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Abstract
Amoebophagous fungi are represented in all fungal groups: Basidiomycota, Ascomycota, Zygomycota, and Chytridiomycota.
The amoebophagous fungi, within the zygomycota (Zoopagales, Zoopagomycota), mainly affect naked amoebae as ectoparasites
or endoparasites. It is rather difficult to isolate members of the Zoopagales, because of their parasitic lifestyle, and to bring them
into culture. Consequently, gene sequences of this group are undersampled, and its species composition and phylogeny are
relatively unknown. In the present study, we were able to isolate amoebophagous fungi together with their amoeba hosts from
various habitats (moss, pond, bark, and soil). Altogether, four fungal strains belonging to the genera Acaulopage and Stylopage
plus one unidentified isolate were detected. Sequences of the 18S rDNA and the complete ITS region and partial 28S (LSU)
rDNAwere generated. Subsequent phylogenetic analyses showed that all new isolates diverge at one branch together with two
environmental clonal sequences within the Zoopagomycota. Here, we provide the first molecular characterization of the genus
Stylopage. Stylopage is closely related to the genus Acaulopage. In addition, taxonomy and phylogeny of amoebophagous fungi
and their ecological importance are reviewed based on new sequence data, which includes environmental clonal sequences.
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Introduction

Fungi are important players in the cycles of matter because of
their ability to mineralize organic material. They live mostly
as saprotrophs on dead and decaying living matter, but also in
mutualistic symbiosis with plants and animals, or as parasites
of various organisms. The carnivorous or predaceous fungi are

a peculiar and heterogeneous group of parasitic fungi. These
fungi have developed trapping structures, such as adhesive
spores, hyphae, or rings that may be constricting or non-con-
stricting, to capture soil-inhabiting and water-inhabiting mi-
croinvertebrates like nematodes and rotifers, as well as testate
and naked free-living amoebae (Drechsler 1941; Duddington
1956, 1973).

The nematode-trapping fungi are the best studied, because

of their value as potential biocontrol agents for nematode dis-

eases in plants and animals (Braga and Araújo 2014; Li et al.

2015). Many of these fungi belong to the Orbiliomycetes

(Ascomycota) (Yang et al. 2012; Jiang et al. 2017).
Little is known about the amoebophagous fungi, by con-

trast, although their initial description dates back to the mid-
late nineteenth century (Drechsler 1941; Duddington 1956).
Various anamorphic genera assumedly belonging to the
Ascomycota were described by Drechsler as predators of tes-
tate euglyphid (Cercozoa) and arcellinid (Amoebozoa) amoe-
bae, e.g., Pedilospora dactylopaga (Drechsler 1934),
Tridentaria spp. (Drechsler 1937, 1961, 1964), and
Triposporina (Drechsler 1961). Parasites of naked amoebae
were also reported, e.g., the basidiomycetes Pagidospora
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amoebophila (Drechsler 1960) and Tulasnella zooctonia
(Drechsler 1969). In addition, some Basidiomycota and
Ascomycota dimorphic fungi (i.e., growing either as yeast or
as mycelium) are lethal to amoebae once ingested
(Steenbergen et al. 2001, 2004; Bidochka et al. 2010).
Zygomycetous fungi also comprise several amoebophagous
as well as zoophagous members (Drechsler 1941;
Duddington 1973). Other fungi known to parasitize amoebae
are the chytrids, e.g., Rhizophydium amoebae and a few other
species (Chytridiomycota, Rhyzophidiales) (Karling 1946),
Nucleophaga and Sphaerita (Dangeard 1895), and
Paramicrosporidium (Rozellomycota, Paramicrosporidiales)
(Corsaro et al. 2014a). Nucleophaga, formerly included in
the Chytridiales, was recently shown to belong to the rozellids
(Rozellomycota, Nucleophagales) (Corsaro et al. 2014b).
Rozellids form an early chytrid lineage comprising endopara-
sites of water molds (Rozella) as well as of various amoebae
(Yajima et al. 2013; Corsaro et al. 2014a, 2014b). The
Microsporidia have evolved from the rozellids (James et al.
2013; Corsaro et al. 2014a, 2016).

Zygomycotans are non-flagellated filamentous fungi charac-
terized by a peculiar sexual meiospore, called a zygospore,
derived from the fusion of conjugating hyphae. They represent
the first terrestrial radiation of the fungal kingdom,
intermediated therefore between the early diverging and mostly
aquatic flagellated chytrids (Rozellomycota, Chytridiomycota,
Blastocladiomycota) and the non-coenocytic multicellular
Dikarya (Ascomycota, Basidiomycota) with complex fruiting
bodies. Molecular phylogenetic studies indicate that
zygomycotans might actually comprise distinct paraphyletic
lineages (Tanabe et al. 2005; White et al. 2006; Liu et al.
2009). Recently, the group was reorganized into two phyla,
the Mucoromycota and Zoopagomycota (Spatafora et al.
2016). While the Mucoromycota are sister to the Dikarya and
form symbiotic associations with plants, the Zoopagomycota
emerge as the first lineage of terrestrial fungi and interact with
other fungi, animals, and amoebae. All the amoebophagous
zygomycotans belong to the Zoopagales, the sole order in the
subphylum Zoopagomycotina (Zoopagomycota). Zoopagales
include ectoparasitic and endoparasitic fungi, such as
Amoebophilus and Cochlonema that mainly attack naked
amoebae . Dangeard (1910) proposed the genus
Amoebophilus, by recognizing the misidentified uroidal struc-
tures described in some amoebae such as Ouramoeba (Leidy
1878) and Longicauda (Korotneff, 1879) as ectoparasitic fun-
gal infections. The Zoopagales consist of obligate parasites,
including those of fungi and invertebrates, which renders their
isolation and culture complicated, explaining also in part the
low number of species studied by biomolecular methods. By
contrast, its sister group, the Kickxellomycotina, is well sam-
pled (Tretter et al. 2014; Spatafora et al. 2016). The traditional
phenotypic-based classification of the Zoopagales has been
challenged by molecular studies (Tanabe et al. 2000; Köhsler

et al. 2007; Michel et al. 2015). The data set includes however
only 8 out of 23 described genera currently ascribed to the order
(Benny et al. 2016).

Free-living amoebae are a polyphyletic assemblage of mi-
crobial eukaryotes, mostly belonging to the phylum
Amoeobozoa. They constitute an ecologically and morpho-
logically very rich group of protists, abundant in all terrestrial
and aquatic habitats and playing an important role as predators
in controlling microbial and small invertebrate populations
(Rodríguez-Zaragoza 1994; Yeates and Foissner 1995). The
vegetative stage (trophozoite) moves and feeds by cytoplas-
mic extrusions (pseudopods), and it can be naked (naked
amoebae) or shelled (testate amoebae). Additional stages
may be present such as resistant cysts or flagellate forms.
Some naked species, e.g., Acanthamoeba (Amoebozoa:
Discosea) and Naegleria (Excavata: Heterolobosea), are im-
portant pathogens for vertebrates (Visvesvara et al. 2007),
while testate amoebae are useful bioindicators in ecology
and paleoecology (Mitchell et al. 2008).

In our study, we performed 18S rDNA characterization of
four additional amoebophagous zoopagalean fungi, as well as
molecular phylogenetic analyses that allowed us to identify
several uncultured and unidentified sequences as belonging
to the Zoopagales. We also identified the amoebal preys, usu-
ally poorly documented in the mycological literature.

Materials and methods

Samples

Fungi and amoebae investigated herein derived from mud/
decaying plant material within aquatic habitats or soil sam-
ples. They were obtained after repeated co-cultivations on
1.5% non-nutrient agar (NNA) plates with addition of
0.1% sea salt covered with Enterobacter cloacae or
Escherichia coli, incubated at room temperature as previ-
ously described (Köhsler et al. 2007; Michel et al. 2014).
Amoebophagous fungi are rather rarely found in amoebae;
their percentage in our samples was below 5%. Four fungal
strains were initially identified morphologically (Drechsler
1935, 1942; Dayal 1973) as Acaulopage tetraceros, strain
At-LEMO, isolated in August 2007 from a moss sampled
at Staffanstorp (Scania) in the south of Sweden, preying on
an Acanthamoeba sp. genotype T11 (Amoebozoa,
Centramoebida), and Acaulopage dichotoma, strain Ad-
Rom, isolated in February 2015 from a pond located in
Heimbach-Weis (Neuwied District, Rhineland-Palatinate),
Germany, and strain Ad-Syc, isolated in September 2013
from the bark of a sycamore tree at Andernach (Mayen-
Koblenz District, Rhineland-Palatinate), Southwestern
Germany. Strain Ad-Rom was initially isolated with a
Vannella sp. strain Vs-ash (Amoebozoa, Vannellida) then
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t r ans fe r red to p la tes wi th Stenamoeba sp . SP1
(Amoebozoa, Thecamoebida). Strain Ad-Syc was isolated
together with a strain of Thecamoeba striata (Amoebozoa,
Thecamoebida). Stylopage araea strain SA-ET was isolat-
ed in July 2011 from a moss sample collected within a
small valley at Engelsbachtal near Rengsdorf (Neuwied
District, Rhineland-Palatinate), Southwestern Germany,
associated with an Acanthamoeba sp. and then transferred
to plates with Stemonitis sp. strain BuP (Amoebozoa,
Mycetozoa). A fifth strain, Ac-zygo, isolated in October
2010 f rom a ga rden so i l a t Nancy (Lor ra ine ) ,
Northeastern France, preying on Acanthamoeba sp. geno-
type T4, was not identified morphologically.

DNA extraction, amplification, and sequencing

Fungal DNA was extracted from high-density growing cul-
tures using a commercial kit (QIAmpDNA, Qiagen), and a
set of eukaryotic primers was used to amplify and to sequence
fragments of the ribosomal RNA unit, i.e., the 18S ribosomal
RNA gene (18S rDNA) and the internal transcribed spacer
(ITS) region (ITS1-5.8S-ITS2) plus partial 28S rDNA (ITS-
LSU) as previously described (Corsaro et al. 2014a; Michel
et al. 2015). The 18S rDNA of the amoebae was obtained in
the same manner, starting from parallel cultures containing
only amoebae. All sequences were deposited in GenBank

and are available under accession numbers KY934455–
KY934460 and KY937193–KY937196.

Molecular phylogeny

For the fungal 18S rDNA phylogeny, representatives of the
main groups of Fungi and relatives were retrieved from
GenBank. Close relatives of the fungal sequences obtained
here were searched via the BLAST server. All sequences
(n = 73) were aligned using MAFFT and manually refined
to exclude ambiguous sites (1259 retained sites) using
BIOEDIT, and maximum likelihood (ML), distance matrix
(neighbor-joining (NJ), Kimura-2P), and maximum parsi-
mony (MP) trees (1000 replicates) were built as described
(Corsaro et al. 2015). Another multiple alignment, includ-
ing sequences (n = 78) from Zoopagomycota only, was
prepared as described above (1289 retained sites). Three
and six partial sequences were added to the fungal and
the zoopagomycotan trees, respectively, without affecting
the overall topology.

Because we obtained also ITS and partial LSU sequences
from four of our strains, a distinct alignment including this
region of the ribosomal operon (ITS-LSU) was prepared
(305 retained sites) by including selected members of the
Zoopagomycota.

Fig. 1 Amoebal predation by
Acaulopage dichotoma (a–d) and
Stylopage araea (e, f). a Hyphal
network of A. dichotoma strain
Ad-Syc growing between
trophozoites of Ripella
platypodia. Hyphae penetrating
within at least three amoebae are
clearly visible. b Strain Ad-Syc
showing typical bifurcated
conidia, one of which is
accidentally located in between
two trophozoites of Thecamoeba
striata. c Trophozoites of Ripella
platypodia invaded by hyphae of
A. dichotoma strain Ad-Rom. d
Bifurcated conidia of strain Ad-
Rom emerging from a network of
hyphae. e Conidia of S. araea
emerging from hyphal network
preying on Vannella miroides
(Van-Aun). f Two conidia (c) and
a zygospore (z) of S. araea. Scale
bars = 20 μm (a–e) and 10 μm (f)
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Results

Morphological features

Amoebophagous fungal strains were successfully cultivat-
ed together with a wide variety of prey amoebae (Table 1)
as previously reported (Michel et al. 2014), in which they
corresponded morphologically to Acaulopage dichotoma
and Stylopage araea. On agar plates covered by amoebae,
both Acaulopage and Stylopage develop a network of
vegetative hyphae that grow between the amoebal tropho-
zoites (Fig. 1). The adhering hyphae attack single tropho-
zoites by penetrating them and developing bush-like
haustoria (Fig. 1a, c, e) causing the final death of the
amoebae. The amoeba cysts are generally more resistant

to predation, but in some occasions, they also may be
penetrated by hyphae, including also very resistant cysts
such as those of Acanthamoeba. This is consistent with
our recent observations (Michel et al. 2014). Production
of conidia (asexual reproduction) is frequently observed
with nearly all amoebae, usually when most of the amoe-
bae are destroyed. Conidia emerge from the hyphal net-
work as typically bifurcated for A. dichotoma (Fig. 1b, d)
and ovoid for S. araea, which also produces zygospores
(sexual reproduction) (Fig. 1e, f).

Almost identical features were exhibited by Acaulopage
tetraceros (Michel et al. 2014, 2015). Whereas Cochlonema
euryblastum forms a coil-shaped thallus in the cytoplasm of
the parasitized amoeba which germinates from a conidium
engulfed by the amoeba itself. Then, the thallus produces

0.04
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Fig. 2 All-fungal 18S rDNAML phylogenetic tree, with the main fungal
phyla indicated in uppercase. The tree is rooted with Nucleariidae (not
shown). The recovered amoebophagous strains in the Zoopagomycotina
are in bold. An amoeba icon marks fungi known to parasitize free-living
amoebae. Note that free-living amoebae may be parasitized also by a few
Chytridiomycota and various filamentous/dimorphic fungi in

Basidiomycota and Ascomycota (not marked in the figure). SLV clones
(Genbank IDs KT072123, KT072099, KT072109). Bootstrap values
(BVs) after 1000 replicates for ML/NJ/MP are indicated at nodes.
Nodes with 100 or > 95% BV support with all methods (filled and open
circles, respectively); node supported but BV< 40% (asterisk); node not
supported (hyphen)
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new hyphae which rupture the pellicule of the amoeba and
form new conidia externally (Köhsler et al. 2007). In the case
ofAmoebophilus simplex, a conidium adheres to the surface of
the amoeba, germinates, and enters the amoebal cytoplasm
forming a globular haustorium. The conidia are produced in
chains, and it is ectoparasitic (Barron 1983; Mrva 2008).

18S rDNA molecular phylogeny

18S rDNA sequences were obtained from strains Ad-Rom,
Ad-Syc, Ac-zygo, and SA-ET but not from At-LEMO. The

18S rDNA fungal tree (Fig. 2) recovered the various
zygomycetous groups as paraphyletic lineages, those now de-
fined as Mucoromycota and Zoopagomycota being sister to
the Dikarya or forming an opposite more basal branch, respec-
tively. This is congruent with previously reported studies
(White et al. 2006; Spatafora et al. 2016). Among the chytrids,
the Blastocladiomycota emerge as sister to the terrestrial fun-
gi, while the Chytridiomycota/Neocallimastigomycota and
Rozellomycota form the two more basal lineages. The puta-
tive Bopisthosporidia,^ that would unite the rozellids and
aphelids, were never recovered, even including several other
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sequences and also Microsporidia, as already shown (Corsaro
et al. 2014a, 2016). Within the Zoopagomycota, the
Zoopagomycotina, that include the sole order Zoopagales,
are sister to the Kickxellomycotina, forming a well-
supported clade, sister to the Entomophthoromycotina.

In order to increase the resolut ion within the
Zoopagales, we built a Zoopagomycota-only 18S tree
(Fig. 3) . Here, the branching pattern within the
Zoopagales is sligthly modified, as the branch leading to
Cochlonema, poorly supported in the all-fungal tree (Fig.
2), is indeed recovered with high support as sister to the
Acaulopage clade, congruent with a recent study (Michel
et al. 2015). The two groups Syncephalis/Thamnocephalis/
Rhopalomyces (STR clade) and Kuzuhaea/Piptocephalis
already identified by Tanabe et al. (2000) are always re-
covered. Their position as sister in the all-fungal tree (Fig.
2) is poorly supported, while their paraphyletic branching
shown in the zoopagomycotan tree (Fig. 3) is stronger.
Interestingly, all-fungal and zoopagomycotan 18S rDNA
trees both recovered Zoophagus as belonging to the
Zoopagales in contrast with previous studies (White et al.
2006; Köhsler et al. 2007; Michel et al. 2015).

The search for additional sequences, and the few species
already available from the Zoopagales, allowed us to identify
environmental clones that could be representative of at least
seven new lineages. Phylogenetic analyses appear to be con-
sistent with the other data available on these sequences.

Stylopage araea strain SA-ET forms a clade with the
rhizosphere clone Amb_18S_749 (92.7% similarity), sister
to the closely related (98.5% similarity) A. dichotoma
strains Ad-Rom and Ad-Syc that cluster robustly together
in both the 18S and ITS trees (Figs. 2, 3, and 4). The
unident i f ied s t ra in Ac-zygo emerges within the
Acaulopage clade and possibly represents a distinct spe-
cies. It clusters with the soil clone WE29_An56. The latter
was misidentified as an uncultured Archaeospora
(Glomeromycotina), whose partial sequence is almost
ident ical (99.4%) to the sequence of our s t ra in
Acaulopage sp. Ac-zygo. The Acaulopage clade is well
supported, with A. tetraceros strain At-Blent (Michel
et al. 2015) as basal lineage. The Acaulopage-Stylopage
clade is sister to the Cochlonema clade.

Cochlonema euryblastum, an endoparasite of the soil
amoeba Thecamoeba quadrilineata, was isolated from an
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eaves gutter (Michel andWylezich 2005; Köhsler et al. 2007).
Cochlonema euryblastum clusters tightly with the clone
AD_S13-47 from activated sludge of municipal sewage in
Japan, and with an assemblage of virtually identical (> 99%)
environmental sequences (SLV clones, n = 39) recovered
from a sulfidic karst spring in Slovenia. Sequence similarities
between the AD_S13-47 and SLV clones are about 91.5%,
and they share with Cochlonema similarities of 89.9 and
88.4–88.9%, respectively.

Recovery of sequences belonging to the putatively
amoebophagous Zoopagales should be expected in environ-
ments rich in amoebae, as the soil/rhizosphere, activated
sludges, and sulfidic karst springs (Engel 2010).

Similarly, in the STR clade, we recovered two clones from
the soil/rhizosphere clustering with Syncephalis and
Thamnocephalis that are both mycoparasites mainly of soil
and plant-associated Mucoromycota. Another clone from
interdital marine sediment clusters with Rhopalomyces and
shares with it high sequence similarity (94.5%). As known
Rhopalomyces species are soil predators of nematodes and
rotifers, this sequence may belong to a new species that preys
upon aquatic invertebrates.

We did not recover environmental clones of the Kuzuhaea/
Piptocephalis clade, an independent lineage of mycoparasites.

Finally, the sequence Stylo-9 from a fungus parasitizing a
nematode clusters with the rotifer parasite Zoophagus
insidians, forming the basal clade of the Zoopagales. This is
congruent with the report that some Zoophagus species prey
on nematodes (Benny et al. 2016). The partial sequence Stylo-
9 of 650 bp shares only 86.7% similarity with Z. insidians;
however, a high genetic diversity in the clade may be expected
as another 400-bp partial sequence (no deposited in GenBank)
of a Zoophagus sp. was reported to share only 91% similarity
with Z. insidians (Pajdak-Stós et al. 2016).

ITS molecular phylogeny

We obtained the ITS (ITS1-5.8S-ITS2) and partial LSU se-
quences of four of our amoebophagous strains, A. dichotoma
strains Ad-Rom and Ad-Syc, A. tetraceros strain At-LEMO,
and Stylopage araea strain SA-ET, and an additional phylo-
genetic tree was build with selected members of the
Zoopagomycota. The ITS-LSU tree topology (Fig. 4) is con-
gruent with that obtained with 18S rDNA sequences,
supporting the close relationship between Acaulopage and
Stylopage, and the sister position of Syncephalis to the
Acaulopage clade. Furthermore, the recovery of the ITS se-
quence of Stylo-9 as the basal branch of the Zoopagales is an
additional proof supporting that Zoophagus belongs to the
group. Indeed, this ITS sequence has been associated with a
fungus infecting a nematode. Therefore, we assume that it
originated from the same parasitic fungus for which also the

18S rDNA sequence is available and forms a very strong clade
with Zoophagus (Figs. 2 and 3).

Discussion

The Zoopagales currently include 23 described genera and more
than 200 species, divided into five families based on morpholog-
ical and ecological criteria (Benny et al. 2016). The
Piptocephalidaceae and Sigmoideomycetaceae are
mycoparasites; the Cochlonemataceae and Helicocephalidaceae
are ectoparasites/endoparasites of free-living amoebae or of mi-
croinvertebrates (nematodes, rotifers), respectively, whereas the
Zoopagaceae include predators of both microinvertebrates and
free-living amoebae.

This historical classification however turned out to be incon-
sistent with the results of the first 18S rDNA-based phylogenetic
study (Tanabe et al. 2000). Indeed, in this study, while
Piptocephalus and Kuzuhaea (Piptocephalidaceae) were found
to be sister groups, the other genus of the family, Syncephalis,
clustered with Thamnocephalis (Sigmoideomycetaceae) and
Rhopalomyces (Helicocephaloidaceae) forming a robust clade.
In addition, Zoophagus (Zoopagaceae) was recovered forming
an independent branch of uncertain position. Subsequent molec-
ular studies showed similar results and provided further support
against the previous classification, by recovering a close relation-
ship betweenCochlonema (Cochlonemataceae) and Acaulopage
(Zoopagaceae) (Köhsler et al. 2007; Michel et al. 2015).

In the present study, we analyzed additional amoebophagous
Zoopagales including, for the first time, a Stylopage isolate and
various environmental sequences. The results of the phylogenetic
analyses presented herein (Fig. 3) suggest that in the
Zoopagomycotina, the amoebophagous taxa have emerged all
on a distinct branch of the Zoopagales after the radiation of the
zoophagous and mycoparasitic lineages. The Zoophagus clade,
which we show here, contrarily to previous studies, as belonging
to the Zoopagales, is the most basal lineage, suggesting that the
ancestral state of the group might have been zooparasitic.

The number of sampled taxa is still too low compared to
the number of known taxa in the Zoopagales. Although there
are now data strongly supporting that the Piptocephalidaceae
include only Kuzuhaea and Piptocephalis, no molecular data
are available for the other five genera of mycoparasites or
zooparasites assumedly close to Thamnocephalis or
Rhopalomyces; these latter appear to be affiliated with
Syncephalis to form an independent STR clade. Moreover,
some amoebophagous genera, such as Cystopage and
Stylopage, also include nematophagous species. Further ef-
forts are therefore needed to obtain sequences of several of
these missing taxa. This will fill possible gaps to better eluci-
date the relationships between the different lineages and to
finally increase our knowledge of the ecology and evolution-
ary history of the group.
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Of the amoebophagous taxa known to date, most prey upon
free-living naked amoebae, mostly Amoebozoa, and a few
species, e.g., of Cochlonema and Zoopage, on euglyphid tes-
tate amoebae (Cercozoa) forming zygospores within the
amoebae’s tests. A unique example is given by Basidiolum
(White 2003), a possible zoopagalean ectoparasite on the
amoeboid Amoebidium (Choanozoa, Ichthyosporea), an
ectocommensal of freshwater arthropods.

Much of the literature on amoebal predatory fungi
dates back to the early twentieth century, especially
Drechsler’s studies, when almost all naked amoebae were
generally assigned to the genus Amoeba , a taxon
representing in reality several distinct genera and families.
Trying to identify some of these amoebae with the current
genera would thus seem rather speculative, but might be
possible in some cases. The current genera Amoeba and
Chaos (Amoebozoa, Tubulinea, Euamoebida) and
Mayorella (Amoebozoa, Discosea, Mayorellida) are prob-
ably the amoebal preys reported by Penard (1902) para-
sitized by caudal fungal chains, that Dangeard (1910)
named Amoebophilus. The prey BPelomyxa vorax^ of
Dangeard was also probably an euamoebid. While in oth-
er studies, Mrva (2008, 2011) found Mayorella spp. par-
asitized by Amoebophilus and was able to identify the
fungus with A. simplex described by Barron (1983) and
also the amoebae previously reported by Barron (1983)
and Leidy (1879) as Mayorella.

It was possible not only to identify the amoebal prey, but
also on various occasions, to analyze the prey spectrum
(Table 1) of the amoebophagous fungi recovered during our
research.Cochlonema euryblastumwas able to parasitize only
strains of Thecamoeba quadrilineata (Michel and Wylezich
2005), whereas A. tetraceros showed the broadest prey spec-
trum by parasitizing various amoebae belonging to distinct
Amoebozoa groups as well as Naegleria and Willaertia
(Heterolobosea) (Michel et al. 2014). The additional
Acaulopage strains reported herein, A. tetraceros At-LEMO
and A. dichotomaAd-Rom and Ad-Syc, also show a relatively
broad prey spectrum that includes Acanthamoeba,
Thecamoeba, Stenamoeba, and Vannella spp. Similarly,
S. araea SA-ET preys upon various strains of distinct geno-
types of Acanthamoeba (T4, T5), the myxomycete Stemonitis,
and the heterolobosean Willaertia magna.

All these amoebae and the different fungi with which they
interact are widespread in various aquatic environments, as
well as in soils and on vegetation. Their diversity and the
complexity of their interactions are however still poorly
known, as highlighted for example in recent studies on soils
(Geisen et al. 2015, 2016). Amoebae may play a significant
role also in aquatic environments. The Zoopagales are not
strictly terrestrial, retaining some features of an aquatic life.
In addition, although some chytrids have been described
(Karling 1946) as parasites of amoebae, probably

Thecamoeba, the true extent of this type of interaction has
not been explored; most studies on chytrid parasitism focus
only on phytoplankton. However, it appears that amoebae
have an important role in the ecology of the Rozellomycota,
as indicated by recently discovered species (Michel et al.
2000, 2009a, 2009b, 2012; Corsaro et al. 2014a, 2014b,
2016; Yajima et al. 2013) as well as by the recovery of other
rozellid phylotypes within various amoebae (unpublished
data).

The food web in water and soil is in reality highly complex
and interwined by two-way functional relationships among
the different groups of organisms. Small invertebrates such
as nematodes, fungi, and protozoa like amoebae can be both
predators and preys of each other. Large amoebae and ciliates
may engulf nematodes and are themselves preyed on by var-
ious microinvertebrates (Sayre 1973; Yeates and Foissner
1995; Yeates et al. 1993). Fungi are attacked by mycophagous
amoebae and nematodes (Old and Darbyshire 1978; Yeates
et al. 1993), and they also trap amoebae, nematodes, and other
small invertebrates (Drechsler 1941; Jiang et al. 2017). Most
amoebae are polyphagous, capable of engulfing by phagocy-
tosis any body of appropriate size. They can therefore feed on
fungal spores and conidia and yeast cells, but not on hyphae.
In some cases however, the potential prey turns out to be a
parasite of the amoeba. This occurs, for example, when the
amoeba ingests the spores or conidia, respectively, of certain
Rozellomycota (e.g., Paramicrosporidium) and Zoopagales
(e.g., Cochlonema) that develop as endoparasites.

The ingestion of spores and conidia with the final death
of the amoeba occurs also in the case of some filamentous/
dimorphic fungi belonging to the Basidiomycota (e.g.,
Cryptococcus) and Ascomycota, especially those from var-
ious orders in the Pezizomycotina (e.g., Histoplasma,
Fusarium, Metarhizium). These fungi are all opportunistic
pathogens of humans and other animals, and their interac-
tions with amoebae resemble those with phagocytic cells of
the immune system, suggesting a possible role of amoebae
in the evolution of fungal virulence (Steenbergen et al.
2001, 2004; Bidochka et al. 2010; Van Waeyenberghe
et al. 2013; Hillmann et al. 2015; Maisonneuve et al.
2016).
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