitate
a basic understanding of the mt genome of B. gibsoni endemic
to Wuhan, China, and provide new insights into the genetic
relationships among the apicomplexan protozoa.

Materials and methods

Mitochondrial DNA cloning and sequencing

The genomic DNA (gDNA) of B. gibsoni was extracted and
stored at − 80 °C as previously reported (He et al. 2017). The
genome sequence was determined by polymerase chain reac-
tion (PCR) using specific primers (Table 1). The five pairs of
primers were designed by aligning with the reported mt ge-
nome sequences of B. gibsoni (GenBank accession number
AB499087), B. canis (KC207822), B. vogeli (KC207825),
and B. rossi (KC207823). PCR was performed in a 50 μl
reaction mixture containing 10 mM Tris–HCl (pH 8.4),
50 mM KCl, 4 mM MgCl2, 0.2 mM dNTP, 0.2 mM of each
primer, 2 U Taq polymerase (Takara Biotechnology, Beijing,
China), and 2 μl gDNA. The primers used were F1 and R1, F2
and R2, F3 and R3, F4 and R4, and F5 and R5. PCR condi-
tions were as follows: the initial denaturation at 95 °C for
5 min, 33 cycles (denaturation at 94 °C for 30 s, annealing
at 55–68 °C (depending on the primers used) for 30 s, exten-
sion at 72 °C for 1–6 min (depending on amplicon size, 1 min/
kb)), and a final extension of 10min at 72 °C. Amplicons were
cloned into the pMD19-T vector (Takara) for subsequent se-
quencing using the ABI PRISM 377 DNA sequencer accord-
ing to the manufacturer’s instructions. The vector primers
M13F andM13R as well as five specific pairs of PCR primers
were used for the sequencing of the mt genome.

Gene annotation and sequence analysis

The obtained mt genome sequences of B. gibsoni (WH58)
were assembled and aligned with the reported mt genome
sequences of B. gibsoni (GenBank accession number
AB499087), B. canis (KC207822), B. vogeli (KC207825),
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and B. rossi (KC207823) by MAFFT 7.0 (https://mafft.cbrc.
jp/alignment/server/), followed by manual correction (Katoh
et al. 2017). Protein-coding genes were deduced based on the
previously annotated sequences from B. gibsoni, B. canis, B.
vogeli, and B. rossi. The amino acid sequences of the protein-
coding genes were generated using ExPASY online tool
(http://www.expasy.org/translate/), and the open reading
frames (ORFs) were analyzed by ORF finder (https://www.
ncbi.nlm.nih.gov/orffinder/). To determine the putative rRNA
genes, mt sequences were queried against previously reported
rRNA sequences from the four related species using BLASTn
under default algorithm parameters (NCBI, BLAST). The
transfer RNA (tRNA) genes were identified by subjecting
the entire mt genome of B. gibsoni (WH58) to tRNAscan-
SE (http://lowelab.ucsc.edu/tRNAscan-SE/) using the
Mito/Chloroplast model and the Nematode Mito model,
followed by comparison of the results from the two models
and annotation according to the B. gibsoni (AB499087) mt
genome annotation.

Phylogenetic analysis

The amino acid sequences of the mt genome of B. gibsoni
(WH58) were aligned with those of the related species by
MAFFT version 7 (https://mafft.cbrc.jp/alignment/server/)
(Katoh et al. 2017), including B. gibsoni (AB499087), B.
canis (KC207822), B. vogeli (KC207825), B. conradae
(KC207826), B. rossi (KC207823), B. oriental is
(KF218819), B. bigemina (AB499085), B. caballi
(AB499086), B. microt i (FO082868), B. microt i
(AB624353), B. bovis (AB499088), B. bovis (EU075182),
B. rodhaini (AB624357), T. orientalis (AB499090), T. equi
(AB499091), T. annulata (NT167255), T. annulata (NW_
001091933), T. parve (AB499089), T. parva (Z23263), and
other Plasmodium spp. The concatenated amino acid se-
quences of cox1, cob, and cox1+cob were used for phyloge-
netic analysis, with the cox3 gene being excluded due to its
high divergence inBabesia and Theileria spp. and its presence
in the nuclear genome rather than in mt genome in some

species, such as T. thermophile (Hikosaka et al. 2010). The
nucleotide sequences were aligned by MAFFT v7 with those
of the cox1 and cob genes, including 21 apicomplexan para-
site species. Alignments were edited and adjusted manually
using BioEdit v7.0.5.2 software (HALL 1999). Moreover, the
nucleotide sequence identities of apicomplexan parasites were
determined based on the sequences of the cox1 and cob genes
by DNAstar software (Burland 2000). All the phylogenetic
trees were inferred by maximum likelihood and neighbor-
joining methods (1000 bootstrap replications) using MEGA
v6.0 software (Tamura et al. 2013).

Availability of data and materials All data are included as
tables and figures within the article.

Results and discussion

Mitochondrial genome map of B. gibsoni (WH58)

The whole mt genome was cloned and sequenced by using
five pairs of primers (Table 1). The amplification fragments
by these five pairs of primers contained the overlapping
domains in order to cover the entire mt genome. The full
size of the mt genome was 5865 bp, with the respective size
of each amplicon being 419 bp, 456 bp, 2304 bp, 1476 bp,
and 1460 bp. The mt genome of B. gibsoni (WH58) was
annotated and deposited in GenBank (accession number
KP666169). The mt genome was also identified to be in
the linear form and contain three protein-coding genes
(cox1, cox3, and cob), two TIRs on both ends, and six
LSU rRNA fragments. Similar to other apicomplexan par-
asites, tRNA was absent in the mt genome of B. gibsoni
(WH58). The three protein-coding genes cox1, cox3, and
cob were cloned by specific primers, and the length was
1428 bp, 642 bp, and 1092 bp, respectively. The respective
size of the six rRNA genes was 305 bp, 34 bp, 110 bp,
81 bp, 69 bp, and 42 bp. LSU1–3 and LSU6 were located
mainly between cox3 and cob genes, ranging from 3114 to

Table 1 Primers used for cloning
B. gibsoni (WH58) mt genome Forward primer Reverse primer

F1 GGTATAGCTAGTGCTATGAG GTGTACATATGATGAGCCCA

F2 ATAAACTCAACAAAATGCCA TGGTATGGTAATTTTTTCAGA

F3 AAGGCCCAAATGAACCCGAA GGTCAAATGAGTTATTGGGG

F4 TCTTGCTTTTGTTCAAAAGAAG GGTACATATTGGCATTTTGTTG

F5 CTACTACACCCAATAATACA
AAAGG

CCATACTGTAGGTATTAATCTATC

cox1 ATGCTTCAGAGTTATAATTCAG TTATAAAGATATGAATAATAA

cox3 ATTATAACATATATAGAACATAATAG TTACATTAAGAAAAGTAATAAAGTTA
G

cob TTAAATTTATTTAATTCTCATATG TTATAAACGCATTCTAGCGC
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5516 bp. L4 and L5 were located adjacent to the cob gene
and the TIRs. The two TIRs were 77 bp and 74 bp in length,
far less than the length of other apicomplexan parasites.

Twenty-six mt genomes from apicomplexan parasites in-
cluding Babesia, Theileria, and Plasmodium spp. and
Toxoplasma gondii (RH), were compared in size, host infec-
tion, mt form, and protein-coding gene number (Table 2)
(Carlton et al. 2002; Ke et al. 2018; Lloyd et al. 2018;
Preiser et al. 1996). The mt genomes of B. gibsoni (WH58)
and most of Babesia, Theileria, and Plasmodium spp. were
similar in the size, which was about 6000 bp (Hikosaka et al.
2011). Interestingly, the mt genomes of parasites that cause
canine babesiosis, including B. gibsoni (WH58), B. canis,
B. vogeli, B. rossi, and B. conradae (5603–5865 bp in length)
had a slightly smaller size than the otherBabesia and Theileria
species (5847–11,149 bp in length). B. microti (R1 strain)
showed a size of about 11,100 bp, which was twice more than
that of the others. The sizes of mt genomes of B. gibsoni
(WH58) and Plasmodium spp. were three-fold more than
Toxoplasma gondii (RH strain) that was only 2607 bp. The
mt genome form was linear for piroplasma including the

identified B. gibsoni (WH58) and other Babesia and
Theileria species. However, P. falciparum and P. knowlesi
contain a circular mitochondrion (Gardner et al. 2002;
Hikosaka et al. 2010; Lau 2009). Additionally, most of the
26 apicomplexan parasites contain the three genes of cox1,
cox3, and cob, with the exception of Toxoplasma gondii
(RH strain) which only contained cox1 and cob genes
(Gjerde 2013; Schreeg et al. 2016). Even though previous
study has reported that B. conradae was short of cox3 gene,
a section of the mt sequence of B. conradae had a high sim-
ilarity with cox3 gene of other Babesia and Plasmodium spp.
through blast in the NCBI database (Schreeg et al. 2016).
Therefore, a cox3-like gene may exist in the mt genome of
B. conradae. All in all, the mt genome of B. gibsoni (WH58)
was similar to other Babesia spp., but divergent with
P. falciparum in the mt genome form and with Toxoplasma
gondii (RH strain) in the mt genome size and numbers of
protein-coding genes.

The distribution and direction of the protein-coding genes,
LSU and TIR, were compared among B. gibsoni (WH58),
B. bovis, B. rodhaini, Theileria equi (T. equi), and

Table 2 Comparative analysis of the mt genome of apicomplexan parasites

GenBank accession number Size (bp) Main host Form Coding genes

B. gibsoni (WH58) KP666169 5865 Canine Linear cox1, cox3, cob

B. gibsoni AB499087 5865 Canine Linear cox1, cox3, cob

B. canis KC207822 5769 Canine Linear cox1, cox3, cob

B. vogeli KC207825 5603 Canine Linear cox1, cox3, cob

B. rossi KC207823 5838 Canine Linear cox1, cox3, cob

B. conradae KC207826 5608 Canine Linear cox1, cox3, cob

B. orientalis KF218819 5996 Water buffalo Linear cox1, cox3, cob

B. bigemina AB499085 5924 Bovine Linear cox1, cox3, cob

B. bovis AB499088 5970 Bovine Linear cox1, cox3, cob

B. bovis EU075182 6005 Bovine Linear cox1, cox3, cob

B. caballi AB499086 5847 Equine Linear cox1, cox3, cob

B. rodhaini AB624357 6929 Murine Linear cox1, cox3, cob

B. microti (R1) LN871600 11,149 Murine, human Linear cox1, cox3, cob

B. microti AB624353 11,109 Murine, human Linear cox1, cox3, cob

T. orientalis AB499090 5957 Bovine Linear cox1, cox3, cob

T. equi AB499091 8246 Equine Linear cox1, cox3, cob

T. annulata NT167255 5905 Bovine Linear cox1, cox3, cob

T. annulata NW001091933 5905 Bovine Linear cox1, cox3, cob

T. parva AB499089 5924 Bovine Linear cox1, cox3, cob

T. parva Z23263 5895 Bovine Linear cox1, cox3, cob

P. falciparum (3D7) M76611 5967 Human Circular cox1, cox3, cob

P. berghei AB558173 5957 Murine Linear cox1, cox3, cob

P. malariae AB489194 5968 Human Linear cox1, cox3, cob

P. knowlesi AY722797 5957 Macaques, human Circular cox1, cox3, cob

P. vivax DQ396549 5947 Human Linear cox1, cox3, cob

Toxoplasma gondii (RH) JX473253 2607 Human and cat Linear cox1, cob
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P. falciparum due to their difference in infection to hosts
(Fig. 1). Despite a TIR length twice smaller than that of
B. bovis, B. gibsoni (WH58) was most close to B. bovis in
the five different species in terms of location and the size of all
elements. B. gibsoni (WH58) was remarkably divergent from
B. rodhaini and T. equi, especially P. falciparum. Different
from B. gibsoni (WH58) and other apicomplexan parasites,
P. falciparum had a circular mt genome and contained three
protein-coding genes (cox1, cox3, cob), 12 LSU ribosomal
RNAs, seven small subunit (SSU) rRNAs, and seven miscel-
laneous (misc) RNAs. However, no TIR was available in
P. falciparum (Lau 2009). Despite obvious divergence in the
five species, the size was practically the same for cox1, cox3,
and cob. The direction of cox1 and cob was compared in the
five species. For the cob gene, the direction of P. falciparum
(3D7), B. rodhaini, and B. microti was different from that of
the other species and was from 3′ to 5′. For the cox1 gene, the
direction of T. equi was from 3′ to 5′ and was opposite to that
of the other species.

Phylogenetic analysis

The nucleotide sequence distances of some apicomplexan par-
asites were analyzed based on the sequences of the cox1 and
cob genes, and the results are shown in Table 3. It can be seen
that B. gibsoni (WH58) was more similar to B. gibsoni
(AB499087), B. canis, and B. rossi, with an average identity

percentage of over 80%, while B. conradaewas obviously far
divergent from other Babesia spp.

Despite the highest similarity to the reported B. gibsoni
(AB499087) in nucleotide sequence, B. gibsoni (WH58)
showed a difference of 21 bp from B. gibsoni (AB499087),
with a 5 bp, 4 bp, and 6 bp difference in the sequence of the
cox1, cox3, and cob genes, respectively, corresponding to the
difference in their amino acid sequences. Due to the close
association of mitochondria with the metabolism of Babesia
spp., the differences in the sequences of nucleotides and ami-
no acids of different isolates may lead to divergence in the
properties such as the virulence to host and environment of
in vitro culture. For example, the isolate B. gibsoni
(AB499087) in Japan was more adaptive to in vitro culture
than WH58 isolate. Therefore, it is necessary and significant
to sequence, annotate, and compare the mt genomes of differ-
ent isolates for a better understanding of the mechanism of
B. gibsoni infection.

The genetic relationships of apicomplexan species were
analyzed based on the sequences of the amino acids of cox1,
cob, and cox1+cob (Fig. 2). The phylogenetic analysis
contained the mt sequences of Babesia spp., Theileria spp.,
Plasmodium spp., and Toxoplasma gondii. Among them, the
mt genomes of B. canis, B. rossi, B. vogeli, and B. conradae
had been cloned, sequenced, and annotated in previous studies
and were included in the present study for comparison with
the mt genomes of B. gibsoni and other parasites (Schreeg
et al. 2016). For the phylogenetic analysis, the species that

Fig. 1 Mitochondrial genome
structures of B. gibsoni (WH58)
(a), B. bovis (b), B. rodhaini (c),
T. equi (d), and P. falciparum (e).
The protein-coding genes (cox1,
cox3, and cob) are indicated by
white boxes. Large subunit (L1–
L12) and small subunit (S1–S7)
rRNA fragments are indicated by
dark and gray boxes. Terminal-
inverted repeats (TIRs) are
indicated by arrows with
P. falciparum being absent
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infect the same host were assigned to one group. For instance,
B. conradae infects canine and is far distant from B. gibsoni
and other canine parasites, but more close to B. microti. This
specific relationship was also reflected by 18S phylogenetic
analysis (He et al. 2017; Schreeg et al. 2016). Moreover,
B. microti is more distant from other Babesia spp., due to its
infection to humans. Plasmodium spp., Toxoplasma gondii,
and Eimeria tenella were assigned in one group due to their
close relationship and divergence from Babesia and Theileria
spp. Furthermore, the bootstrap values in the tree based on the
amino acid sequences of the cox1+cob were notably higher
than those based on amino acid sequences of either cox1 or
cob, indicating the credibility and applicability of the cox1+
cob-based evolutionary relationships.

Conclusions

This article reported for the first time the mt genome of
B. gibsoni endemic to Wuhan, China. The mt genomes of
apicomplexan parasites were compared for a basic under-
standing of their evolutionary relationships. The results indi-
cated that the mt genome of B. gibsoni (WH58) was more
similar and close to that of B. gibsoni (AB499087), B. canis
(KC207822), and B. rossi (KC207823) in structure and phy-
logeny. This study contributes to a comprehensive under-
standing of the apicomplexan protozoan phylogeny and facil-
itates further related research.
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