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Abstract Gastrointestinal nematodes within the subfamily
Ostertagiinae (Teladorsagia, Ostertagia, and Marshallagia
et al.) are among the most common infections of domesticated
livestock. These parasites are of particular interest, as many of
the species within this group are of economic importance
worldwide. Traditionally, nematode species designations have
been based on morphological criteria. However, this group
possesses poorly defined species. There is an urgent need to
develop a reliable technique that can distinguish species of
Ostertagiinae. DNA barcoding has been proved to be a pow-
erful tool to identify species of birds, mammals, and arthro-
pods, but this technique has not yet been examined for iden-
tifying species of Ostertagiinae. In this study, a total of 138
mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I
(COI) sequences from individuals representing 11 species of
Ostertagiinae were acquired by PCR for the first time. The
specimens were collected from pastoral area of northern

China. Genetic divergence analyses showed that mean inter-
specific Kimura two-parameter distances of COI (13.61 %)
were about four times higher than the mean value of the intra-
specific divergence (3.69 %). Then, the performance of the
COI to identify species of Ostertagiinae was evaluated by
identification success rates using nearest neighbor (NN) and
BLASTn. The results indicated that the rates of correct se-
quence identification for COI were high (>80 %) when using
the NN and BLASTn methods. Besides, the deep lineage di-
vergences are detected in Teladorsagia circumcincta.
Meanwhile, the analyses also detected no genetic differentia-
tion between some species such as Ostertagia hahurica and
Ostertagia buriatica. These results indicate that the traditional
status of species within Ostertagiinae should be closely exam-
ined based on the molecular data.
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Introduction

Ostertagiinae is an important subfamily within the gas-
trointestinal nematodes (Gibbons and Khalil 1982;
Goldfinch et al. 2008; Lancaster and Hong 1981).
Ostertagiinae includes Teladorsagia, Ostertagia, and
Marshallagia et al. and poses great threats to domesti-
cated livestock (Herd 1988; Lichtenfels and Hoberg
1993; Riggio et al. 2014). Accurate and rapid identifi-
cation of the species of Ostertagiinae is of fundamental
importance to basic biological and epidemiological stud-
ies of parasites as well as for their diagnosis, treatment,
and control (Blouin et al. 1999; Criscione et al. 2005;
Nejsum et al. 2005). Traditionally, most identification
focuses on morphological criteria, including the spicules
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and genital cone of the male tail, the spicules, and
gubernacula et al. (Borji et al. 2011; Drożdż 1995; Wu
et al. 2001). However, it is often unclear as to whether
particular morphological features reflect genuine species
differences or are simply morphological variations with-
in the same species (Drożdż 1995; Grillo et al. 2008;
Zarlenga et al. 1998). In addition, these criteria tend to
be limited to the identification of adult stages, whereas
identification of eggs and larvae, found in the more
readily available source of material, e.g., feces, can be
time-consuming, requires highly trained specialists, and,
in some cases, is unreliable and limited to family level
(Derycke et al. 2008; Wijova et al. 2005). The limita-
tions of morphological identification have led to a
Btaxonomy crisis,^ and a more integrative approach to
taxonomy has been proposed for species delineation
(Blaxter 2003; Godfray 2002).

With the rapid development of molecular biology in the
1990s, an increasing number of scientists applied PCR and
DNA sequencing technologies to the identification and clas-
sification of species (Lee et al. 1993; Snounou et al. 1993).
Among these technologies, DNA barcoding is a molecular
approach that has gained wide attention (Hebert and
Gregory 2005; Ratnasingham and Hebert 2007). This technol-
ogy aimed to use the sequence of a single piece of mitochon-
drial DNA (mtDNA) (part of the cytochrome c oxidase sub-
unit I gene (COI)) for the rapid, accurate, and automated iden-
tification of most animal species (Folmer et al. 1994; Schindel
and Miller 2005). However, rather, few studies based on COI
have focused on the identification of Ostertagiinae.

In this study, firstly, the COI sequences of 14 species of
Ostertagiinae were recovered by the nematode cocktail
primers C_NemF1_t1/C_NemR1_t1 (Prosser et al. 2013)
and redesigned primers COI-OF/COI-OR. Then, the perfor-
mance of COI for identifying species of Ostertagiinae was
tested. Genetic divergence of COI was determined using six
parameters (average interspecific distance, theta prime, the
smallest interspecific distance, average intraspecific distance,
theta, and coalescent depth). Finally, species identification ef-
ficiencies of COI for Ostertagiinae were analyzed following
two methods: the nearest neighbor (NN) and BLASTn.

Materials and methods

Taxon sampling

The 165 specimens of Ostertagiinae used in this study were
collected from different areas in northern China. The samples
from Inner Mongolia Autonomous Region were collected
from the abomasum of sheep on farms in the suburb of
Hohhot. The samples from Xinjiang Autonomous Region
were collected from the abomasum of sheep and cattle on

farms in the suburb of Kashi, Yili, and Urumqiet et al. And,
the samples from Qinghai province were collected from the
abomasum of sheep on farms in the suburb of Xining.

The species of specimens were identified by the specialist
using a combination of morphological data. All specimens
were preserved in 100 % ethanol.

DNA extraction and PCR

Ethanol-preserved specimens of Ostertagiinae were rinsed in
distilled water, and then, total DNA was extracted using a
DNeasy blood and tissue kit (Qiagen GmbH, Hilden,
Germany) following the manufacturer’s protocol.

The fragments of the COI genes for analyses were ampli-
fied by PCR assay using primer cocktail primers
(C_NemF1_t1+C_NemR1_t1) for the COI from vertebrate
parasitic nematodes and the new designed primers COI-OF/
COI-OR (Table S1).

Each 50-μl PCR solution contained 25 μl of 2× PCR
Buffer for KOD FX Neo (1.75-mM final concentration of
MgCl2), 10 μl of 2 mM dNTPs, 3 μl of primer mix (0.3-μM
final concentration of each primer), 1 μl KOD FX Neo poly-
merase (1 unit), 2 μl DNA template (about 200 ng genomic
DNA), and distilled water. PCR assays were conducted using
a GeneAmp PCR System 9700 thermal cycler (Applied
Biosystems, Foster City, CA, USA). The DNA size marker
DL2000 (Takara, Dalian, China) was used to estimate the
length of the PCR amplicons.

COI was amplified with COI-OF/COI-OR using a PCR
protocol as follows: initial denaturation (94 °C, 5 min);
followed by 36 cycles of 94 °C for 30 s, 45 °C for 30 s, and
68 °C for 1 min; followed by a final extension step of 68 °C
for 7 min.

COI was amplified with nematode cocktail primers
(C_NemF1_t1+C_NemR1_t1) using a PCR protocol as pre-
viously described (Prosser et al. 2013).

Data acquisition and sequence alignment

For the field-collected specimens, DNA was amplified and
sequences were obtained for the COI gene. The PCR
amplicons were sequenced at BGI Tech Inc. (Beijing,
China). One hundred thirty-eight COI sequences of specimens
were deposited in GenBank under accession numbers
KT807578∼KT807715. Two COI numt sequences were de-
posited in GenBank under accession numbers KT807716 and
KT807717.

Amplification success rate was measured based on the pro-
portion of samples that produced sequences of the appropriate
length. These sequences were further evaluated for their utility
in species identification. Another 37 COI sequences
representing five Ostertagiinae species were downloaded from
GenBank (http://www.ncbi.nlm.nih.gov/GenBank/).
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DNA sequences were assembled and edited in MEGA 5.0
(Tamura 2011). Sequences were aligned using ClustalW
(Thompson et al. 1994) in MEGA 5.0 with default parameters
(open gap penalty=10.0, extend gap penalty=5.0). Analyses
were conducted with the sequences of COI that constituted
different data sets for each genus.

Genetic divergence analysis through six parameters

Genetic distances were calculated using the Kimura two-
parameter (K2P) distance method (Kimura 1980) as imple-
mented in MEGA 5.0. Three parameters were used to charac-
terize interspecific divergence (Chen et al. 2010): (1) average
interspecific distance (K2P distance) between all species in
each genus with at least two species; (2) average theta prime,
where theta prime is the mean pairwise distance within each
genus with more than one species, thus eliminating biases
associated with different numbers of species among genera;
and (3) smallest interspecific distance, i.e., the minimum in-
terspecific distance within each genus with at least two
species.

In addition, three parameters were used to determine intra-
specific variation (Chen et al. 2010): (1) average intraspecific
difference (K2P) between all samples collected within each
species with more than one individual; (2) theta, where theta is
the mean pairwise distance within each species with at least
two representatives; theta eliminates biases associated with
unequal sampling among species; and (3) average coalescent
depth, which is the maximum intraspecific distance within
each species with at least two individuals.

Bayesian analyses

For COI, the Bayesian analyses were performed with
MrBayes 3.2 (Ronquist et al. 2012), with the data partitioned
into three sets by codon position. Models for each partition
were selected using MrModeltest 2.2 (Nylander 2005); these
were determined to be GTR+I+G for codon positions 1,
GTR+I for codon position 2, and TrN+G for codon position
3. For 16S rDNA and ITS2, the model was determined to be
GTR+I+G. For each Bayesian analysis, two runs were per-
formed simultaneously, each with four Markov chains (one
cold, three heated) which ran for 1,000,000 generations. The
first 250,000 generations were discarded from the analysis
(burnin), and every 1000th tree was sampled to calculate a
50 % majority-rule consensus tree with posterior probabilities
for nodes.

Data sets utilized in this study

The data set 1 includes 138 sequences acquired from the 138
collected specimens of Ostertagiinae and 37 sequences from
GenBank. Finally, data set 1 consists of 175 COI sequences

from 15 species (Table 1). Besides, data set 2 consists of 171
COI sequences from 11 species with multiple accessions (ir-
respective of congeneric species).

Methods utilized for species identification

Nearest neighbor

Genetic distances were calculated based on the K2P model for
all pairwise comparisons in the matrix using MEGA 5.0. In
the analysis, the query sequence was assigned to the species of
the sequence in the reference database which has the smallest
genetic distance from the query sequence. In case NNs were
from more than one species, the query’s identification was
considered uncertain.

BLASTn

Identification based on BLAST was performed using NCBI
software version 2.2.28+ (Camacho et al. 2009). Up to 100
hits with at least 80 % identity were returned for each query,
which was identified as the species associated with its best hit
(highest bit score). In case more than one species were asso-
ciated, the query’s identification was considered uncertain.

Sequence identification success and species identification
success

We assessed relative performance of COI in terms of their
identification success with data sets of ticks. Identification
success was defined in two ways: (1) BSpecies identification
success^ was scored as the number of species for which all
query sequences were correctly identified and (2) Bsequence
identification success^ was scored as the number of correctly
identified query sequences per data set, which is equivalent to
sensitivity (i.e., true positives / [true positives+ false
negatives]).

Table 1 Summary information on the data set of mtCOI from
Ostertagiinae

Sequences
recovered by
C_NemF1_t1/
C_NemR1_t1

Sequences
recovered
by
COI-OF/
COI-OR

Sequences
retrieved
from
GenBank

Total
sequences

No. of sequences 109 29 37 175

No. of
corresponding
species

11 8 5 15
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Results

Cytochrome c oxidase subunit I amplification
and detection of numts

A previous study has described nematode cocktail primers
(C_NemF1_t1+C_NemR1_t1) (Prosser et al. 2013), as
well as the universal DNA barcoding primers LCO1490/
HCO2198 (Folmer et al. 1994), targeting the standard
DNA barcode. Firstly, C_NemF1_t1/C_NemR1_t1 was uti-
lized to amplify the 5′ region of COI from 165 specimens
of Ostertagiinae, and 111 sequences were acquired. Then,
two putative numt (nuclear mitochondrial pseudogene) se-
quences were found when two fragments from
Marshallagia mongolica (380#, 491#) were translated into
amino acid alignment, and finally, 109 COI sequences of
Ostertagiinae were acquired. When compared with the
COI sequences from other M. mongolica (504#, 490#),
the numt sequences had codon deletion (two nucleotides
disappeared) and a high number of nucleotide substitutions
(61/525, 11.6 %).

To improve the efficiency of amplifying COI from
Ostertagiinae, the new primers (COI-OF/COI-OR) were de-
signed in GC-rich regions of high intersequence similarity of
amplified Ostertagiinae COI sequences, and another 29 COI
sequences of Ostertagiinae were acquired (the mtCOIs of
380# and 491# were included). Finally, 138 COI sequences
were amplified from 165 Ostertagiinae specimens and the
success rate of COI recovery was 83.6 %. More importantly,
the problem of numt was avoided. The amplified product by
C_NemF1_t1/C_NemR1_t1 was approximately 675 bp while
the amplified product by COI-OF/COI-OR was 730 bp. The
overlapped segment was about 529 nucleotides, and these
DNA sequences were considered for next analysis.

Genetic divergence

Besides the 138 COI sequences representing 11 Ostertagiinae
species, another 37 COI sequences representing five
Ostertagiinae species in the GenBank were retrieved to our
data set. Finally, we constructed a data set consisted of 175
COI sequences representing 15 Ostertagiinae species. A mean
of approximately 12 individuals (range 1–32) represented
each species, with four species (Teladorsagia trifurcata,
Ostertagia wuhingensis, Ostertagia lyrata, Ostertagia
gruehneri) represented by a single specimen.

The genetic divergence within and between the species was
calculated for this data set. The average intraspecific distance,
theta, and coalescent depth were calculated to determine intra-
specific variation using a K2P distance matrix. Average inter-
specific distance, theta prime, and smallest interspecific dis-
tances were used to characterize interspecific divergence.

The within-species K2P values based on mtCOI ranged
from 0 to 14.2 %, with more than 88 % of values below 6 %
(Fig. 1a). Meanwhile, more than 95 % pairwise comparisons
among species were distributed from 8 to 22 % K2P (Fig. 1b).
Average interspecific K2P (13.61 %) was about four times
higher than the average value of the intraspecific K2P
(3.69 %). The coalescent depth was about 5.81 % while the
smallest interspecific distance was 12.65 % (Table 2). And,
there is an overlap between within-species and among-species
K2P of COI. These data indicate that COI has the potential as
a DNA barcoding locus for Ostertagiinae species, but perhaps,
it is not efficient in discriminating some species of
Ostertagiinae.

Phylogenetic analyses

The rate of monophyletic groups in phylogenetic trees is often
appropriate to evaluate the discriminatory power of a DNA
barcode locus (Maia et al. 2012; Theodoridis et al. 2012;
Zhang et al. 2012). In this study, two different phylogenetic
methods were used: the neighbor-joining (NJ) and the
Bayesian inference (BI) analyses. The NJ tree (Fig. 2) showed
that the 175 sequences could be clustered into 12 monophy-
letic groups. And, the six species identified using morphology,
withmore than one individual, were obtained asmonophyletic
lineages with high supports. Besides, the three sequences
corresponded to singletons (O. gruehneri, T. trifurcata, and

Fig. 1 Frequency distributions of K2P distances of cytochrome C
oxidase subunit I (COI) within and among species of Ostertagiinae. a
Pairwise distance comparisons of the COI within species of
Ostertagiinae. b Pairwise distance comparisons of the COI among species
of Ostertagiinae
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O. wuhingensis) were also flagged as potentially unique in the
NJ trees. More notable is that three monophyletic groups sep-
arately constitute two species such as Ostertagia dahurica/
Ostertagia buriatica , M. mongolica/Marshallagia
grossopiculum, and Ostertagia ostertagi/O. lyrata.
Obviously, in the NJ tree based on the COI, it is found that
some species were not clearly differentiated from other spe-
cies. The BI analysis yielded a result nearly similar to that of
the NJ analysis (Fig. 3). This situation perhaps sleds to the
failure of species identification.

Performance of cytochrome c oxidase subunit I in species
identification of Ostertagiinae

The performance of COI was evaluated by the rates of Bthe
sequence identification success.^ In these analyses, the data
set 2 was utilized as the query data sets and the data set 1 was
taken as the reference data set. The reliability of several dif-
ferent methods of species identification (BLASTn, NN, and
tree-based methods) had been tested via simulated or empiri-
cal data sets in a previous study (Lv et al. 2014; Ross et al.
2008). And, the results showed that BLASTn and distance
methods were equally successful in species identification of
ticks. In this study, we followed these two approaches.

The fragment of COI behaves well in the NN and BLASTn
approaches, and the rates of the sequence identification suc-
cess were separately 87.13 % (149/171) and 88.89 % (152/
171) (Table 3). For the rates of species identification success,
COI behaves similar in the NN and BLASTn approaches:
63.6 % (7/11).

Discussion

The recovery of cytochrome c oxidase subunit I
from Ostertagiinae faces two major obstacles

As the standard DNA barcoding marker, the 5′ region of COI
has been explored as a potential marker to separate some nem-
atodes into proper species (Derycke et al. 2010; Elsasser et al.
2009; Floyd et al. 2002). However, according to the BOLD

system (www.boldsystems.org) (Ratnasingham and Hebert
2007), only two species of Ostertagiinae (O. ostertagi and
Teladorsagia circumcincta) had been previously barcoded.
To accurately barcode Ostertagiinae, it is important to
acquire the mtCOI sequences and construct reliable data
sets. In this study, the 11 Ostertagiinae species of northern
China were DNA barcoded. But, there are two obstacles to
the recovery of COI from Ostertagiinae: the low PCR success
rate and the presence of COI numts.

It has been demonstrated that the barcode region of COI
has delivered species-level resolution in certain nematode lin-
eages (Derycke et al. 2010), but sequence recovery has proven
difficult (De Ley et al. 2005). In this study, the primer cocktail
C_NemF1_t1/C_NemR1_t1 (Prosser et al. 2013) was utilized
to amplify the 5′ region of COI from 165 samples of
Ostertagiinae and only 109 mtCOIs were acquired. The am-
plification efficiency was 66.1 %. Obviously, the advantage of
this primer cocktail is across a broad range of nematodes in-
cluding members of three orders and eight families but not the
high PCR success rate for Ostertagiinae. Then, another 29
mtCOIs were amplified by the new designed primer (COI-
OF/COI-OR) though the full-length barcodes (661 bp) were
not recovered. It has been inferred that the nematode may be
the most species-rich phylum of animals, and the nematode
mitochondrial genomes are highly diverse (Hugot et al. 2001).
As the PCR success rate was low, we inferred that there are
great diversities in the primer binding sites on the mitochon-
drial genomes of Ostertagiinae. To overcome this limitation,
the new primer pair which could efficiently recover the full-
length barcodes from Ostertagiinae should be designed.

It has been demonstrated that the presence of COI numts
makes the goal difficult to achieve when numts are prevalent
and can introduce serious ambiguity into DNA barcoding
(Hojun et al. 2008). Until now, it has been proved that >82
eukaryotes, such as Insecta, Mammalia et al., have numts
(Bensasson et al. 2001). Though the genome of many nema-
todes has been determined to have numts, the cases of numts
in Ostertagiinae have never been reported before. In our study,
the numts in Marshallagia are determined because of the
indels within sequences. Obviously, compared to the mtCOI,
the numts are more likely to be amplified from Marshallagia
by the universal primers. There are two reasons to explain this
phenomenon. The first reason is that the number of copies of
numt is far more than the mtCOI. The second reason is per-
haps that there are sufficient sequence divergences between
numt and orthologous mtCOI and conserved primer is more
likely to bind numt but not mtCOI.

The genetic characters of numt

Our study showed that the K2P genetic distances between the
numts and orthologous mtCOI are over 7 % and a high num-
ber of nucleotide substitutions was found (61/525, 11.6 %).

Table 2 Interspecific and intraspecific K2P distances of COI from
Ostertagiinae

Markers COI

Average interspecific distance 0.136±0.029

Theta prime 0.139±0.023

Minimum interspecific distance 0.127±0.025

Average intraspecific distance 0.037±0.027

Theta 0.031±0.012

Coalescent depth 0.058±0.039
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But, the number of amino acid substitution was 10/175
(5.7 %), which is less than the nucleotide substitutions.
Furthermore, the NJ phylogenetic analyses recovered a large
clade of the mtCOI from Ostertagiinae and a small clade of

numts from Ostertagiinae (Fig. S1). Then, two clades formed
a larger polytomous clade. Based on the above results, it is
inferred that if the numts were used in DNA barcoding, the
380# and 491# would be classified to an inexistent species but

Fig. 2 Phylogeny of Ostertagiinae species resulting from neighbor-
joining analysis of COI. Numbers on branches correspond to bootstrap
support (1000 replicates). , Teladorsagia circumcincta; , Ostertagia
gruehneri; , Teladorsagia trifurcata; , Teladorsagia davtiani; ,
Marshallagia mongolica; , Marshallagia grossopiculum; ,

Ostertagia lanceata; , Ostertagia ostertagi; , Ostertagia lyrata;
, Ostertagia wuhingensis; , Ostertagia xizangensis; , Ostertagia

occidentalis; , Marshallagia hsui; , Ostertagia dahurica; ,
Ostertagia buriatica; , Anisakis simplex
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Fig. 3 Phylogeny of Ostertagiinae species resulting from Bayesian analysis of COI. Numbers on branches are posterior probabilities

Table 3 Performance of COI in species identification of Ostertagiinae

Methods No. of
sequences

No. of
species

No. of identified
sequences

No. of identified
species

Rates of sequence
identification

Rates of species
identification

NN 171 11 149 7 87.13 % 63.64 %

BLASTn 171 11 152 7 88.89 % 63.64 %
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not M. mongolica and the number of species in Ostertagiinae
would be overestimated.

Moreover, there are total ly 19 specimens of
M. mongolica, and only two numts were amplified
while the mtCOI of other 17 specimens could be am-
plified by universal primer directly. So, it is concluded
that the numt is relatively uncommon and limited to a
small number of individuals of M. mongolica. And,
380# and 491# should be more close to each other
compared with other specimens of M. mongolica, as
both of them have similar numts in the genome.

The results support the utility of DNA barcoding
for identification of Ostertagiinae

The genetic divergence analyses showed that there is an over-
lap between within-species and among-species K2P distances
of COI fromOstertagiinae. Moreover, the among-species K2P
distances ranged from 0 to 14.2 % with the average value as
3.69 %. This indicates that there are deep intraspecific se-
quence divergences within Ostertagiinae, and this may hinder
the effort to species identification of Ostertagiinae using DNA
barcodes. In this study, liberal tree-based methods, BLASTn,
and NN were examined in species identification of
Ostertagiinae using COI.

The NJ phylogenetic analyses (Fig. 2) showed 12
phylogenetic clades, and most of these clades were
highly bootstrap supported (>80 %). The NJ tree only
recovered monophyly for nine of 14 species with three
species represented by just one individual. The Bayesian
analyses (Fig. 3) were basically consistent with the NJ
analyses and recovered 13 phylogenetic clades. The se-
quences of T. circumcincta were divided into two phy-
logenetic clades in the Bayesian analyses, while the two
T. circumcincta groups only formed two lineages within
the monophyly clade in the NJ analyses. It should be
noticed that the monophyletic clade of T. circumcincta
in NJ analyses was weakly supported (<50 %).
Furthermore, the mean genetic divergences (K2P) be-
tween the two T. circumcincta groups reach to 12.1 %,
which indicates that T. circumcincta is perhaps species
complex. Based on the microsatellite genotyping, a pre-
vious study supported the hypothesis that Teladorsagia
davt iani and T. tr i furcata are morphotypes of
T. circumcincta (Grillo et al. 2008). In the NJ analyses,
the T. circumcincta, T. davtiani, T. trifurcata, and anoth-
er species O. gruehneri formed one great phylogenetic
clade with very low bootstrap supported (<10 %). In the
Bayesian analyses, the four species formed three differ-
ent phylogenetic clades which separated from each oth-
er. Nowadays, molecular genetic tools are increasing
using alongside classical taxonomy for species delimita-
tion and the concept of molecular operational taxonomic

units (MOTUs) has been utilized to taxonomic surveys
of some special biological group with confused species
designations. Based on the theory of MOTUs,
T. davtiani, T. trifurcata, and T. circumcincta should
be treated as three separately species, which is inconsis-
tent with conclusion based on the microsatellite
genotyping. We considered that the taxonomic status
of the three species should be further examined based
on more molecular data.

Our previous data has shown that the NN and BLASTn
methods have advantage over the tree-based methods in spe-
cies identification of ticks (Lv et al. 2014). In this study, the
NN and BLASTn methods both performed well in the species
identification of Ostertagiinae and the rates of the sequence
identification success were separately 87.13 and 88.89 %. The
incorrectly identified sequences belong to four species:
M. grossopiculum, M. mongolica, O. buriatica, and
O. dahurica. Further study showed that two species
(M. grossopiculum andM. mongolica) revealed shallow inter-
specific sequence divergence (<1 %) as well as other two
species (O. buriatica and O. dahurica). It is inferred that
two reasons could explain this phenomenon. Firstly, the
Ostertagiinae is an important subfamily within nematode in
which species designations are particularly confused and re-
main to be completely defined (Borji et al. 2011; Grillo et al.
2008; Leignel and Cabare t 2001) . So , perhaps ,
M. grossopiculum and M. mongolica are simply morphologi-
cal variations within the same species. Secondly, a large num-
ber of bacterial symbionts in the nematodes have been con-
firmed (Casiraghi et al. 2004; Shapiro-Ilan and Gaugler 2002)
and it is inferred that the species of Ostertagiinae also have
multiple bacterial symbionts. Previous studies showed that the
symbionts can break through the species barrier by hybridiza-
tion followed by selective sweep, resulting in identical
mtDNA sequences among different species (Hurst and
Jiggins 2005; Whitworth et al. 2007), which would cause
the underestimation of the number of unique species under
barcoding.

Conclusions

As the standard DNA barcode, COI is efficient in spe-
cies identification of Ostertagiinae especially when the
methods BLASTn and NN were utilized. Besides, tradi-
tional status of species within Ostertagiinae, which was
mainly determined by morphology, could be closely ex-
amined based on DNA barcoding data. But, nowadays,
there are still several problems to be resolved in
barcoding Ostertagiinae, such as the difficulty to recover
mtCOI from Ostertagiinae and confused species desig-
nations within Ostertagiinae.
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