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Abstract
The risk of malaria infection displays spatial and temporal variability that is likely due to interaction between the physical
environment and the human population. In this study, we performed a spatial analysis at three different time points, corresponding
to three cross-sectional surveys conducted as part of an insecticide-treated bed nets efficacy study, to reveal patterns of malaria
incidence distribution in an area of Northern Guatemala characterized by low malaria endemicity. A thorough understanding of
the spatial and temporal patterns of malaria distribution is essential for targeted malaria control programs. Two methods, the local
Moran’s I and the Getis-Ord G*(d), were used for the analysis, providing two different statistical approaches and allowing for a
comparison of results. A distance band of 3.5 kmwas considered to be the most appropriate distance for the analysis of data based
on epidemiological and entomological factors. Incidence rates were higher at the first cross-sectional survey conducted prior to
the intervention compared to the following two surveys. Clusters or hot spots of malaria incidence exhibited high spatial and
temporal variations. Findings from the two statistics were similar, though the G*(d) detected cold spots using a higher distance
band (5.5 km). The high spatial and temporal variability in the distribution of clusters of high malaria incidence seems to be
consistent with an area of unstable malaria transmission. In such a context, a strong surveillance system and the use of spatial
analysis may be crucial for targeted malaria control activities.

Keywords Malaria . Spatial analysis . Clusters . Outliers . Moran’s I . Getis-Ord

Introduction

The public health significance of malaria worldwide is sub-
stantial, with 216 million cases and 445,000 deaths in 2016 as
reported by the World Health Organization (WHO 2017).
Control measures to reduce malaria transmission, such as the
use of long-lasting insecticide-treated bed nets, indoor residual
spraying, vector management, and improved diagnostic tools
and treatment have led to a considerable decline in the number
of cases and deaths over the past decade (WHO 2017).
However, in the dynamics of vector-borne disease transmis-
sion, the impact that the spatial and ecological characteristics
of the physical environment have on malaria transmission is
extensive, yet malaria control programs are often designed

and implemented giving these aspects little significance
(Kitron 1998; Ostfeld et al. 2005). In malaria, the host
(Anopheles mosquitos), the human, the agent (the
Plasmodium parasite), and the physical environment are high-
ly interdependent and different combinations of these ele-
ments affect transmission spatially and temporally (Grillet et
al. 2010). As a result, a thorough knowledge and understand-
ing of the spatial and temporal characteristics of malaria trans-
mission dynamics are essential for developing suitable control
programs at the local level and also for predicting future dis-
tribution patterns and outbreaks (Carter et al. 2000). To
achieve this, it is critical to identify spatial patterns of distri-
bution of malaria in the form of (1) clusters of high (hot spots)
or low (cold spots) values (Jacquez 2008) and/or (2) outliers
(Lu et al. 2003) and to reveal the underlying mechanisms
responsible for such spatial phenomena.

While geographical information system (GIS) mapping
tools help uncover such spatial phenomena visually, there
are statistical techniques that can assess the statistical signifi-
cance of these spatial patterns of aggregation of features. Two
of the most common spatial analysis approaches that have
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been widely used to detect clusters and outliers in the field of
malaria in areas of both stable and unstable transmission and
for different purposes (Yeshiwondim et al. 2009; Bejon et al.
2010; Hui et al. 2009; Xia et al. 2015) are the local Moran’s Ii
(Anselin 1995; Getis and Ord 1996) and the Getis-Ord Gi

*(d)
statistics (Getis and Ord 1992; Ord and Getis 1995). The com-
bined use of both statistics is beneficial in that results can be
compared, and more reliable and consistent conclusions can
be drawn on the processes involved in spatial association
(Getis and Ord 1992).

These two tests have been employed in this study to deter-
mine whether specific forms of spatial distribution of malaria
incidence (i.e., as clusters or outliers) were present over an
area of the Ixcán municipality in Northern Guatemala as op-
posed to a scenario of complete randomness in the spatial
distribution of malaria incidence. The analysis involved three
points in time corresponding to three cross sectional surveys
(CTs) that were conducted in selected villages of this munic-
ipality between 2000 and 2001 as part of an insecticide-treated
bed nets (ITNs) efficacy study (Malvisi 2015). Thus, besides
an investigation of the spatial patterns of distribution of
malaria incidence, a temporal evaluation that will span
the three CTs (CT1, CT2, and CT3) has been presented.
Of particular interest are the differences in terms of the
spatial distribution of malaria incidence between the
pre-intervention period during, which no villages had
ITNs (CT1 and CT2), and the post-intervention period
(CT3) when intervention villages had been using ITNs
for the 9 months prior to CT3 while control villages
had not. Implications for malaria control and consider-
ations for future research are presented.

Methods

Study area

The spatial analysis covered villages of the Ixcán municipality
(15° 59′ N, 90° 46′ W), which is part of the El Quiché
Department in Northern Guatemala (Fig. 1). The Ixcán mu-
nicipality has an extension of 1575 km2 and the population
was approximately 67,000 in 2000, comprising the municipal
seat (Playa Grande) and 170 rural villages (Guatemala
National Institute of Statistics, unpublished data). The area is
characterized by lowlands with an average altitude of approx-
imately 250 m above the sea level (Consejo Municipal de
Desarrollo del Municipio de Ixcan, Quiche y Secretaria de
Planificacion y Programacion de la Presidencia 2010), and
the climate is hot and humid year-roundwith little temperature
variations (mean temperature of 25.8 °C) (Instituto Nacional
de Sismologia, Vulcanologia, Meteorologia e Hidrologia
2013; Narciso et al. 2013). Annual rainfall varies between
2000 and just over 3000 mm (Instituto Nacional de

Sismologia, Vulcanologia, Meteorologia e Hidrologia 2013).
The area is bordered on the eastern and north-eastern side by
the Chixoy River, the third longest river in the country and the
site of the largest Guatemalan hydroelectric dam (Instituto
Nacional de Electrificacion 2014).

Malaria transmission is unstable (entomological inocula-
tion rate (EIR) < 1) and seasonal with higher intensity between
May to October and a slight reduction between November and
April (unpublished data, Guatemalan Institute of Seismology,
Volcanology, Meteorology, and Hydrology). The majority of
cases were caused by P. vivax (typically around 90%) with a
small portion caused by P. falciparum. The primary malaria
vectors according to an entomological survey carried out in
the study villages between June 2000 and August 2001 were
An. vestitipennis (41.2%), An. darlingi (37.5%), An.
Apicimacula and An. punctimacula (13.4%), An. albimanus
(7.1%), and An. pseudopuncipennis (0.4%).

Epidemiologic and spatial data

All data used for the spatial analysis were collected during the
ITN efficacy study conducted between 2000 and 2001. This
study collected data on 9989 individuals from 26 villages over
three cross-sectional surveys (approximately 1/3 of them were
surveyed in each CT and individuals that participated in one
CT could not be selected for the following ones). A detailed
description of the experimental conditions of the efficacy
study is found elsewhere (Malvisi 2015). Village-specific in-
cidence rates of malaria (defined as the number of new cases
divided by the population at risk and multiplied by 100) were
obtained and used as the attribute value for each village for the
spatial analysis and were obtained for all three cross-sectional
surveys. In addition, the geographical coordinates for the mid-
point of each village were obtained using ArcGIS® software
and served as the Breference points^ to determine the distances
that defined a neighboring area for each village. These dis-
tance bands and their associated weights were then used in the
calculation of the local Moran’s Ii and Getis-Ord Gi

*(d)
statistics.

Besides the two tests for the identification of clusters and
outliers, we also assessed the global spatial autocorrelation
which indicates whether malaria rates (each village has a rate
associated with it) are randomly distributed or whether they
are found in the form of clusters over the study area. The
details are discussed in the next section.

Analysis of global spatial and spatio-temporal
associations

We assessed the presence of patterns of spatial association
over the whole study area with the global spatial autocorrela-
tion tool which calculates the globalMoran’s I index. This tool
uses the geographical position of villages, their associated
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attributes (malaria incidence rates), and a selected distance
band that defines a neighboring area for each location to de-
termine whether these attribute values are randomly distribut-
ed (null hypothesis) over the whole study area or whether they
aggregate in the form of clusters. We calculated the global
Moran’s index for several distance bands and evaluated
the significance of the indices by calculating the z score
and the p value. The higher the z score (and the lower
the p value) at a specific distance band, the higher the
probability that high or low incidence rates of malaria
are spatially clustered in the study area being evaluated.
A further useful element that provides valuable informa-
tion is the assessment of the relationship between global
Moran’s I and time. The temporal trend for the global spatial
association of malaria rates was examined through a linear
regression model containing the values of global Moran’s I
at the 3.5-km distance band and the three points in time cor-
responding to CT1, CT2, and CT3.

Spatial cluster and outlier analysis

The identification of spatial clusters over the village area
was carried out using both the local Moran’s Ii (Anselin
1995) and Getis-Ord Gi

*(d) statistics (Getis and Ord
1992), while the detection of outliers was achieved through
the local Moran’s Ii only since the Getis-Ord Gi

*(d) is not
able to identify this type of spatial phenomenon. Of note,
while statistical analysis packages that calculate the G*(d)
statistic report clusters that are significant at the 90, 95, and
99% confidence intervals, in this study and for all the maps,
we only included clusters of either high or low values that
were significant at the 99 and the 95% confidence interval.
In a context as that of this research where multiple compar-
isons need to be carried out due to the assessment of the
relationship among features for each location in the data,
the probability of rejecting one or more null hypotheses
when they are, in fact, true (type I error rate) is typically

Ixcán

Guatemala

Fig. 1 Location of Guatemala in
Central America (upper map) and
location of the Ixcán within
Guatemala (lower map)
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higher; therefore, the use of a 90% confidence interval may
be inappropriate (Caldas de Castro and Singer 2006).

For both statistics, a key element is weight which is
represented by a weight matrix whose values are deter-
mined by the type of spatial relationships chosen to
represent the spatial features being analyzed. This, in
practice, specifies how the distance between two loca-
tions should be defined (Caldas de Castro and Singer
2006; Esri 2012). In general, the higher the distance
between two locations, the lower their weight and, con-
sequently, their impact on the statistic.

In addition to the spatial analysis for the identifica-
tion of clusters and outliers, we examined the space-
time relationship of malaria incidence to account for
the variation in the distribution of malaria incidence at
different points in time (corresponding to the three
CTs). For this evaluation, we created a single three-
dimensional map in which the spatial phenomena can
be observed over time, with time being the third dimen-
sion used to reproduce the temporal progression. In
practice, the oldest results (CT1) are displayed closest
to the ground, while more recent ones appear at higher levels
and closer to one’s view. The 3D representation of the results
of the space-time analysis was created with ArcGlobe, a fea-
ture of ArcGIS®.

Selection of distance defining a neighbor

A central aspect in cluster analysis is the definition of the
spatial relationship among points (villages in this case) and
the identification of the ideal distance that defines a neighbor
for each location, keeping in mind that the selected distance
should have the goal of maximizing the likelihood of detect-
ing clusters or outliers (Esri 2012). The selection of what is
considered a neighboring area for each location should reflect
the dynamic interaction that exists between people, mosqui-
toes, and the physical environment since these elements can
influence the risk of malaria spatially and temporally (Caldas
de Castro et al. 2007). To achieve this, the first factor to con-
sider is the geographical distribution of the villages, which
helps in the selection of a sufficiently large distance to include
an appropriate number of neighbors (at least one). Since vil-
lages are frequently located a few kilometers apart (Fig. 2)
(average distance of 3.1 km), it would be appropriate to opt
for a distance that is greater than 3.1 km. In addition, since
having more than one neighbor is helpful in cluster analysis,
by selecting a distance greater than 3.1 km leads to including
more than one neighbor for each location. The second factor is
the presence of control measures implemented in the villages
which, in this case, is represented by the use of ITNs in the
intervention villages in CT3 (through the ITN efficacy study).

Fig. 2 Villages included in the spatial analysis. Green dots symbolize intervention villages (those that received ITNs) and red dots represent control
villages (no ITNs distributed)
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As such, the presence of neighboring ITN and control villages
as well as that of an area in which neighbors are ITN-ITN and
control-control villages would be important to investigate spa-
tial patterns of malaria in the presence of these combinations.
The third element concerns the flying behavior of the mosqui-
toes: it was determined that An. darlingi can fly distances of
up to 7 km, An. albimanus can reach 4.3 km, while An.
Vestitipennis typically displays shorter ranges (< 1 km)
(Fisher 1923; Verdonschot and Besse-Lototskaya 2014), al-
though another study conducted in Belize concluded that there
was a higher chance that An. vestitipennis traveled longer
distance than to An. albimanus (Achee et al. 2007). Given this
information and considering that data on distances traveled by
thesemalaria vectors are limited and scattered, it is appropriate
to select a distance slightly higher than 3 km but probably not
too much higher. The forth factor is the result of the incremen-
tal spatial autocorrelation tool in ArcGIS® software. This pro-
cedure scans the area in which the spatial analysis is being
performed and determines the distance at which the z score for
the globalMoran’s Ii is maximized. According to this tool, this
distance was 3.5 km. After a careful evaluation of all these
factors, the most appropriate distance band defining a neigh-
boring area was determined to be 3.5 km. This distance, in
practice, defines a circular area with a diameter of 3.5 km
around the geographical midpoint of each village. Therefore,
this circular area represents the neighboring area for each ref-
erence village (we refer to a village that is the central point of
this circular area as the reference village). Any village whose
geographical midpoint falls within this circular area is a neigh-
bor for the reference village. Besides the 3.5-km distance
band, a few other distance bands consistent with the specific
epidemiologic context of the different CTs were assessed and
presented in the results section.

Spatial weights

For the analysis, we used the fixed distance band approach so
that locations that fall outside of the specified distance have
weight of 0, i.e., they will not have an influence on the calcu-
lation of the statistic. In addition, since the number of neighbor
villages for each village is different (some have only one

neighbor while others have up to fore), we used row standard-
ized weights to create proportional weights for neighbors. In
this way, a location that only has one neighbor will have a
weight of 1 for its neighbor, while for a location that has more
than one neighbor, the weights sum up to 1 for all neighbors.

Split of isolated villages

As mentioned, the calculation of the local Moran’s Ii and
Getis-Ord Gi

*(d) statistics requires that each village has at
least one neighbor and that a meaningful distance around each
village is selected to define its neighboring area. The closest
neighbor for some of the villages was located at distances
greater than 5 km but selecting such high distances for a
neighbor would have been inappropriate considering the en-
tomological and geographical factors discussed above. To
compensate for such a geographical context, we divided the
six villages that had no neighbors within a 3.5-km distance
into two sections so that each section had the other section of
the village as its (only) neighbor. The split was applied near
the geographical center of each of these six villages and fol-
lowing the most natural separation such as an area with no
houses or a major road. The split villages were San Jose La
Veinte, El Horizonte, Santa Ana, La Caoba, Sonora, and
Monterrey. Following the split, the two sections in which each
of these villages was split were named with the numbers 1 and
2 after the name of the village, e.g., Monterrey 1 for one
section and Monterrey 2 for the other section (see Figs. 6, 7,
8, 9, 10, 11 for graphical example). The total number of loca-
tions after splitting these villages was 32.

Results

Characterization of malaria distribution in the three
cross-sectional surveys

The local context of unstable and seasonal malaria transmis-
sion is reflected by the incidence rates that differ not only
temporally (across CTs) (Table 1) but also spatially from one
village to another one in close proximity, e.g., a few

Table 1 P. vivax cases, P.
falciparum cases, total number of
cases, and incidence rates of
malaria in the three CTs

Cross-sectional survey PVa cases (%) PFb cases (%) Total cases Nc IRd

CT1 220 (83.6) 41 (15.6) 263e 3309 7.9

CT2 54 (84.4) 10 (15.6) 64 3330 1.9

CT3 68 (95.8) 3 (4.2) 71 3350 2.1

aP. vivax case % = number of cases of PV/total number of all cases
bP. falciparum case % = number of cases of PF/total number of all cases
c Population at risk
d Incidence rate calculated as: (total number of cases / total population) × 100
e Included in the 263 cases are also two mixed P. falciparum/P. vivax infections
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kilometers away (Table 2 and Fig. 2). There were a total of
398 cases of malaria reported over the three CTs, with CT1
having the highest malaria rate (7.9 per 100 people) and the
other two CTs having substantially lower rates, 1.9 and 2.1 per
100 people, respectively. Specifically for CT3 (conducted at
the end of the intervention study period in which intervention
villages had received ITNs, while control villages did not), the
incidence rates of malaria for the ITN and control villages
were 2.7 and 1.5 per 100 people, respectively (rate ratio =
1.81, 95% CI 1.11–1.92). The proportion of cases of P.
falciparum malaria in both CT1 and CT2 was 15.6%, which
was higher than that of CT3 (4.4%). The rest of the cases in all
CTs were caused by P. vivax, except for two cases in CT1
which were diagnosed as mixed P. falciparum/P. vivax infec-
tions (Table 1). The distribution of malaria by age in CT1
shows no differences across age groups, while for CT2 and
CT3, there was a significantly higher rate of malaria in

children aged 0 to 5 years than in those aged 6–15, 16–50,
and more than 50 years (p < 0.0001) (Table 3). Finally, no
statistically significant differences were observed in terms of
malaria distribution by sex in any of the three cross-sectional
surveys (data not shown).

Spatial and temporal distribution of malaria

The spatial distribution of malaria incidence in the 32 loca-
tions over the three CTs is shown in Fig. 3. Here, we can
confirm visually that the rates of malaria in CT1 appear higher
than those in CT2 and CT3, while those of CT2 and CT3
appear similar. Spatially for CT1, the highest rates were ob-
served in the northern and north-western parts of the study
area, near the border with Mexico. For CT2, areas with higher
rates of malaria are more evenly distributed over the study
area with slightly higher concentrations in the central part as

Table 2 Population, number of
malaria cases, and incidence rates
in all study villages

Village name CT1 (Sep/Oct 2000) CT2 (Jan 2001) CT3 (Oct/Nov 2001)

Na Cb IRc Na Cb IRc Na Cb IRc

Aldea Efrata 120 1 0.8 130 6 4.6 131 2 1.5

Atenas 188 55 29.3 156 3 1.9 195 1 0.5

Cari 70 1 1.4 54 2 3.7 7 0 0

Carolina 110 13 11.8 94 2 2.1 114 0 0

El Afan 156 1 0.6 218 8 3.7 175 3 1.7

El Eden 97 4 4.1 113 1 0.9 105 0 0

El Horizonte 105 3 2.9 95 2 2.1 83 1 1.2

El Milagro 69 5 7.2 88 3 3.4 69 7 10.1

El Peñon 58 13 22.4 81 6 7.4 60 0 0

El Quetzal 60 0 0 70 2 2.9 101 5 5

Esija 79 22 27.8 100 4 4 80 2 2.5

La Caoba 153 15 9.8 169 0 0 189 1 0.5

Lorena 148 11 7.4 104 1 1 148 0 0

Margaritas Dos 151 4 2.7 124 1 0.8 103 1 1

Monterrey 101 28 27.7 82 0 0 63 2 3.2

Nuevas Ilusiones 114 5 4.4 131 1 0.8 134 3 2.2

Punto Chico 183 12 6.6 202 3 1.5 195 1 0.5

San Alfonso 81 10 12.3 53 0 0 67 1 1.5

San Francisco 77 14 18.2 110 2 1.8 92 1 1.1

San Jose La Veinte 348 1 0.3 297 2 0.7 339 4 1.2

San Juan La Quince 108 5 4.6 162 3 1.9 154 14 9.1

San Pablo 271 5 1.8 269 1 0.4 268 1 0.4

Santa Ana 135 3 2.2 145 5 3.5 173 16 9.3

Santa Rosa 97 9 9.3 70 5 7.1 80 1 1.3

Sonora 151 21 13.9 110 0 0 116 2 1.7

Virginia 84 2 2.4 104 1 1 109 2 1.8

Total 3309 263 7.9 3330 64 1.9 3350 71 2.1

a Population at risk
bNumber of malaria cases
c Incidence rate per 100 people

2812 Parasitol Res (2018) 117:2807–2822



compared with CT1. Similar to CT2, the highest rates in CT3
are dispersed over the study area even though we observe a
reappearance of pockets of malaria in the central and southern
part. Overall, there was a progressive reduction in incidence
over the CTs in most villages (as illustrated by the 3D view of
the study area in Fig. 4), and there are no consistent trends of
malaria distribution over space and time.

Global spatial autocorrelation

Table 4 and Fig. 5 illustrate the results of the global spatial
autocorrelation in which theMoran’s I index and its associated
z score and p value were calculated for each selected distance

(in km) and for each of the three CTs. For CT1, the spatial
autocorrelation was highest at the 3.5-km distance lag as in-
dicated by the z score, although all distances examined were
significant as per the p value. The 3.5-km distance lag was
also the distance at which the spatial autocorrelation was max-
imized for CT2 as indicated by the z score and p value; the 3.2-
km distance lag was also significant (p < 0.05), while the other
distances had lower z score and were not significant according
to the p value. All Moran’s I values and z scores for CT1 and
CT2 were positive, indicating a type of distribution of values
that tends toward a clustering of high values, although
Moran’s index values should not be interpreted according to
their high or low value, instead they should be evaluated in the
context of the null hypothesis (i.e., the p value). The spatial
autocorrelation scenario shown in CT3was different from that
of the first two CTs in that no distance lags produced signifi-
cant results. In addition, the Moran’s I and z score values for
the 4.0, 4.5, and 5-km distance lags were negative, denoting
possible aggregation of values in the form of spatial outliers.
Since in the Getis-Ord Gi

*(d) statistic the individual test re-
sults are not related to a global statistic of spatial association as
for the Moran’s I statistic, no tests of the global spatial auto-
correlation associated with the Getis-Ord Gi

*(d) statistic can
be calculated.

In terms of the temporal trend for the global spatial associ-
ation of malaria rates (assessed using the global Moran’s I

Table 3 Incidence rate of malaria by age group in the three CTs

Age group
(years)

CT1 incidence
rate

CT2 incidence
ratea

CT3 incidence
ratea

0–5 7.8 3.9 3.3

6–15 8.3 1.7 1.9

16–50 7.6 0.7 1.4

> 50 8.3 1.0 1.5

a In CT2 and CT3, the rates of malaria in children aged 0 to 5 years were
significantly higher than those in participants aged 6–15, 16–50, and
more than 50 years (p < 0.0001)

Fig. 3 Incidence rates (per 100 population) of malaria for all villages in the three cross-sectional surveys (CT1, CT2, and CT3)
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values at the 3.5-km distance band at the three points in time
corresponding to CT1, CT2, and CT3), there was a significant
decrease in the global Moran’s I values for the rates of malaria
from CT1 to CT3 (t = 5.85, p < 0.05).

Assessment of local spatial distribution of malaria
incidence rates by the Moran’s I and Getis-Ord Gi

*(d)
statistics

Cross-sectional survey I

Results from both the local Moran’s I (Fig. 6) and Getis-Ord
Gi

*(d) (Fig. 7) statistics at the 3.5-km distance lag show areas
of significant clustering of high values of malaria incidence in
the northern part of the study area with a highly significant
cluster (99% CI) according to the Getis-Ord G*(d) statistic in
the villages of Esija, as well as a cluster of high values in the
village of Monterrey (north-west). However, Monterrey was
one of the villages that was split and, thus, each section of
Monterrey has as its only neighbor the other section of
Monterrey (at the 3.5-km distance band), e.g., Monterrey 1
is the only neighbor for Monterrey 2 and vice versa. Thus,
the interpretation of this particular cluster needs to take this

context into consideration. Notably, when we assessed the
spatial distribution of malaria incidence using the G*(d) test
with a 5.5-km distance lag, we observed an area of clusters of
low values (cold spot) in the southern part of the study area.

Cross-sectional survey II

Figures 8 and 9 display the results of the local Moran’s I and
the Getis-Ord G*(d) statistics, respectively, using a 3.5-km
distance lag. The former shows one significant cluster of high
values of malaria incidence in the western area (Santa Rosa),
while the latter indicates no significant clusters of either high
or low values. Interestingly, according to the G*(d) statistic
and using a distance band of 5.5 km, there was an area of
significant low values of malaria incidence (cold spot) in the
north-eastern part of the study area corresponding to the vil-
lages of Monterrey and Sonora. The former was a cluster of
high values during CT1.

Cross-sectional survey III

Spatial phenomena detected in CT3 are shown in Fig. 10 for
the local Moran’s I and in Fig. 11 for the Getis-Ord G*(d)

Fig. 4 Three-dimensional
representation of malaria
incidence rates (reported as the
number of cases per 100 people)
in villages over the three CTs.
Each stick represents a villages
and each CT is represented by one
third of the length of the stick,
with the lowest third
corresponding to the incidence of
the least recent CTand the highest
third corresponding to the
incidence of the most recent CT

Table 4 Moran’s I index, z score,
and p value for malaria incidence
at different distance lags
according to the spatial
autocorrelation (global Moran’s
I). Results are presented for all
CTs

Distance CT1 CT2 CT3

Moran’s
I

z
score

p
value

Moran’s
I

z
score

p
value

Moran’s
I

z
score

p
value

3.2 km 0.48 2.82 < 0.01 0.29 2.08 < 0.05 0.07 0.61 NSa

3.5 km 0.47 3.04 < 0.01 0.26 2.15 < 0.05 0.07 0.62 NSa

4.0 km 0.41 2.88 < 0.01 0.18 1.76 NSa − 0.06 − 0.22 NSa

4.5 km 0.35 2.76 < 0.01 0.16 1.69 NSa − 0.04 − 0.09 NSa

5.0 km 0.42 2.89 < 0.01 0.15 1.71 NSa − 0.08 − 0.38 NSa

a Not significant
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statistics. Both maps indicate a cluster of high values in the
southern area, although a location identified as a cluster of
high values of malaria incidence by both the local Moran’s I
and the G*(d) corresponds to the two sides of one of the vil-
lages that was split (Santa Ana); therefore, the interpretation
provided for the cluster of high values around Monterrey in
CT1 can also be applied here. The local Moran’s I statistic also
identified a spatial outlier, in this case an area with high inci-
dence of malaria surrounded by an area of low incidence, in

the village of El Milagro which is located in the central part of
the study area. Since this CT was conducted after the end of
the intervention study period and due to the high presence of
ITN villages in the central section of the study area, we also
conducted a spatial analysis using both the local Moran’s I and
the Getis-OrdG*(d) statistics with a distance band of 5.5 km to
include control villages within the neighboring area of ITN
villages and to determine whether different spatial phenomena
would be observed. The local Moran’s I test identified the

Fig. 6 Map of villages showing results of the local Moran’s I statistic for CT1 (conducted between September and October, thus falling within the rainy
season when more cases of malaria are expected to occur) using a 3.5-km distance band. Incidence rate = number of cases per 100 people
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Fig. 7 Map of villages showing results of the Getis-OrdG*(d) statistic for CT1 (conducted between September and October, thus falling within the rainy
season when more cases of malaria are expected to occur) using a 3.5-km distance band. Incidence rate = number of cases per 100 people

Fig. 8 Map of villages showing results of the local Moran’s I statistic for CT2 (conducted in January which falls during the dry season and a low number
of cases of malaria are expected to occur) using a 3.5-km distance band. *Incidence rate = number of cases per 100 people
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Fig. 9 Map of villages showing results of the Getis-OrdG*(d) statistic for CT2 (conducted in Januarywhich falls during the dry season and a low number
of cases of malaria are expected to occur) using a 3.5-km distance band. No clusters were detected. *Incidence rate = number of cases per 100 people

Fig. 10 Map of villages showing results of the local Moran’s I statistic for
post-interventionCT3 (conducted between October andNovember which
correspond to the end of the rainy season and less cases of malaria may

occur compared to the middle part of the rainy season) using a 3.5-km
distance band. *Incidence rate = number of cases per 100 people
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same outlier that was observed using the 3.5-km distance
band, while the G*(d) statistic revealed one cluster of high
values of malaria incidence in the central part of the study area
that was not detected using the 3.5-km distance lag.

Distance and significant clustering according to the local
Moran’s I and G*(d) statistics

The comparison between the localMoran’s I andG*(d) tests in
terms of the number of significant clusters assessed at different
distance lags for each of the three CTs indicates that results are
similar, although they do not always coincide (Table 5).
Results suggest that a higher number of significant clusters
of high values (hot spots in G*(d)) are detected with G*(d) at
all distance bands as compared to the local Moran’s I. Another
important difference between the two tests appears from the
results of the analysis of clusters of low values of malaria
incidence (or cold spots). No significant results were obtained
using the local Moran’s I test, while significant cold spots
were revealed by the G*(d) in CT1 and CT2 and at higher
distance bands (i.e., 5.5 km).

Besides these differences, for both tests, the 3.5-km dis-
tance band provided more consistent results than the other
distances, and a higher number of significant clusters of high
values (or hot spots) were identified in CT1 as compared to

CT2 and CT3. In addition, a common pattern in the spatial
distribution of clusters is evident from the results of the two
tests not only in terms of the number of significant clusters but

Fig. 11 Map of villages showing results of the Getis-Ord G*(d) statistic
for post-intervention CT3 (conducted between October and November
which correspond to the end of the rainy season and less cases of malaria

may occur compared to the middle part of the rainy season) using a 3.5-
km distance band. *Incidence rate = number of cases per 100 people

Table 5 Number of significant clusters of high or low values (for local
Moran’s I) and number of significant hot spots and cold spots (Getis-Ord
G*(d))

CT1

Distance Local Moran’s I Getis-Ord G*(d)

Cluster—high Cluster—low Hot spota Cold spota

3.5 km 4 0 5 0

4.5 km 3 0 5 0

5.5 km 2 0 6 2

CT2

3.5 km 1 0 0 0

4.5 km 1 0 1 4

5.5 km 1 0 1 4

CT3

3.5 km 2 0 3 0

4.5 km 1 0 2 0

5.5 km 0 0 1 0

aOnly results using 99 and 95% CI are included in the table
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also in terms of the geographic location of the clusters in the
study area.

Discussion

This study describes the pattern of malaria distribution in
Ixcán, Guatemala, both spatially among villages and tempo-
rally over three cross-sectional surveys using malaria inci-
dence data collected during the ITN efficacy study. In terms
of spatio-temporal variations in incidence rates, a progressive
reduction was observed from CT1 to CT3 in most villages,
except for a few locations in the central part of the study area.
These findings were also supported by the result of the anal-
ysis of the temporal trend for the global spatial association of
malaria rates, which showed a significant negative trend of
clustering of malaria rates with time globally (over the whole
study area). This means that the spatial distribution of malaria
rates became progressively less clustered or aggregated as
time went by. This negative temporal trend became more pro-
nounced in CT3, as demonstrated by the p value for the global
Moran’s I which was not significant. This pattern could be
partially explained by the introduction of ITNs in CT3, which
may have had the effect of reducing clustering of malaria and
dispersing cases more equally over the area.

In terms of the results of the spatial analyses, it was ob-
served that rates of malaria differ both spatially and temporal-
ly, since clusters of high values of malaria incidence (hot
spots) in each of the three CTs were detected in different parts
of the study area (the northern and north-western area in CT1,
the western area in CT2, and the southern area in CT3) and
cold spots were observed in the south and in the north-east in
CT1 and CT2 (with higher distance bands), respectively.
Overall, it can be easily observed that more clusters were
detected in CT1 than in CT2 and CT3. This may be partly
explained by the fact that in CT1, more cases of malaria were
reported (CT1 was conducted between September and
October during the rainy season when more cases of malaria
are expected) as compared to CT2 and CT3, which were con-
ducted toward the end of the rainy season and during the dry
season, respectively; therefore, fewer cases of malaria are ex-
pected to occur. The findings of this spatial analysis are more
consistent with a context of unstable, seasonal, and sporadic
malaria transmission (Bejon et al. 2010; Hui et al. 2009;
Yeshiwondim et al. 2009) than with one of stable malaria
transmission in which the location of hot spots or cold spots
over a relatively short period of time (approximately 1 year in
this study) would be less likely to vary considerably
(Bousema et al. 2010). In addition, the results of the spatial
analysis only partially coincided with the areas of highest rates
of malaria (Fig. 3), indicating that areas of statistically signif-
icant clusters are not always readily identifiable from a mere
observation of malaria rates distribution. The results also

confirm the unpredictability of malaria distribution in areas
of unstable transmission, thus representing a greater challenge
for malaria control efforts.

The spatial and temporal variations in malaria incidence
observed in this study may have resulted from a combination
of factors as follows. It is possible that variations in the distri-
bution of areas of significant clusters of malaria incidence
among the CTs were due to differences in climate
(Paaijmans et al. 2009, 2010; Patz and Olson 2006) (CTs were
conducted in different times of the year during which the
temperatures and rainfalls vary, though not markedly) or in
other local ecological characteristics, such as the distance to
forests, swamps, and agricultural lands, the amount of rainfall,
variations in temperature, and altitude (Guthmann et al. 2002;
Hakre et al. 2004; Prothero 1995; Yeshiwondim et al. 2009).
There is evidence that climatic events linked to El Niño, such
as lower rainfall and higher temperatures, have been associat-
ed with higher incidence of malaria (Mantilla et al. 2009;
Medina et al. 2008); therefore, a marked difference in the
spatial distribution of clusters of malaria incidence from year
to year (as in the comparison between CT1 and CT3) may be
the consequence of regional climate anomalies. The climate-
altitude relationship, a major element that can impact malaria
transmission, is not believed to play a significant role in the
distribution of clusters, since the range of elevations of vil-
lages is relatively narrow (approximately between 150 and
250 m above the sea level) and it is likely that only larger
gradients in altitude can affect malaria transmission (Bødker
et al. 2003; Maxwell et al. 2003; Minakawa et al. 2002). Due
to the central role that environmental and geographical char-
acteristics may play on malaria transmission, further research
in this region of Central America is warranted.

Another important aspect in the observed variations of
cluster distribution is the extent of the impact of malaria con-
trol activities in the area (Abeku et al. 2003). One control
village (El Milagro) was identified as an outlier of high ma-
laria incidence according to the local Moran’s I test for CT3
and one intervention village (Santa Ana), located next to a
control village (El Afan) that was identified as a hot spot,
was also a hot spot for malaria incidence as per the G*(d) test
in CT3, suggesting that close proximity of an intervention
village to a control village (less than 3 km in this case) may
increase the risk of malaria in the intervention village. Even
though results suggest that malaria control through the use of
ITNs (unpublished data) had a marginal impact on the distri-
bution of malaria clusters in this study (only two events that
may have been linked to malaria control measures were de-
scribed), it is essential to consider this factor in the evaluation
of the results of a spatial analysis.

The observed variations in terms of the location of identi-
fied clusters across the CTs may also be partly explained by
the fact that individuals that were infected with malaria in one
CT were less susceptible in subsequent CTs and they may
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have had undetectable asymptomatic infections (Lennon et al.
2016). As a result, it is possible that significant clusters were
detected in areas where the population was more vulnerable to
malaria infection. While this hypothesis is not fully supported
by surveillance data since the relationship between low trans-
mission intensity of malaria and individuals’ immunity has
not been well characterized (Doolan et al. 2009; Rolfes et al.
2012), further research in this field is warranted. As far as
parasite species is concerned, the higher proportion of P.
falciparum cases in CT1 as compared to CT3 might be related
to a lower temperature in 2000 than in 2001, since it has been
proposed that P. falciparum tends to prevail over P. vivax in
the presence of higher temperatures and in the presence of
higher transmission intensities as in the case of an epidemic
(Gething et al. 2011; Lindsay and Martens 1998).

The findings show the beneficial use of more than one test
in spatial analysis, since the available features of each test can
provide additional valuable information. Both the local
Moran’s I and the G*(d) statistics are widely used in spatial
analysis, and results obtained from both tests strengthen the
validity of results interpretation. Overall, results from the two
tests were similar, although, in contrast to the local Moran’s I,
the G*(d) resulted in the detection of cold spots at higher
distance bands. One important benefit of the use of the local
Moran’s I is the identification of spatial outliers, which may
provide essential information in terms of trends of malaria
distribution for malaria control.

The selection of the most meaningful distance band to de-
fine an area surrounding a village as its neighbor can be sub-
jective, even though it should be based on the evaluation of the
local epidemiological, ecological, and entomological context.
In this study, the minimum distance required so that each
village had at least one neighboring village was 3.2 km; there-
fore, we had to select a distance that was at least equal to or
higher than 3.2 km. According to the test of global spatial
autocorrelation, 3.5 km was the distance band at which the
non-random distribution of features was maximized, meaning
that the probability of detecting spatial clusters or outliers was
highest at that distance. This distance was also consistent with
the flying behavior of mosquitoes and with the distribution of
ITN and control villages for CT3 (this allows for the assess-
ment of neighboring ITN and control villages in the spatial
analysis), although the most central area had a high concen-
tration of ITN villages for which the 3.5-km distance bandwas
not sufficient to reach a control village. This distance band
was also chosen in other studies on the spatial analysis of
malaria in Latin America (Caldas de Castro et al. 2007;
Grillet et al. 2010), adding strength and significance to our
decision. To provide a more complete picture, we also pre-
sented results of tests for larger distance bands, although dis-
tances longer than 5 km may not be suitable for the geograph-
ical and entomological characteristics of the study area. To this
end, it would have been helpful to have data on the other

villages in the area (not all participated in the ITN study) so
that we could have also assessed spatial phenomena with
shorter distance bands such as 1.5 and 2.5 km.

Conclusions

Spatial analysis in the field of malaria transmission can reveal
hidden patterns otherwise not readily identifiable through an
evaluation of malaria incidence distribution. Knowledge of
these patterns is particularly beneficial at the village level (as
the area of this study) rather than at the departmental or na-
tional level, since significant clusters seem to be scattered both
spatially over a relatively small area and temporally over a
short period of time. With such a high variability, significant
clusters in villages should be examined in relation to the local
ecological and geographical factors mentioned above, since
they may be responsible for such spatial events, and findings
can lead to the implementation of more appropriate malaria
control programs. Notably, this scenario is probably more ap-
plicable to areas of low endemicity where transmission dy-
namics are dependent upon environmental and entomological
factors that display higher variability (e.g., climate and vector
behavior) than in areas of stable transmission and higher en-
demicity. In addition, where malaria transmission is low, un-
derstanding the spatial distribution of areas of significantly
higher malaria rates may be essential in an attempt to further
reduce the number of cases and approach elimination. In such
a context, the aid of reliable diagnosis with robust tools and
radical treatment is critical in the attempt to reduce the reser-
voirs of infection and should always be promoted, particularly
in areas undergoing malaria pre-elimination and elimination.
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