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Abstract
We studied the prevalence and genetic diversity of malaria parasites in the poorly investigated spotless starling (Sturnus unicolor)
breeding in central Spain, aiming to describe the phylogenetic relationships among them and with other haemosporidians
infecting the genus Sturnus. A total of 180 nestlings and 180 adult individuals from four different breeding seasons were screened
for haemosporidian parasites using a nested PCR approach for the genera Plasmodium andHaemoproteus. Although the malaria
prevalence ranged between years, the overall prevalence was 6.94%. Adults had a higher prevalence than chicks: 12.77 vs.
1.11%, respectively. We molecularly characterized avian malaria isolated in peripheral blood samples taken from malaria-
infected individuals. Sequence analyses revealed four unique Plasmodium lineages of avian malaria (STURUNI01,
STURUNI02, SYAT05, SGS1) in our spotless starling population. The phylogenetic analysis showed a well-supported clade
comprised by STURUNI01, STURUNI02, and SYAT05. The most common lineage (SYAT05) has been previously found in 26
other avian host species, including populations of spotless starling in Portugal. Because this sedentary species is widely distrib-
uted throughout the Iberian Peninsula, we suggest that the local transmission of these lineages might place migratory birds at
infection risk.
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Introduction

Over the last two decades, the role of host–parasite interac-
tions has received great attention not only from the World

Health Organization (Loy et al. 2016) but also from evolution-
ary ecologists and wildlife conservationists (Bensch et al.
2009; Atkinson et al. 2014). Malaria in mammals is a well-
known example (especially in humans). However, birds and
reptiles are also the targets of this globally widespread disease
(Levine 1988). Avian malaria is an insect-borne disease in-
duced by many different lineages of haemosporidians
(Phylum Apicomplexa, order Haemosporida) of the genera
Haemoproteus, Plasmodium, and Leucocytozoon (Atkinson
and van Riper 1991; Martinsen et al. 2008). The presence of
these protozoan blood parasites in birds is very common, and
it is estimated that around 68% of all bird species are suscep-
tible to malaria (Atkinson et al. 2000; Valkiūnas et al. 2000).
Haemosporidians affect most investigated bird species, both
wild and domestic (Valkiūnas 2005). In those wild avian pop-
ulations where malaria is common and the host parasites have
co-evolved, it is difficult to assess the role of avian malaria in
population dynamics. However, several studies have shown
that avian malaria can have a negative impact on host fitness
components (Atkinson and van Riper 1991; Sol et al. 2003;
Marzal et al. 2005; Knowles et al. 2010; Palinauskas et al.
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2011; Asghar et al. 2015). Host parasite infection may be
influenced by host population density (Keymer and
Anderson 1979; Isaksson et al. 2013), as well as by other host
demographic parameters such as sex (McCurdy et al. 1998;
Asghar et al. 2011; Calero-Riestra and García 2016) and age
(Wilson et al. 2001; Deviche et al. 2005; Marzal et al. 2016).
These two factors could lead to differences in reproductive
investment, behaviour and immune capacities between indi-
viduals (Sheldon and Verhulst 1996).

Historically, avian haemosporidian species have been clas-
sified on the basis of their host species and the morphological
characteristics of their gametocytes observed trough an optical
microscope. In this regard, a recent study has suggested that
there are approximately 250 morphospecies of avian haemo-
sporidians (Valkiūnas et al. 2014). However, thanks to the
development of molecular tools, such as PCR protocols based
on the amplification and sequencing of a fragment of the cy-
tochrome b gene of parasites, molecular studies have identi-
fied and recorded over 2000 unique genetic haplotypes of
avian malaria (Bensch et al. 2009; Outlaw and Ricklefs
2014; Clark et al. 2014). Furthermore, it has been found that
different lineages could co-infect the same host individual
(Pérez-Tris and Bensch 2005; Marzal et al. 2008) and that
one single lineage can frequently infect a wide range of hosts
(Waldenström et al. 2002; Pérez-Tris et al. 2007; Ricklefs et al.
2014). For example, Plasmodium relictum (SGS1) has been
found in 32 different passerine families (Valkiūnas 2005;
Bensch et al. 2009). Thus, the application of these state-of-
the-art techniques has made possible the discovery of a wide
diversity of parasites within the traditional morphospecies
(Bensch et al. 2009). Currently, bird–haemosporidian interac-
tions have become one of the best known host–parasite sys-
tems in the field of evolutionary ecology (Arriero and Møller
2008; Garamszegi and Møller 2012; Dodge et al. 2013).
However, there are still significant unresolved taxonomic is-
sues that limit the study of the complex multiple-parasite/mul-
tiple-host systems (Walther et al. 2016).

Numerous studies have focused on the study of avian hae-
mosporidian diversity in passerines (Valkiūnas 2005), al-
though not all species have received the same attention within
each family or genus. For example, starlings and mynas of the
genera Sturnus and Acridotheres (family Sturnidae; Zuccon
et al. 2008) show a great difference in the variety of lineages
described, where the CommonMyna (Sturnus tristis, formerly
Acridotheres tristis) have greater diversity of malaria haplo-
types than starlings (MalAvi Database, Bensch et al. 2009).
This may be related to a possible higher resistance to malaria
in starlings, as shown by experimental studies (Palinauskas
et al. 2011; Dimitrov et al. 2015) or, alternatively, by a re-
search bias to mynas due to their popularity as pets in some
regions. In fact, the Common Myna has been declared one of
the world’s 100 worst invasive alien species by the
International Union for the Conservation of Nature (IUCN)

(Lowe et al. 2004). Studies conducted in this species have
identified up to 12 different lineages of avian haemosporidians
(Clark et al. 2015; Beadell et al. 2006; Ishtiaq et al. 2007;
Martinsen et al. 2008), while the MalAvi database (version
2.3.3 November 2017; Bensch et al. 2009) shows only 9 dif-
ferent lineages for 4 out of the 12 recognized species of star-
lings (Craig and Feare 2009).

Some lineages of Plasmodium (such as GRW4 and OZ14)
or Haemoproteus (hLAMPUR01) have been recorded in the
common starling Sturnus vulgaris (Beadell et al. 2006; R.E.
Ricklefs, personal observation in Matthews et al. 2016;
Valkiūnas et al. 2014; respectively). Here, we report the results
of a molecular characterization of avian malaria parasites in its
sister species (Zuccon et al. 2008), the spotless starling
(S. unicolor), a passerine widely distributed throughout one
of the most important passages of migratory birds between
Europe and Africa. Previous information regarding haemo-
sporidians in this species is scarce and relatively recent
(Drovetski et al. 2014; Mata et al. 2015; Muriel et al. 2017).
The aim of this descriptive and PCR-based study is twofold.
On the one hand, we aim to document the molecular identity
of blood parasites infecting a Spanish colony of spotless star-
lings throughout different years, thereby broadening our
knowledge of the diversity of haemosporidian lineages and
their phylogenetic relationships in this globally distributed
genus. On the other hand, we present an analysis of prevalence
of these parasites, examining differences in relation to sex and
age that may provide information about patterns of transmis-
sion and host resistance.

Materials and methods

Study area and species

This study was conducted in four different breeding seasons
(2007, 2011, 2012, 2013) in a nest box population of spotless
starlings (Sturnus unicolor) located in central Spain (Soto del
Real, Madrid, ca. 40° 45′ N, 3° 48′ W, 920–940 m above sea
level). The study area is covered by a deciduous woodland of
oak (Quercus pyrenaica) and ash (Fraxinus angustifolius)
with abundant open areas used by grazing cattle. It exhibits
a continental Mediterranean climate [Köppen–Geiger climate
classification: Csb category (reviewed in Peel et al. 2007)]
with hot, dry summers. The spotless starling is a relatively
long-lived and colonial passerine species that exhibits a facul-
tatively polygynous breeding system (Moreno et al. 1999;
Veiga 2002). This species shows sexually dimorphic charac-
ters (Cordero et al. 2001; Aparicio et al. 2001), and is closely
related to the common starling (Sturnus vulgaris) (Zuccon
et al. 2008). The spotless starling is mainly sedentary and
restricted to Iberia, south-eastern France, the islands of
Sicily, Sardinia and Corsica and north-west Africa (Craig
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and Feare 2009). Females can lay up to two clutches per sea-
son in our study area; the first is started in early April, and the
second around the end of May (Salaberria et al. 2014; Muriel
et al. 2015). Modal clutch size is five eggs (López-Rull et al.
2007), and fledglings leave the nest around 22 days of age
(Cramp 1998).

Field sampling

We caught male and female starlings by traps placed inside
nest boxes during the pre-laying period in the 4 years of study
(from early March until the first egg of the colony was laid,
usually in early April). Those new recruits that had not been
marked in previous years were individually marked with a
metal ring. From every individual captured, a blood sample
was collected from the brachial vein and stored in absolute
ethanol at ambient temperature during fieldwork, and then at
− 20 °C until molecular analyses. In 2007, we randomly se-
lected 60 adult individuals (30 males and 30 females) to test
for the presence of haemosporidian parasites in the circulating
blood. From 30 nest boxes, we also took blood samples from
two random nestlings (14 days old) per brood, which were
processed in the same way in order to determine the preva-
lence of these parasites in the early stages of development
(n = 60). During 2007, sampling was evenly distributed be-
tween the two breeding attempts, in order to cover the entire
breeding season. In addition, and following the same sampling
protocol, we randomly selected 40 nestlings and 40 adult in-
dividuals (20 males and 20 females) from 2011, 2012 and
2013 to achieve the figure of 240 individuals, although adults
were only sampled during the pre-laying period. All sampled
birds (total sample size = 360 individuals) were captured and
handled with the corresponding permissions and in compli-
ance with the requirements of both regional and Spanish
authorities.

Molecular parasite screening

Parasite infections were detected in blood samples using mo-
lecular methods (Hellgren et al. 2004; Waldenström et al.
2004). Genomic DNA from avian blood samples was extract-
ed in the laboratory using a standard ammonium acetate pro-
tocol (Green et al. 2012). The quality and suitability for PCR
analysis of extracted DNAwas examined by 1% agarose gel
electrophoresis and ethidium bromide staining, and the con-
centrations were evaluated by optical density at 260 nm
(NanoDrop 1000 Spectrophotometers, Thermo Scientific
Inc., Waltham, MA). After quantification, extracted DNA
was diluted to a standard working concentration of 25 ng/μl.
To detect haemosporidian parasites, we used a set of comple-
mentary PCRmethods targeted to amplify a 479-bp-long frag-
ment of the mitochondrial cytochrome b gene of avian
Haemoproteus and Plasmodium following a modification of

the nested PCR protocol developed by Waldenström et al.
(2004). We used the nested PCR approach of Hellgren et al.
(2004), with an initial amplification of a 617-bp-long frag-
ment common for both genera, with a subsequent nested
PCR using combinations of primers from Bensch et al.
(2000) and Hellgren et al. (2004). The amplification was eval-
uated by running 2.5 μl of the final PCR on a 2% agarose gel
stained with ethidium bromide under UV light, looking for
bands of the appropriate size. We used negative controls
(using ddH2O instead of genomic DNA as template) and pos-
itive controls (using DNA from an individual with known
malarial infections) to ascertain that the outcome of each
PCR run was not affected by contamination.

Thirteen out of the 17 positive samples from 2007 could
not be considered for molecular sequencing analysis because
of inadequate storage conditions after PCR amplification, and
only 4 samples had DNA of enough quality after storage to be
sequenced (2 male and 2 female individuals). However, all
positive samples from 2011 to 2013 were considered in the
sequencing analyses. PCR products were purified with the
MSB® Spin PCRapace Clean-Up Kit (Stratec, Birkenfeld,
Germany). After purification, fragments of samples from
2007 were bidirectionally sequenced on an ABI 3730 genetic
analyser (provided by the Gene Pool Sequencing facility,
University of Edinburgh), while those fragments from 2011
to 2013 were sequenced with the forward primers and re-
solved on an ABI 3130 genetic analyser (provided by the
Bioscience Applied Techniques facility, SAIUEx). We edited
and aligned sequences using the program BioEdit (Hall 1999),
and we used a sequence divergence of at least one nucleotide
to define lineages (Waldenström et al. 2002).Mixed infections
were recognized by the presence of double peaks on the elec-
tropherograms (Pérez-Tris and Bensch 2005).

Cloning of multiple infections

We examined sequences showing double peaks for multiple
infections by cloning and sequencing (Pérez-Tris and Bensch
2005). Cloning was performed using the pGEM®-T Easy
Vector System (Promega) according to the manufacturer’s
protocol. Ligation reactions were set up using purified PCR
products, and cultures of transformed high-efficiency compe-
tent cells were plated onto LB/ampicillin/IPTG/X-Gal plates.
Bacterial transformations were carried out using Escherichia
coli DH5α. Plasmid DNA was isolated and purified using
QIAprep® Spin Miniprep kit (Qiagen) according to the man-
ufacturer’s instructions. We sequenced using the universal
primers M13F and M13R three clones from each sample for
which we observed co-infections. The identities of the para-
sites involved were assessed by comparing the double peak
patterns with previously known sequences of avian parasite
haplotypes obtained from MalAvi database (Bensch et al.
2009) and GenBank. The new lineages were coded following
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the nomenclature of the MalAvi database (Bensch et al. 2009)
and deposited in GenBank.

Phylogenetic analyses

For the molecular approach, we analysed lineages of
Plasmodium sp. and Haemoproteus sp. known to infect the
genus Sturnus. We used Malavi database for obtaining the
sequences of the lineages of malaria parasites that are known
to infect the species of the genus Sturnus (Bensch et al. 2009).
A cytochrome b sequence from Theileria annulata
(KF732030.1) was used as outgroup. Phylogenetic relation-
ships were evaluated using samples for which we had at least
481 bp of cytochrome b gene. Phylogenetic analyses were
performed using Bayesian inference (BI) implemented in
MrBayes v. 3.2 (Ronquist et al. 2012). The Akaike informa-
tion criterion (Akaike 1973) implemented in jModeltest
(Posada 2008) was used to determine the evolutionary model
that best fit the data. In this case, GTR+I+G model was select-
ed (R (a) [AC] = 1.0000, R(b) [AG] = 367.325, R(c) [AT] =
1221.5, R(d) [CG] = 332.73, R(e) [CT] = 7235.9, R(f) [GT] =
1.0000, p-inv = 0.3780). Bayesian inference was performed
using two independent runs of four Markov Monte Carlo
coupled chains (MCMC) of 5 × 106 generations each to esti-
mate the posterior probability distribution. Topologies were
sampled every 100 generations, and a majority rule consensus
tree was estimated after discarding the first 10% of genera-
tions as burn-in. The robustness of the clades was assessed
using Bayesian posterior probabilities.

Results and discussion

Parasite prevalence

The spotless starling is a passerine with a more restricted dis-
tribution than the common starling (Craig and Feare 2009), so
it has received comparatively less attention in parasitological
studies. Some previous information suggests that common
starlings may be infected by avian malaria (Rothschild and
Clay 1953; Janovy 1966; Martinsen et al. 2007; Valkiunas
et al. 2014). However, this information is scarce and relatively
recent for the non-migratory spotless starling (Drovetski et al.
2014; Mata et al. 2015; Muriel et al. 2017). Although the
colonial lifestyle of spotless starlings may be taken to suggest
a higher prevalence derived from a greater attraction of
ornitophilic mosquitoes (Ventim et al. 2012), our population
showed a relatively low malaria prevalence (Plasmodium and
Haemoproteus combined), with an overall prevalence of
6.94% (N = 360). This low prevalence is likely associatedwith
a reduction in transmission rates due to the scarcity of suitable
vectors (Tella et al. 1999; Sol et al. 2000; Ortego and Espada
2007) or to variation in mosquito-feeding preferences

(Martínez-de la Puente et al. 2015a). For example, it has been
shown that some vectors, such as the mosquito Culex pipiens,
have a high preference for blackbirds and magpies but signif-
icantly avoid rock doves and common starlings (Rizzoli et al.
2015). Since the spotless starling is a sedentary species, the
infection most likely takes place locally or within a restricted
regional range. Additionally, although we do not know the
degree of virulence of lineages that we found, weaker, infected
individuals could increase their mortality rate during the acute
phase of the disease, leading to an underestimation of their
prevalence during the breeding season (Bensch et al. 2007).
Because the statistical power was reduced due to this low
prevalence (the statistical design contained too many zero
counts), we explored parasite distribution between breading
seasons, breeding attempts, age classes and sexes using chi-
squared tests for associations between each factor and infec-
tion status. In line with previous evidence showing that the
prevalence of vector-borne diseases (i.e. malaria) is particular-
ly responsive to yearly changes in environmental factors
(Githeko et al. 2000), we found a strong inter-annual variation
in haemosporidian infection in common starlings (χ2 = 18.13,
P < 0.001; see Table 1 for prevalence data). These differences
could be explained by annual variations in environmental fac-
tors such as temperature or rainfall that can affect the abun-
dance of insect vectors and therefore the spread of the infec-
tious diseases (Higgs and Beaty 2005). Similarly, previous
studies have also shown between year variations in avian

Table 1 Prevalence of Plasmodium/Haemoproteus sp. infection in
adult and nestling spotless starlings in four different breeding seasons
(2007, 2011, 2012 and 2013) in Soto del Real, Madrid

Breeding season Infection status Adults Nestlings Total

Male Female

2007 Infected 5 10 2 17

Uninfected 25 20 58 103

Total (n) 30 30 60 120

Prevalence (%) 16.67 33.33 3.33 14.17

2011 Infected 0 2 0 2

Uninfected 20 18 40 78

Total (n) 20 20 40 80

Prevalence (%) 0 10 0 1.66

2012 Infected 3 3 0 6

Uninfected 17 17 40 74

Total (n) 20 20 40 80

Prevalence (%) 15 15 0 5

2013 Infected 0 0 0 0

Uninfected 20 20 40 80

Total (n) 20 20 40 80

Prevalence (%) 0 0 0 0
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haemosporidian prevalence, suggesting that extrinsic parame-
ters such as environmental conditions affecting vector distri-
bution may explain such fluctuations (Bensch et al. 2007;
Ganser et al. 2016; Wilkinson et al. 2016).

Malaria prevalence in the spotless starling population did
not show significant differences between first and second
broods in 2007 (χ2 = 1.28, P = 0.256). Thus, in the remainder
analyses, we pooled all data without considering brood order.
We found that the overall malaria prevalence in adults was
higher than in nestlings (χ2 = 18.95, P < 0.001). In fact, only
two out of a total of 180 chicks showed malarial infection
(1.11%), whereas in the case of adults, the proportion was
much larger (23 out of 180, 12.77%). We propose several
alternative hypotheses to explain these differences. First, once
infected with haemosporidians, birds can maintain the infec-
tion for years (Valkiūnas 2005). Thus, adult usually have
greater prevalence of infections than younger individuals be-
cause of their longer period of contact with vectors and hence
greater chances to be infected. Second, vectors may not be
able to infect nestlings during their stay in the nest, and active
transmission often occurs after they leave the nest (Valkiūnas
2005). Third, although malaria infection has been detected in
chicks from different bird species (Calero-Riestra and García
2016), the prepatent period (the period between infection with
a parasite and the parasite detection in the blood stream) is
usually longer than 2 weeks for Haemoproteus and
Plasmodium species (Valkiūnas 2005). Therefore, although
nestlings could already be infected in their nests, we would
often fail to detect the malaria infection in nestlings of 14 days
old because the disease has not yet reached the bloodstream at
the time of sampling (Cosgrove et al. 2006, but see Van Oers
et al. 2010). In the case of adults, there were no significant
differences in the extent of parasitism between males and fe-
males (χ2 = 2.27, P = 0.131; see Table 1 for prevalence), al-
though females tended to have a higher parasitemia than
males. Similar results have been reported in other species
(i.e. Bentz et al. 2006; Asghar et al. 2011), and it has been
suggested that females may be the more parasitized gender
due to the higher physiological costs of reproduction (but
see Calero-Riestra and García 2016). We did not sex nestlings
given their low malaria prevalence.

Despite these low overall prevalence results, the spotless
starling could be a key local reservoir of avian malaria infec-
tions because this species is considered a common target for
haemosporidian vectors as suggested by the presence of the
P_SYAT05 lineage in mosquito’s salivary glands in the
Iberian Peninsula (Ventim et al. 2012), and hence could spill
over the infection to other species. Nonetheless, to be consid-
ered as a reservoir host species, haemosporidian gametocytes
(parasite forms that are capable of transmission from bird
hosts to mosquito vectors, Valkiūnas 2005) should be present
in the blood of spotless starlings, as it was the case in hum-
mingbirds as key reservoir host species for Haemoproteus
witti (Moens et al. 2016). Unfortunately, in the present study,
we did not screen blood smears, and thus, we could not assess
the presence of haemosporidian gametocytes in the blood
stream of starlings. However, a pilot unpublished study
(Muriel, unpublished data) has microscopically identified mi-
crogametocytes and macrogametocytes in spotless starlings,
suggesting that this bird species may indeed act as a potential
reservoir host.

Parasite diversity

In the present study, 4 out of the 17 malaria-positive samples
from 2007 and all those from 2011 to 2013 were used to
sequence blood parasites. We compared the sequences obtain-
ed from our samples with homologous sequences of other
avian parasite haplotypes obtained from MalAvi database
(version 2.3.3 November 2017; Bensch et al. 2009) and
GenBank. Four different parasite haplotypes of Plasmodium
were found (Table 2, Fig. 1). Interestingly, two of them had
not been previously described (P_STURUNI01 and
P_STURUNI02). Nevertheless, P_SYAT05 and P_SGS1
had already been found infecting 18 and 71 different genera
of passerines, respectively (Bensch et al. 2009). Both lineages
were also associated to the same area in another study carried
out in Portugal (Ventim et al. 2012). Two out of four se-
quenced samples from 2007 had mixed infections, in which
P_SYAT05 was always present. Even though the closest phy-
logenetic relation of the spotless starling is the common star-
ling (Zuccon et al. 2006), available data shows that they do not

Table 2 Results of parasite screening, showing the number of infections of each parasite cytochrome b haplotype in each breeding season for males and
females in adult spotless starlings

Parasite genus Haplotype GenBank accession no. 2007 2011 2012 2013

Male Female Male Female Male Female Male Female

Plasmodium P_SYAT05 DQ847271 2 2 – 2 1 3 – –

Plasmodium P_SGS1 AF495571 – – – – 1 – – –

Plasmodium P_STURUNI01 JQ671031 – 1 – – – – – –

Plasmodium P_STURUNI02 JQ671032 1 – – – 1 – – –
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share malaria lineages (Fig. 1). Lineages found in the common
starling such as GRW04 (Beadell et al. 2006), TUMIG05
(Martinsen et al. 2007), and LAMPUR01 (Valkiūnas et al.
2014) do not match those found in the spotless starling
(Drovetski et al. 2014; Mata et al. 2015; this study). The host
generalist P_SYAT05 lineage has also been detected in the
blood meal of Culex theileri, which had been taken from spot-
less starling donors (Ventim et al. 2012). Subsequent studies
described the presence of P_SYAT05 in wild adult spotless
starlings from Portugal (Drovetski et al. 2014; Mata et al.
2015). On the other hand, P_SGS1 is shared with other spe-
cies within the genus Sturnus, such as Sturnus tristis and
Sturnus cineraceus (Beadell et al. 2006; Inumarua et al.
2017). It is known that the P. relictum lineage SGS1 is wide-
spread and actively transmitted on every continent except
Antarctica (Marzal et al. 2011; Howe et al. 2012; Marzal
et al. 2015), although the common starling seems to be resis-
tant to this lineage (Palinauskas et al. 2008). As far as we
know, this parasite species had not been previously reported
infecting S. unicolor (MalAvi database version 2.3.3
November 2017; Bensch et al. 2009). We did not verify the
presence of parasites in vectors, but the lineages described in
this study might have been potentially transmitted by the
Aedes mosquitoes, since we have documented blood sucking
by this species on day 6 posthatch on spotless starling nes-
tlings (see Fig. 2). In fact, a study has shown that P_SYAT05 is
transmitted by Aedes albopictus (Martínez-de la Puente et al.
2015b). However, further studies are required to analyse the
competence of Aedes species as vectors in the transmission of
these malaria lineages. From the point of view of the vector,
the prevalence of the different lineages could be conditioned
by the differences in distribution patterns of mosquitoes

among sites and its specificity. In addition, the overall preva-
lence could be conditioned not only by the virulence of each
lineage (Read and Taylor 2001) but also by the presence of
multiple infections (Frank 1996; Bensch et al. 2004; Marzal
et al. 2008).

In the present study, we analysed differences in parasite
prevalence between breeding seasons, ages and sexes infect-
ing spotless starlings, as well as the molecular identity of its
avian haemosporidians (Plasmodium and Haemoproteus gen-
era). The presence of parasites in the bloodstream was not
conditioned by the breeding attempt or the gender of adult
hosts, but we found differences between years and age classes.
Thus, malaria prevalence had strong inter-annual variability,
and it was much lower in nestlings than adults. Despite the
overall low prevalence found in this population, we observed
that the parasite diversity was relatively high after sequencing
up to four different lineages of malaria parasites from 12

Fig. 1 Phylogenetic tree of
lineages obtained in this study
(coloured boxes) combined with
lineages from MalAvi database
(version 2.3.3 November 2017;
Bensch et al. 2009). Phylogenetic
tree rendered by Bayesian
inference of the cytochrome b
gene. Numbers on branches
indicate posterior probability
values (values below 0.60 are
indicated as −)

Fig. 2 Aedesmosquito blood sucking on spotless starling nestling on day
6 posthatch. The arrow tip points to the location of the vector. Picture
credit: Jaime Muriel
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infected starlings. The phylogenetic analysis using a Bayesian
inference revealed a well-supported monophyletic group
formed by STURUNI01, STURUNI02 and SYAT05 (Fig.
1). In addition, we report for the first time the presence of
P. relictum (lineage SGS1) in the spotless starling, despite
reported resistance shown by its sister species, the common
starling. This work highlights the importance of this species as
a reservoir of different malaria lineages, which could have
consequences in the transmission of the disease to other avian
species. Although the prevalence is low in the spotless star-
ling, this species is very abundant and widely distributed in the
Iberian Peninsula, so it could be considered a local reservoir of
avian malaria. Numerous migratory birds that use this route in
their way to or from Africa could be at infection risk, espe-
cially for host-generalized lineages of avian Haemosporidia
(Mata et al. 2015), such as SYAT05 and SGS1.
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