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Abstract Crimean-Congo hemorrhagic fever virus
(CCHFV) is transmitted to humans mainly through the
bite of infected ticks. In Greece, only one clinical case
has been observed, in 2008, but the seroprevalence in
humans is relatively high (4.2%). To have a first insight
into the circulation of CCHFV in Greece, 2000 ticks col-
lected from livestock during 2012–2014 were tested.
CCHFV was detected in 36 of the 1290 (2.8%) tick pools
(1–5 ticks per pool). Two genetic lineages were identi-
fied: Europe 1 and Europe 2. Most Europe 1 sequences
were obtained from Rhipicephalus sanguineus sensu lato
ticks, while most Europe 2 sequences were recovered
from Rhipicephalus bursa ticks. The number of collected
Hyalomma marginatum ticks (the principal vector of
CCHFV) was low (0.5% of ticks) and all were CCHFV
negative. Since it is not known how efficient ticks of the
Rhipicephalus genus are as vectors of the virus, labora-
tory studies will be required to explore the role of
Rhipicephalus spp. ticks in CCHFV maintenance and
transmission.
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Introduction

Crimean-Congo hemorrhagic fever virus (CCHFV) is an
orthonairovirus (family Nairoviridae) which causes a poten-
tially severe febrile disease (CCHF) in humans, with fatality
rates up to 40% (World Health Organization, 2013). The virus
circulates in nature in an enzootic tick-vertebrate-tick cycle,
and it is transmitted to humans by bite of infected ixodid ticks
(mainly of the genus Hyalomma), or by direct contact with
blood or tissues from viremic patients or animals (Bente et al.
2013). Ticks are vectors and reservoirs of the virus, which is
maintained in ticks by transovarial, transstadial, and venereal
transmission, while co-feeding (infection of an uninfected tick
that is feeding simultaneously with an infected tick on the
same host in the absence of systemic infection) is an additional
epidemiologically significant way for virus transmission
(Gargili et al. 2017). ImmatureHyalomma ticks feed on small
animals, such as hares, hedgehogs, and ground-feeding birds,
while adult ticks feed on larger animals, such as livestock.
Infected animals present a short viremia (up to 2 weeks) while
showing no signs of illness (OIE 2014).

Although CCHF endemic foci are present in the Balkan
Peninsula, only one human case has been reported in
Greece. The case occurred in 2008 and was caused by the
Rodopi strain which clusters in Europe 1 lineage, together
with pathogenic strains from other Balkan countries and
Turkey (Papa et al. 2008). However, the first detection of
CCHFV in Greece was much earlier, in 1975, when the
AP92 strain was isolated from Rhipicephalus bursa ticks col-
lected from goats in the northern part of the country
(Papadopoulos and Koptopoulos 1978). AP92 is the prototype
strain of lineage Europe 2, one of the seven genetic lineages in
which CCHFV strains are grouped on the basis of S RNA
segment sequences (Papa et al. 2015). A relatively high
CCHFV seroprevalence in humans has been reported in
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Greece (4.2%), varying from 0 to 14.5% among prefectures
(Sidira et al. 2012). Increased age, agro-pastoral activities,
slaughtering livestock, and living or working in close proxim-
ity with livestock have been associated with seropositivity
(Papa et al. 2013). A spatial cluster meta-analysis study
showed that CCHFV seroprevalence in the western part of
Greece is significantly higher than that in the eastern part,
and that altitude, land cover type, transitional woodland/
shrubland per person, and number of livestock (goats, sheep,
and cattle) per person are related significantly with seroposi-
tivity (Papa et al. 2016). In the absence of human cases, it was
suggested that high seroprevalence is related to the circulation
of low-pathogenicity strain(s) (Sidira et al. 2012). AP92-like
strains have recently been detected in ticks in Kosovo,
Bulgaria, and Turkey, while very few mild CCHF cases asso-
ciated with the AP92-like strain have been reported in Turkey
(Elevli et al. 2009; Midilli et al. 2009; Ozkaya et al. 2010;
Panayotova et al. 2016; Papa et al. 2014; Sherifi et al. 2014).
In an effort to identify the circulating CCHFV strains in
Greece, we collected ticks from livestock in various regions
of the country and tested them for CCHFV infection.

Materials and methods

Tick collection and identification

Greece is a Balkan country in southeastern Europe with a
surface area of 131,960 km2. According to the 2001 census,
the population of Greece was 10,964,020. The country is di-
vided into nine districts: Thrace,Macedonia, Epirus, Thessaly,
Central Greece, Peloponnese, Aegean islands, Ionian islands,
and Crete. Each district is further divided into prefectures.

Tick collection was performed in various locations in eight
of the nine districts (all except the Ionian islands). Two thou-
sand adult ticks were collected from sheep and goats in farms
located in 222 villages in 26 prefectures in 8 districts. The
collection was conducted from April to July, 2012 (1091
ticks), from March to November, 2013 (865 ticks), and in
June, 2014 (44 ticks). Ticks were transported and refrigerated
to the laboratory and were stored at − 80 °C until testing. The
identification was performed morphologically under a stereo-
microscope using taxonomic keys (Estrada-Peña et al. 2004).
Ticks were grouped into pools (1–5 per pool) according to the
collection date, location, animal host, tick species, and sex.

RNA extraction and molecular screening

Before testing, ticks were washed with distilled water and
were homogenized in PBS in a FastPrep FP120 cell disrupter
(Bio-101, Thermo Savant; Q-Biogene, Carlsbad, CA, USA)
using glass beads (150–212 μm in diameter). RNA extraction
was performed using the RNeasy Mini kit (Qiagen, Hilden,

Germany) according to the manufacturer’s instructions. An
RT-nested PCR was applied which amplifies a partial frag-
ment of the CCHFV S RNA segment (Rodriguez et al.
1997). All PCR products were sequenced. A real-time RT-
PCR (Wolfel et al. 2007) was applied to those positive sam-
ples from which a sequence could not be obtained. Nucleotide
sequences were tested using the Basic Local Alignment
Search Tool (BLAST). The CCHFV sequences were aligned
with respective sequences from the GenBank database using
Clustal W. A phylogenetic tree was constructed using the
maximum likelihood method. The evolutionary distances
were computed using the Kimura 2-parameter method using
MEGA 7 (Kumar et al. 2016).

Results

A total of 2000 adult ticks were collected from sheep and
goats in Greece. Most (55.9%) were female. The ticks
belonged to four genera: Rhipicephalus (1894, 94.7%),
Hyalomma (58, 2.9%), Dermacentor (47, 2.4%), and Ixodes
(1, 0.1%). Most of the ticks were R. sanguineus sensu lato
(s.l.) (1370, 68.5%) and R. bursa (524, 26.2%) (Table 1).
Grouping by collection date, location, animal host, tick spe-
cies, and sex resulted in 1290 pools.

CCHFV RNAwas detected in 36 (2.8%) of the tick pools
(Table 2). CCHFV-positive ticks were detected in 28 of 222
(12.6%) villages located in 6 of the 8 districts tested. The
percentages of CCHFV-positive tick pools per district and
prefecture are seen in Table 2 and Fig. 1. For comparison
purposes, the respective seroprevalence rates in humans, as
estimated in a previous study (Sidira et al. 2012), are also
shown in Fig. 1.

All CCHFV-positive ticks belonged to the genus
Rhipicephalus. Among the 36 positive tick pools, 27 consisted

Table 1 Ticks collected from sheep and goats in Greece during 2012–
2014 and tested for CCHFV

Tick genus N (%) Tick species N (%)

Rhipicephalus 1894 (94.7) R. sanguineus s.l. 1370 (68.5)

R. bursa 524 (26.2)

Hyalomma 58 (2.9) H. dromedarii 37 (1.9)

H. marginatum 10 (0. 5)

H. rufipes 8 (0.4)

H. excavatum 2 (0.1)

H. impeltatum 1 (0.1)

Dermacentor 47 (2.4) D. marginatus 47 (2.4)

Ixodes 1 (0.1) I. ricinus 1 (0.1)

Total 2000 (100) 2000 (100)

3058 Parasitol Res (2017) 116:3057–3063



of R. sanguineus s.l. ticks and 9 consisted of R. bursa ticks.
Overall, CCHFV was detected in 27 of the 843 (3.2%) R.
sanguineus s.l. tick pools and 9 of the 377 (2.4%) R. bursa
tick pools (Table 2).

Sequences were obtained from 27 tick pools (Fig. 2),
but for 9 positive pools, sequencing was not successful.
When these pools were tested by real-time PCR, the Ct
value was ≥ 37, suggesting that the viral load was low.
BLAST and phylogenetic analyses showed that se-
quences clustered into two genetic lineages, Europe 1
and Europe 2. Eight sequences belonging to Europe 2
were 100% identical and were obtained from ticks col-
lected in Kastoria prefecture; 6 were taken from R.
bursa ticks, and two were taken from R. sanguineus
s.l. ticks. All the rest of the 19 sequences clustered into
lineage Europe 1, and most (16/19) came from R.
sanguineus s.l. pools.

A phylogenetic tree based on a 220-bp fragment of
the S RNA segment was constructed (Fig. 2). The
mean genetic difference between the two lineages
(Europes 1 and 2) is 23% at the nucleotide level. The
mean genetic diversity among Europe 1 sequences of
the present study is 1.4%, while the Europe 2 se-
quences were identical, differing by 10.4% from the
prototype AP92 strain (Ac. No. DQ211638).

Sequences from the study were submitted to the GenBank
dataBase under accession numbers KF146306, MF004261-
MF004267, and MF780718-MF780723.

Discussion

In order to obtain insight into CCHFV strains circulating in
Greece, ticks were collected from livestock in several

Table 2 Number (N) of CCHFV positive tick pools per district and prefecture of Greece

R. sanguineus s.l. R. bursa Other tick species
District N of ticks

(pools)
Positive
pools (%)

Prefecture N of ticks
(pools)

Positive pools/
N of pools (%)

Positive pools/
N of pools (%)

Positive pools/
N of pools (%)

Total
positive pools/
N of pools (%)

Thrace 636 (418) 6 (1.4) Evros 98 (66) 3/42 (7.1) 0/17 0/7 3/66 (4.5)

Rodopi 439 (288) 3/208 (1.4) 0/67 0/13 3/288 (1.0)

Xanthi 99 (64) 0/47 (0) 0/9 0/8 0/64 (0)

Macedonia 412 (251) 22 (8.8) Kavala 23 (14) 0/9 (0) 0/5 0 0/14 (0)

Serres 47 (27) 0/20 (0) 0/7 0 0/27 (0)

Thessaloniki 56 (26) 1/19 (5.3) 0/7 0 1/26 (3.8)

Chalkidiki 63 (41) 0/31 (0) 0/9 0/1 0/41 (0)

Pella 160 (103) 1/57 (1.8) 0/31 0/15 1/103 (1.0)

Imathia 86 (54) 2/34 (5.9) 0/18 0/2 2/54 (3.7)

Kozani 84 (49) 1/30 (3.3) 0/19 0 1/49 (2.0)

Kastoria 157 (150) 5/90 (5.6) 9/56 (16.1) 0/4 14/150 (9.3)

Florina 71 (41) 3/26 (11.5) 0/15 0 3/41 (7.3)

Epirus 137 (81) 1 (1.2) Thesprotia 48 (28) 1/20 (5.0) 0/6 0/2 1/28 (3.6)

Ioannina 89 (53) 0/38 (0) 0/15 0 0/53 (0)

Thessaly 162 (98) 3 (3.1) Larissa 68 (29) 2/20 (10.0) 0/9 0 2/29 (6.9)

Trikala 38 (28) 0/15 (0) 0/13 0 0/28 (0)

Karditsa 56 (41) 1/24 (4.2) 0/17 0 1/41 (2.4)

Central Greece 123 (87) 0 Fokida 50 (38) 0/20 (0) 0/18 0 0/38 (0)

Evia 35 (15) 0/12 (0) 0/3 0 0/15 (0)

Evritania 3 (3) 0/2 (0) 0/1 0 0/3 (0)

Fthiotida 37 (31) 0/17 (0) 0/14 0 0/31 (0)

Peloponnese 80 (41) 2 (5.7) Corinthia 71 (35) 2/26 (7.7) 0/9 0 2/35 (5.7)

0 Ilia 9 (6) 0/6 (0) 0/0 0 0/6 (0)

Aegean Islands 59 (28) 0 Lesvos 41 (18) 0/0 (0) 0/0 0/18 0/18 (0)

0 Cyclades 18 (10) 0/7 (0) 0/3 0 0/10 (0)

Crete 56 (32) 2 (6.2) Rethymno 56 (32) 2/23 (8.7) 0/9 0 2/32 (6.3)

Total 2000 (1290) 36 (2.8) 2000 (1290) 27/843 (3.2) 9/377 (2.4) 0/70 36/1290 (2.8)
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geographical regions and tested for CCHFV infection. Viral
RNA was detected in 3.2 and 2.4% of the pools of R.
sanguineus s.l. and R. bursa ticks, respectively. The percent-
age of positive pools in districts of Greece ranged from 0 to
9.3% (mean 2.8%) which correlates quite well with results
from previous seroprevalence studies in humans (Fig. 1)
(Papa et al. 2016). The respective percentage in endemic
countries such as Turkey, Kosovo, and Bulgaria is 2 to 11%,
depending on the endemicity level of the area (Panayotova
et al. 2016; Sherifi et al. 2014; Tekin et al. 2011; Tonbak
et al. 2006). However, to avoid biases in comparison among
studies, several parameters should be taken into account, such
as methods used for tick collection (from the ground or from
livestock), seasonality, tick and host species, number of ticks

collected per animal, farm and location, husbandry conditions,
usage of repellents, and the number of ticks in the tested pools.

Two genetic lineages, Europe 1 and Europe 2, were detect-
ed. The genetic variability among sequences was relatively
high, reflecting a long history of virus co-evolution with its
tick reservoirs (Honig et al. 2004). Europe 2 sequences were
detected mainly in R. bursa ticks (6 of the 8 Europe 2-positive
pools consisted of R. bursa ticks). This finding, together with
previous reports from the Balkans and Turkey, suggests that
this lineage is strongly associated with R. bursa ticks, at least
in this geographic area. The percentage of Europe 2-positive
R. bursa ticks in Kastoria prefecture was high (7/56 tick pools,
16.1%), suggesting that the environmental conditions and the
presence of suitable hosts are favorable for the maintenance of

Fig. 1 Map of Greece showing the percentage of CCHFV-positive tick pools per prefecture. The percentages in parentheses indicate the CCHFV IgG
seroprevalence in humans, based on previous studies (Sidira et al. 2012). The map was obtained from commons.wikimedia.org
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this strain in the region. Analogous focused circulation of
AP92-like strains (Europe 2) was observed in Kosovo and
Bulgaria (Panayotova et al. 2016; Sherifi et al. 2014).
Especially in a study in Kosovo, AP92-like sequences were
obtained exclusively from R. bursa ticks in a non-endemic
region, while Europe 1 sequences were detected in H.
marginatum ticks or in humans, predominantly in the hyper-
endemic regions (Sherifi et al. 2014). These observations
strengthen previous suggestions that AP92-like strains are of
low pathogenicity (Antoniadis and Casals 1982; Papa et al.

2014; Sidira et al. 2012). A recent report on a fatal case in Iran
associated with an AP92-like strain (Salehi-Vaziri et al. 2016)
suggests that full genome sequences are needed for in-depth
analysis of strains of this lineage, to identify possible markers
of increased pathogenicity.

Europe 1 sequences were detected mainly in R. sanguineus
s.l. ticks. The number of collected H. marginatum ticks, the
principal vectors of CCHFV, was low (only 2.9% of the col-
lected ticks), and they were CCHFV negative. The low num-
ber may be due to the fact that the ticks were collected from
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sheep and goats, and not from cattle, the main hosts of adultH.
marginatum ticks. The collection was not done from cattle
because in Greece, they are usually enfarmed and have less
chances to become infested by ticks. Furthermore, a recent
study showed that small ruminants (sheep, goats) are more
suitable indicator animals than cattle for the detection of
CCHFV circulation in an area (Schuster et al. 2016). This
was also shown in a spatial cluster analysis of CCHFV sero-
prevalence in humans in Greece: CCHFV seropositivity was
significantly associated with living or working in close prox-
imity to sheep, goats, and cattle (p < 0.001, OR 4.62).
However, the risk was higher when working with sheep
(p < 0.001, OR 4.72) or goats (p < 0.001, OR 3.73), than that
with cattle (p = 0.006, OR 2.14) (Papa et al. 2016).

Until recently, the high CCHFV seroprevalence in the
Greek population in the absence of clinical cases was attrib-
uted to the probable circulation of low-pathogenic strain(s)
(Sidira et al. 2012). The current study shows that, in addition
to Europe 2, strains of Europe 1 lineage circulate in Greece
and cluster together with pathogenic strains. However, they
were detected inRhipicephalus spp. ticks, which might be less
efficient virus vectors thanH.marginatum. It is known that for
an arthropod to be incriminated as an actual vector, several
criteria must be met, including vector competence in labora-
tory studies; evidence that the arthropod species feeds in na-
ture on a host that develops an appropriate viremia; and evi-
dence that it is active at the time of year when viral transmis-
sion is occurring (Reeves 1957; Turell 2007). It is also well
accepted that the detection of virus in wild-caught ticks, espe-
cially in ticks collected from animals, may only indicate that
the ticks have recently fed on a viremic mammal, and not that
they are competent vectors (Shepherd et al. 1991), since some
tick species may harbor the virus and transmit it among mam-
malian animals, without serving as a source of human infec-
tion. Laboratory studies on vector competence will be re-
quired to determine the role of Rhipicephalus spp. ticks in
CCHFV maintenance and transmission.

Regardless of whether ticks transmit virus transovarially,
adult ticks which become infected by feeding may be an im-
portant source of human infection if removed by hand or
squashed (Shepherd et al. 1991). Given that ticks are vectors
of several pathogens, including CCHFV, avoidance of tick
habitat is recommended, while preventive measures should
be taken especially by persons working in the livestock indus-
try. These include wearing protective clothing and gloves, use
of repellents, regular examination of clothing and skin for
ticks, and the use of acaricides on livestock and other domestic
animals.

The present study provides a baseline for the circulation of
CCHFV in ticks in Greece and shows that many issues remain
to be elucidated to explain the enigmatic epidemiology of the
disease in Greece. Studies using next-generation sequencing
and proteomic analysis will identify genetic differences

among virus strains and among tick species and show how
they affect virus entry into the host cell, the host immune
response, and general virus-tick-host interactions.
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