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Abstract Gasterophilus spp. (Diptera: Gasterophilidae) has a
worldwide distribution; however, no complete mitochondrial
(mt) genome data is available for Diptera which has greatly
impeded population genetics, phylogenetics, and systematics
studies in Gasterophilidae. Mt genome is known to provide
genetic markers for investigations in these areas, but complete
mt genomic datasets have been lacking for many
Gasterophilidae species. Herein, we present the complete mt
genome of the third-stage larvae (L3) of Gasterophilus
intestinalis from the stomach wall of naturally infected horses
in Heilongjiang province (HLJ) and Xinjiang Uygur
Autonomous Region (XJ), China. The complete mt genome
of G. intestinalis was 15,687 bp (HLJ) and 15,660 bp (XJ) in
length and consists of 37 genes, including 13 genes for

proteins, 22 genes for tRNA, and 2 genes for rRNA. The gene
arrangement is the same as those of Oestroidae species.
Phylogenetic analyses using concatenated amino acid se-
quences of 12 protein-coding genes by Bayesian inference
(BI) and maximum likelihood (ML), suggested that the fam-
ilies Gasterophilidae and Oestroidae were more closely related
than to Tachinidae. The mt genome of G. intestinalis repre-
sents the first mt genome of any member of the family
Gasterophilidae. These data provide novel mtDNA markers
for studying the molecular epidemiology and population ge-
netics of the G. intestinalis and its congeners.
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Introduction

Gasterophilus (Diptera: Gasterophilidae) larvae are common
obligate parasites of the digestive tract of the equids (Hall and
Wall 1995; Wambwa et al. 2004; Anderson 2005). The larvae
cause gastrointestinal myiasis in equids, causing considerable
economic loss due to swallowing (throat localization of the
immature stages), gastro and intestinal ulcerations, gut ob-
structions or volvolus, rectal prolapses, anemia, diarrhea,
and digestive disorders (Waddell 1972; Dart et al. 1987;
Principato 1988; Cogley and Cogley 1999; Sandin et al.
1999; Sequeira et al. 2001). Horse myiasis is widely distrib-
uted in China, especially in the northeast, northwest, and the
Inner Mongolia Autonomous Region (Peng et al. 2011).

The metazoan mitochondrial (mt) genome possesses a cir-
cular double strand DNA that varies in size from 14 to 20 kb,
generally encodes for 36–37 genes, including 12–13 protein-
coding genes (PCGs), two ribosomal RNAs (rRNA) genes and
22 transfer RNAs (tRNA) (Wolstenholme 1992; Boore 1999).
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Mt genomes have been extensively used as genetic markers in
molecular phylogenetic studies because they have several use-
ful properties (i.e., haploidy, compactness, maternal inheri-
tance, relatively high mutation rates, and the lack of recombi-
nation) (Tao et al. 2014). To date, there are over 700 complete
mt genome sequences of the Insecta available in GenBank,
including some from the dipteran. Diptera is one of the most
extensively sequenced orders among the Insecta, with 97 com-
plete or near-complete Diptera mt genome sequences available
in GenBank (as of September 2015), including 66 Brachycera
and 31 Nematocera species representing 16 families. In spite of
the availability of advanced DNA technologies, however, no
mt genomes are available for any members of the family
Gasterophilidae so far, and Gasterophilidae flies are missing
in many phylogenetic analyses.

In the present study, we sequenced the complete mt ge-
nome of Gasterophilus intestinalis of the family
Gasterophilidea. We inferred the phylogenetic relationships
with the concatenated mt amino acid sequences of
G. intestinalis and 31 other Oestroidea species that have been
sequenced to date.

Materials and methods

Parasites and DNA extraction

Third-stage larvae (L3) representing G. intestinalis were col-
lected from the stomach wall of a horse at an abattoir in
Heilongjiang province (HLJ) and Xinjiang Uygur
Autonomous Region (XJ), China. The individual fresh larvae
were washed in physiological saline, identified preliminarily
to species based on morphological characters and predilection
sites (Roelfstra et al. 2010), and then fixed in 70% ethanol and
stored at −20 °C. Total genomic DNA was extracted from
individual larvae using sodium dodecyl sulfate/proteinase K
treatment, followed by spin-column purification (Wizard® SV
Genomic DNA Purification System, Promega). The identity
of these larvae was further verified as G. intestinalis by PCR
amplification and subsequent sequencing of cox1 gene as re-
ported previously (Pawlas-Opiela et al. 2010).

PCR amplification and sequencing

The whole mtDNA genome was amplified by polymerase
chain reaction (PCR) using nine primer pairs (Table 1) de-
signed based on sequences well conserved in many distantly
related taxa (e.g., Cochliomyia hominivorax, Dermatobia
hominis, and Hypoderma lineatum, GenBank accession num-
bers AF260826, NC_006378, and NC_013932, respectively).
PCR reactions (25 μL) were performed using 0.5 μL of each
primer (20 pmol/μL), 2.5 μL Ex Taq buffer (100 mM Tris–
HCl and 500 mM KCl), 2 μL of dNTP Mixture (2.5 mM

each), 0.5 μL of Ex Taq (5 U/μL) DNA polymerase
(TaKaRa Biotechnology, Dalian, China) and 1 μL of DNA
sample in a thermocycler (Biometra, Göttingen, Germany).
The cycling conditions were the following: 94 °C for 5 min
(initial denaturation); then followed by 35 cycles of 94 °C for
30 s (denaturation), 40~58 °C for 30 s (annealing), and 72 °C
for 1~4 min (extension) according to the product length; with
a final extension step at 72 °C for 10 min. Each PCR reaction
yielded a single band as detected in a 1 % (W/V) agarose gel
upon ethidium-bromide staining (not shown). PCR products
were subsequently sent to Invitrogen Biotechnology
Company (Shanghai, China) for sequencing using a primer-
walking strategy.

Sequence analyses

Sequences were assembled manually and aligned against the
complete mt genome sequences of H. lineatum (Weigl et al.,
2010) available using the computer program MAFFT 7.122
(Katoh and Standley 2013) to identify gene boundaries.
Each gene was translated into amino acid sequence using
the invertebrate mt genetic code in MEGA 5 (Tamura
et al. 2011), and aligned based on its amino acid sequence
using default settings. The translation initiation and termina-
tion codons were identified to avoid gene overlap and to
optimize the similarity between the gene lengths of closely
related mt genomes. For analyzing tRNA genes, the program
ARWEN (Laslett and Canback 2008) was used to detect
tRNA and infer their secondary structure (not shown). Two

Table 1 Sequences of primers used to amplify PCR fragments from
Gasterophilus intestinalis

Primers Sequence (5′-3′)

cox1-1-L CTTAAATCCATTGCACTAATCTGCC

cox1-1-U CAGTCTATTGCCTAAACTTCAGCC

nad5-1-L TCAATTTGTACGCTGAGATGTG

nad5-1-U CAAAGGCTTAATAAACCTCC

cytb-U AATTTTGGGTCACTTCTAGGTC

cytb-L ATGGGCTTTCTACAGGTC

cox1-nad5-U TGATTATCCCGATGCCTACA

cox1-nad5-L GGGGTCAGCAATTATTTAGAAAGTT

nad1-U CCTCTTGTAGCAAAATGATGA

nad1-L TTTAGTACGAAAGGACCAAATA

nad5-cytb-U CAGTAAAATCAAATATAATGGAAA

nad5-cytb-L GCCTACGTGTAAATAAATGC

nad1-rrnS-U TCCAGCCAATCCAACCTTAT

nad1-rrnS-L ACAGTTTATATACCGTCGTTATGA

rrnS-U TCAACAAAAAAAAATTCT

rrnS-L AGTTTTATTTTGGCTT

rrnS-cox1-U ATCACAATCTAACTCAAACCAA

rrnS-cox1-L TCTGCTCGAATTAGGACTC
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rRNA genes were predicted by comparison with that of
previously reported (Otranto et al. 2005). In addition, the
Megalign procedure within DNAStar 5.0 (Burland 2000)
was used to analyze sequence similarity of G. intestinalis
from two different regions in China.

Phylogenetic analyses

For comparative purposes, amino acid sequences predicted
from published mt genomes of 31 Oestroidea species were
also included in the present analysis, using the Musca
domestica (GenBank accession number NC_024855) as an
outgroup. The 12 amino acid sequences (without atp8) were
single aligned using MAFFT 7.122 and then concatenated,
and ambiguously aligned regions were excluded using
Gblocks online server (http://molevol.cmima.csic.es/
castresana/Gblocks_server.html) with the default parameters
(Talavera and Castresana 2007) using the options for a less
stringent selection.

Phylogenetic analyses were conducted using Bayesian in-
ference (BI) and maximum likelihood (ML) methods. The
MtArt + I+G+F model of amino acid evolution was selected
as the most suitable model of evolution by ProtTest 2.4
(Abascal et al. 2005) based on the Akaike information criteri-
on (AIC). As MtArt model is not implemented in the current
version of MrBayes, an alternative model, MtREV, was used
in BI and four chains (three heated and one cold) were run
simultaneously for the Monte Carlo Markov Chain. Two in-
dependent runs for 1,000,000 metropolis-coupled MCMC
generations, sampling a tree every 100 generation in
MrBayes 3.1.1 (Ronquist and Huelsenbeck 2003); the first
2500 trees represented burn-in and the remaining trees were
used to calculate Bayesian posterior probabilities (Bpp). The
analysis was performed until the potential scale reduction fac-
tor approached 1 and the average standard deviation of split
frequencies was less than 0.01. ML analysis was performed
with PhyML 3.0 (Guindon and Gascuel 2003) using the
subtree pruning and regrafting (SPR) method with a BioNJ
starting tree, and the MtArt model of amino acid substitution
with proportion of invariant sites (I) and gamma distribution
(G) parameters estimated from the data with four discretized
substitution rate classes, the middle of which was estimated
using the median. Phylograms were drawn using the program
FigTree v.1.4.

Results and discussion

The whole mitochondrial genome of G. intestinalis is a
circular molecule of 15,687 bp (HLJ) and 15,660 bp (XJ)
in length (Fig. 1) which shows the same sequence order
and orientation as that of other Oestroidea species (i.e.,
C. Hominivorax, H. Lineatum, and D. hominis). The

complete mtDNA sequences of G. intestinalis generated
in this work has the GenBank accessions numbers
KU236026 (HLJ) and KU236025 (XJ). When compared
with other insect genera for which the complete mt ge-
nomes are known [e.g., Drosophila spp. (Diptera:
Drosophilidae) and Ceratitis spp. (Diptera: Tephritidae)],
the gene content and general organization pattern corre-
spond to typical Brachycera mtDNA (Clary and
Wolstenholme 1985; Lewis et al. 1995; Spanos et al.
2000). As in other insects, this circular mt genome con-
tains 13 PCGs (cox1-3, nad1-6, nad4L, cytb, atp6, and
atp8), 22 tRNA genes, two rRNA genes, and one D-
loop region (Table 2). The genes are transcribed in two
different directions. Except for four PCGs (nad5, nad4,
nad4L and nad1), and eight tRNA genes (trnQ, trnC,
trnY, trnF, trnH, trnP, trnL2, and trnV) encoded on the
minority strand (N-strand), all other genes were encoded
on the majority strand (J-strand) (Fig. 1).

The length of PCGs of G. intestinalis was in the following
order: nad5 > cox1 > nad4 > cytb > nad2 > nad1 > cox3 >
cox2 > atp6 > nad6 > nad3 > nad4L > atp8 (Table 2). A total
of 3714 amino acids are encoded in the mt genome of
G. intestinalis. In this mt genome, five genes (nad2, atp8,
nad3, nad5, and cytb) use ATT, six genes (cox2, cox3, atp6,
nad4, nad4L, and nad1) use ATG, and one gene (nad6) uses
ATA as start codon, respectively (Table 2). With regard to

Fig. 1 Arrangement of the mitochondrial genome of G. intestinalis.
Gene scaling is only approximate. All genes have standard
nomenclature including the 22 tRNA genes, which are designated by
the one-letter code for the corresponding amino acid, with numerals
differentiating each of the two leucine- and serine-specifying tRNAs
(L1 and L2 for codon families CUN and UUR, respectively; S1 and S2
for codon families UCN and AGN, respectively)
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cox1, the start codon was identified as TCG (Table 2), which
differs from the standard invertebrate mitochondrial code.
This feature has been reported in cox1 gene sequences of other
species belonging to the families Calliphoridae (Sperling et al.
1994; Wells and Sperling 1999), Tephritidae (Spanos et al.
2000) and Culicidae (Beard et al. 1993; Mitchell et al.
1993). In addition, all genes have complete termination codon
except for cox2, nad5, nad2, nad6, and nad4 genes which use

abbreviated stop codon T or TA, 7 genes (cox1, atp8, cox3,
nad3, nad4L, atp6, and cytb) use TAA, and 1 gene (nad1) use
TAG as termination codon, respectively (Table 2). The rrnL of
G. intestinalis is located between trnL2 and trnV, and rrnS is
located between trnVand D-loop. The length of the rrnS gene
is 788 bp (HLJ) and 785 bp (XJ). The rrnL gene is 1321 bp
(HLJ) and 1322 bp (XJ) (Table 2). A total of 22 tRNA se-
quences were identified in the G. intestinalis mt genome,

Table 2 Mitochondrial genome
organization of Gasterophilus
intestinalis Heilongjiang isolate
(HLJ) and Xinjiang isolate (XJ) in
China

Gene/region Position/length (bp) Start/stop codon Anticodons Strand

G. Intestinalis (HLJ) G. Intestinalis (XJ)

D-loop 1–898 (898) 1–875 (875) J

trnI 899–963 (65) 876–941 (66) GAU J

trnQ 961–1029 (69) 939–1007 (69) UUG N

trnM 1029–1097 (69) 1006–1075 (70) CAU J

nad2 1098–2109 (1012) 1076–2087 (1012) ATT/T J

trnW 2110–2177 (68) 2088–2155 (68) UCA J

trnC 2170–2232 (63) 2148–2210 (63) GCA N

trnY 2233–2298 (66) 2211–2276 (66) GUA N

cox1 2297–3835 (1539) 2275–3813 (1539) TCG/TAA J

trnL 3831–3895 (65) 3809–3873 (65) UAA J

cox2 3899–4586 (688) 3877–4564 (688) ATG/T J

trnK 4587–4657 (71) 4565–4635 (71) CUU J

trnD 4657–4723 (67) 4635–4701 (67) GUC J

atp8 4724–4885 (162) 4702–4863 (162) ATT/TAA J

atp6 4879–5526 (648) 4857–5504 (648) ATG/TAA J

cox3 5555–6343 (789) 5533–6321 (789) ATG/TAA J

trnG 6349–6413 (65) 6327–6391 (65) UCC J

nad3 6414–6767 (354) 6392–6745 (354) ATT/TAA J

trnA 6771–6836 (66) 6749–6814 (66) UGC J

trnR 6836–6898 (63) 6814–6876 (63) UCG J

trnN 6902–6966 (65) 6879–6945 (67) GUU J

trnS2 6966–7035 (70) 6944–7013 (70) GCU J

trnE 7035–7100 (66) 7013–7078 (66) UUC J

trnF 7120–7186 (67) 7099–7165 (67) GAA N

nad5 7187–8906 (1720) 7165–8881 (1717) ATT/T N

trnH 8922–8985 (64) 8897–8960 (64) GUG N

nad4 8986–10,325 (1340) 8961–10,300 (1340) ATG/TA N

nad4L 10,325–10,609 (285) 10,300–10,584 (285) ATG/TAA N

trnT 10,612–10,678 (65) 10,586–10,653 (68) UGU J

trnP 10,677–10,742 (66) 10,652–10,719 (68) UGG N

nad6 10,745–11,271 (527) 10,720–11,246 (527) ATT/TA J

cytb 11,272–12,408 (1137) 11,247–12,383 (1137) ATT/TAA J

trnS 12,409–12,473 (65) 12,384–12,448 (65) UGA J

nad1 12,494–13,432 (939) 12,469–13,407 (939) ATG/TAG N

trnL2 13,443–13,506 (64) 13,418–13,481 (64) UAG N

rrnL 13,507–14,827 (1321) 13,482–14,803 (1322) J

trnV 14,828–14,899 (72) 14,804–14,875 (72) UAC N

rrnS 14,900–15,687 (788) 14,876–15,660 (785) J
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Fig. 2 Phylogenetic relationships among 32 species of Oestroidea inferred by Bayesian inference (BI) of deduced amino acid sequences of 12
mitochondrial proteins. M. domestica (GenBank accession number NC_024855) was used as the outgroup

Fig. 3 Phylogenetic relationships among 32 species of Oestroidea inferred by Maximum likelihood (ML) of deduced amino acid sequences of 12
mitochondrial proteins. M. domestica (GenBank accession number NC_024855) was used as the outgroup
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ranging from 63 to 72 bp (Table 2). The size of D-loop is
898 bp (HLJ) and 875 bp (XJ), and the A+T content is
81.7 % (HLJ) and 80.8 % (XJ).

Many studies have demonstrated that mtDNA se-
quences are valuable genetic markers for phylogenetic
studies of different groups of parasites, including insects
(Cameron et al. 2006; Liu et al. 2014, 2015a, b, 2016;
Jabbar et al. 2014; Guo 2015; Li et al. 2015; Cheng
et al. 2016). Of the 31 Oestroidea species included in
the phylogenetic analyses in this study, two species
belonged to the Oestridae, one species belonged to the
Gasterophilidae, three belonged to the Tachinidae, eight
species belonged to the Sarcophagidae and 16 species
belonged to the Calliphoridae. The results of the present
study indicated that the families Gasterophilidae and
Oestroidae were more closely related than to the
Tachinidae (Figs. 2 and 3). These results were consistent
with those of previously proposed classification schemes
within the Oestroidea (Kutty et al. 2010). The monophy-
ly of the Calliphoridae was strongly supported with a
posterior probability (PP) of 1 in Bayesian analysis
(Fig. 2), a bootstrapping frequency (Bf) of 99 % in ML
analyses (Fig. 3). The monophyly of the Sarcophagidae
was strongly supported in BI and ML analyses (PP= 1;
Bf = 100 %, Figs. 2 and 3). The monophyly of the
Tachinidae was weakly supported in ML analyses
(PP= 1; Bf = 40 %, Fig. 3), and was paraphyletic in BI
with weakly support (PP = 0.55; Bf = 67 %, Fig. 2). The
monophyly of the Oestridae was rejected in BI and ML
analyses (PP> 0.55; Bf = 67 %, Figs. 2 and 3), consistent
with that of some studies (Marinho et al. 2012; Zhao
et al. 2013).

In the present study, although our results showed that the
Oestridae and Gasterophilidae are sister groups, only two spe-
cies within the Oestridae were included in the present study.
Therefore, expanding taxon sampling from these lineages of
flies is clearly the next step for phylogenetic studies of flies
using mtDNA. In addition, phylogenetic analysis in the pres-
ent study was based only on mtDNA sequences, so we believe
it is still necessary to employ nuclear genomic sequences to
provide additional evidence for phylogenetic analyses and ge-
nome evolution of the flies in further studies.

In conclusion, the present study determined the complete
mt genome sequences of G. intestinalis, which represents the
first mt genome of any member of the family Gasterophilidae.
These data provide novel mtDNA markers for studying the
molecular epidemiology and population genetics of the
G. intestinalis and its congeners.
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