
ORIGINAL PAPER

Leucocytozoon pterotenuis sp. nov. (Haemosporida,
Leucocytozoidae): description of the morphologically unique
species from the Grallariidae birds, with remarks
on the distribution of Leucocytozoon parasites in the Neotropics

Ingrid A. Lotta & Angie D. Gonzalez & M. Andreína Pacheco & Ananias A. Escalante &

Gediminas Valkiūnas & Ligia I. Moncada & Nubia E. Matta

Received: 24 November 2014 /Accepted: 15 December 2014 /Published online: 30 December 2014
# Springer-Verlag Berlin Heidelberg 2014

Abstract We descr ibe morpholog ica l ly un ique
Leucocytozoon pterotenuis sp. nov. (Haemosporida,
Leucocytozoidae), the first reported leucocytozoid species
developing in fusiform host cell found in a Neotropical
passeriform bird. The type host of this parasite is the
Chestnut-crowned Antpitta (Grallaria ruficapilla ,
Grallariidae), an elusive native passerine bird whose natural
history remains, to a large degree, unexplored. This bird was
captured in Palacio forest in the damping zone of Chingaza
National Natural Park, Cundinamarca, Colombia, at 2900 m
above sea level (asl). Gametocytes of the new species develop
both in roundish and fusiform host cells. This parasite is
readily morphologically distinguishable from the described
Leucocytozoon species because its host cells possess the nar-
row (needle-like) spindle-shaped processes, which length
markedly exceeds their width. Additionally, the host cell
nucleus markedly extends into the processes. Phylogenetic
relationships were constructed based on a fragment of the
mitochondrial cytochrome b gene and the complete

mitochondrial genome. Phylogenetic analysis placed the line-
age of L. pterotenuis in different positions depending on the
length of the sequence analyzed that is likely due to poor
sampling of Leucocytozoon species, especially from rare or
non-passerine hosts, as well as a paucity of complete mito-
chondrial sequences of these parasites. Available data indicate
that Leucocytozoon parasites are distributed mainly in moun-
tain regions of the Neotropics where unique morphological
forms have been recently discovered. To a better knowledge
of the diversity of Leucocytozoon spp. and their host–vector–
parasite interactions in Neotropical countries, additional deep
and intensive samplings are needed, particularly in orders
different to Passeriformes.
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Introduction

Studies characterizing biological diversity have gained mo-
mentum largely due to the goods and services that ecosystems
provide to human communities. There are efforts to measure,
assess, and conserve biodiversity that have incorporated par-
asitic species as a source of information about their hosts.
Parasites are a diverse ecological guild that is present in almost
all ecosystems. They affect the host behavior, growth,
lifespan, and fecundity; moreover, they may provide informa-
tion about the natural history of the host, trophic relationships
in ecosystems in which they occur, their evolution, and distri-
bution patterns (Pérez Ponce de León and García 2001; Poulin
et al. 2011).

Currently, approximately 200 species of avian malaria
parasites and related hemosporidians have been described
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based on traditional taxonomy (Valkiūnas 2005). However, it
is well known that molecular tools have revealed high hidden
lineage diversity (Bensch et al. 2004). Regardless this appar-
ent species richness, limited attention has been given to the
characterization and description of new species, particularly in
tropical countries.

The Andean mountains have been recognized for their
great variety of ecosystems and biodiversity hotspots (Josse
et al. 2009). Recent studies in this region have shown new
species of avian hemosporidian parasites as well as new
ecological host–parasite interactions (Mantilla et al. 2013a,
b; Matta et al. 2014a). Considering that these mountains
harbor around 2000 avian species with almost 600 of them
endemic (Herzog and Kattan 2011), it is expected that such
host diversity will correlate with a high parasite diversity.
Unfortunately, there are many avian species with limited or
no records of their parasites. Among them, we can find those
species belonging to the family Grallariidae. Birds of this
family are widely distributed from Central to South
America, with maximum species diversity in the tropical
Andes. Twenty-seven out of 51 species described in the family
have been reported in Colombia, and six are categorized as
extinction risk (McMullan et al. 2011; IUCN 2014).

Here, we investigate the hemoparasites associated to the
Chestnut-crowned Antpitta (Grallaria ruficapilla); this is a
ground passerine bird belonging to the family Grallariidae that
inhabits the scrublands and understory of humid Neotropical
forests (McMullan et al. 2011). This species is widely distrib-
uted through the Andes mountains of Colombia, Ecuador,
Peru and Venezuela between 1200 to 3600 m above sea level
(asl) (BirdLife 2014). Different to other Antpittas, this bird can
be easily found in heavily degraded tropical forest (Krabbe
and Schulenberg 2004). There is limited information on the
host parasite infections where Grallaridae species and its close
relatives of the Formicariidae are involved. They have been
found infected withPlasmodium,Haemoproteus, microfilaria,
and Trypanosoma parasites (Galindo and Sousa 1966; White
et al. 1978). Leucocytozoon infections have been detected
only by molecular methods in Stripe-headed Antpitta
Grallaria andicolus and Grallaria sp. at the Peruvian Andes
(Witt andMcNew, unpublished data). However, because abor-
tive hemosporidian infections have been reported in birds
(Levin et al. 2013), it remains unclear if the reported
leucocytozoids complete life cycle or produce gametocytes
inGrallaria species. Observation of blood stages is necessary
to answer this question. In this study, two different Grallaria
species were found infected with Leucocytozoon
hemoparasites. In one of them, the Chestnut-crowned
Antpitta, a new parasite species was found with gametocytes
developing in fusiform host cells, which were reported for the
first time in Passeriformes birds in South America. In this
study, the morphological description and molecular character-
ization of Leucocytozoon pterotenuis sp. nov, a parasite of

Chestnut-crowned Antpitta, are provided. We discuss phylo-
genetic relationship and possible host association of this par-
asite as well as patterns of distribution of Leucocytozoon
parasites in the Neotropics.

Materials and methods

Sampling area

Birds were captured using mist nets at the highland at four
sites in Colombia: (1) Otun Lagoon, Los Nevados National
Natural Park (NNP) from April 2010 to April 2011, (2)
Pupiales (Nariño department) in December 2012, (3) Palacio
Forest (Chingaza NNP) from February 2012 to February
2014, and (4) Monter Redondo Station (Chingaza NNP) from
December 2008 to October 2009 and from June to July of
2012. Otun Lagoon (4° 46′ N, 75° 24′W) is located at central
mountain range in Los Nevados NNP, at 3950 m asl.
Landscape is dominated by Páramo ecosystem and Andean
forests with an average annual temperature of 6 °C and an
annual average rainfall of 1250 mm (Vásquez and Serrano
2009).

Pupiales (0° 54′ N, 77° 39′W) is located at the south of the
Colombian Andes in Nariño department. Sampling was car-
ried out at 3014 m asl, where montane dry and wet forests, as
well as Páramo ecosystem, are present; however, the land is
used mainly for agricultural activities. In the latter area, the
annual media rainfall is 942.85 mm and the average temper-
ature is 12 °C (Cadena et al. 2012). The Chingaza NNP is
located in Colombian Oriental mountain range. Palacio forest
(4° 41′ N, 73° 50′ W) is an Andean forest situated in the
damping zone of the park at 2900m asl in the lower altitudinal
boundary of Páramo ecosystem. The temperature ranged be-
tween 12 and 18 °C in this area, but it may be under 0 °C, and
the annual average of rainfall is 1900 mm (Vargas-Rios et al.
2004). Monte Redondo Station is located at 3100 m asl in an
area covered mainly by Páramo ecosystem, where average
temperature ranges between 6 and 7 °C; however, like in
Palacio forest, temperature can fall below 0 °C, and the
average rainfall in this area can reach 2900 mm (Vargas-
Rios et al. 2004). For all localities, except for Pupiales, sam-
pling dates included rainy and dry periods. Birds were iden-
tified according to the South American Classification
Committee (Remsen et al. 2012).

Sample and blood film examination

Blood samples were obtained by bird brachial vein puncture.
From each bird, three thin smears were prepared, air-dried,
fixed in absolute methanol for 5 min, and stained with Giemsa
(pH 7.2) for 45 min. In addition, three drops of blood
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(approximately 50 μl) were stored in SET buffer (0.05M Tris,
0.15 M NaCl, 0.5 M EDTA, pH 8.0) for molecular tests.

Blood films were examined by double-blind microscopic
examination, first at ×100 for 10 min and then at ×1000 for
20 min, using a Leica DM750 microscope. Digital images
were taken with a Leica EC3 camera; they were processed
using the LAS EZ software (Leica Microsystems, Wetzlar,
Germany). Morphometric features of parasites were those
described by Valkiūnas et al. (2010). At least 100 images of
the new parasite species were obtained and studied; measure-
ments were made digitally upon 31 best quality images of
gametocytes using ImageJ (Schneider et al. 2012).

Intensity of infection was determined according to Muñoz
et al. (1999) by counting the number of parasites in 100
microscopic fields at high magnification (×1000), where red
blood cells were forming a single monolayer. Differential
counts of white blood cells were done on smears by visuali-
zation of 100 white blood cells and counting eosinophils,
heterophils, and lymphocytes (Hauptmanova et al. 2002).

DNA extraction, cytochrome b gene, and complete
mitochondrial genome amplification and sequencing

The parasite molecular characterization was carried out by
using the mitochondrial cytochrome b gene (Escalante et al.
1998). This gene has been widely used in malarial parasites,
and there is a substantial database that allows comparing our
findings with those reported by others. DNA was extracted
only from microscopy-positive blood samples using a stan-
dard phenol–chloroform protocol (Sambrook et al. 1989). Due
to the limited availability of stored blood samples of the
Grallaridae birds, only two samples out of three sampled
individuals, one from Chestnut-crowned Antpitta
(G. ruficapilla) and one from Tawny Antpitta (Grallaria
quitensis) were processed. Molecular detection of
Leucocytozoon was made amplifying cytochrome b gene ac-
cording to the nested PCR protocol recommended byHellgren
et al. (2004). Amplified products were visualized on a 1.5 %
agarose gel and purified using differential precipitation with
ammonium acetate protocol (Bensch et al. 2000) and se-
quenced in both senses using a 3730 xl DNA Analyzer
(Applied Biosystems, Foster City, CA, USA) through
Macrogen (Macrogen Inc.).

In addition to the cytochrome b, the complete mitochon-
drial genome (mitochondrial DNA (mtDNA)) was also am-
plified, cloned, and sequenced from both individuals;
Chestnut-crowned Antpitta and Tawny Antpitta were infected
with different morphospecies of Leucocytozoon. We amplified
5895 base pairs (bp) of the parasite mtDNA using primers
forward 5′ GA GGA TTC TCT CCA CAC TTC AAT TCG
TAC TTC/reverse 5′ CAG GAA AATWATAGA CCG AAC
CTT GGA CTC with TaKaRa LA Taq™ Polymerase
(TaKaRa Mirus Bio Inc, Shiga, Japan). Details about PCR

protocol and cloning are described by Pacheco et al. (2011a,
b). Both strands for at least three clones were sequenced using
an Applied Biosystems 3730 capillary sequencer. The partial
cytochrome b gene and the mtDNA genome sequences were
deposited in GenBank accession nos. KM610045,
KM610046, KM272250, and KM272251.

Phylogenetic analysis

In order to estimate phylogenetic relationships between the
new species and other hemosporidian parasites, two indepen-
dent alignments were made as follows: one for partial se-
quences of cytochrome b gene (476 bp) and another for almost
complete mtDNA genome (5456 bp excluding gaps). First, an
alignment was done using 19 cytochrome b sequences with
476 nucleotides edited and aligned with MEGA5 software
(Tamura et al. 2011). Sequences included in the analyses were
obtained from GenBank (five sequences) and MalAvi data-
base (six sequences) (Bensch et al. 2009) and generated in this
study (eight sequences).

Bayesian methods implemented on MrBayes v3.1.2
(Ronquist and Huelsenbeck 2003) were used to do the phylo-
genetic reconstructions under the general time-reversible
model (GTR+I+Γ), the best of 88 models according to the
corrected Akaike information criterion implemented on
jModelTest 2.1.1 (Darriba et al. 2012). Phylogeny with nodal
support was inferred in MrBayes using two independent runs
of 5×106 generations, sampled every 100 generations. A
majority rule consensus phylogeny was obtained from 25,
000 trees after discarding the 25 % of the trees as burn-in
period. In addition, a maximum likelihood analysis was con-
ducted using RAxML Black Box through CIPRES portal
(Miller et al. 2010). This analysis was carried out applying
the same model as for Bayesian inference, using 1000 boot-
strap replications. After, the phylogenies were visualized and
edited using FigTree v1.3.1 (Rambaut 2006).

Second, the mtDNA genome alignment was made using
ClustalX v2.0.12 and Muscle as implemented in SeaView
v4.3.5. This alignment included the 18 mitochondrial ge-
nomes available in the GenBank for hemosporidians isolated
from lizards and birds. The mtDNA alignment was further
divided into four categories where each gene (cytochrome
oxidase I, cytochrome oxidase III, and cytochrome b) was
used as a separate partition plus the non-coding regions
(Pacheco et al. 2011a). The phylogenetic relationships were
estimated on mtDNA genome alignment by using both the
maximum likelihood (ML) method implemented in PhyML
v3.0 (Guindon et al. 2010) and Bayesian methods using
MrBayes v3.1.2 with the default priors (Ronquist and
Huelsenbeck 2003). The reliability of the nodes in the ML
tree was assessed by the bootstrap method with 200 pseudo-
replications. Bayesian support for the nodes was inferred in
MrBayes using 6×106 Markov Chain Monte Carlo (MCMC)
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steps, and after convergence was reached, we discarded 25 %
of the sample as “burn-in” periods. In both cases, cytochrome
b and mtDNA analyses, convergence is reached when the
value of the potential scale reduction factor (PSRF) is between
1.00 and 1.02 and the average standard deviation of the
posterior probability is below 0.01 (Ronquist and
Huelsenbeck 2003). General time-reversible model (GTR+
I+Γ) was also the best fit to these data, as estimated by
MEGA v5.0 (Tamura et al. 2011) .

In addition, divergences among specific pairs of
Leucocytozoon species were estimated on partial cytochrome
b gene and mtDNA genomes using the Kimura two-parameter
model of substitution as implemented inMEGAv5.0 (Tamura
et al. 2011).

Results

Out of 774 birds sampled from 81 species, 22 families and 9
orders, 36 (4.65 %) were found infected with different
Leucocytozoon species diagnosed by microscopic examina-
tion of blood film. Three individuals from Grallaridae were
captured as follows: one individual of Tawny Antpitta
(G. quitensis) in Pupiales, one individual of the same species
in Otun Lagoon, and one Chestnut-crowned Antpitta
(G. ruficapilla) in the Palacio forest. Two Tawny Antpitta,
one from Pupiales and one from Otun Lagoon, were found
infected with Leucocytozoon sp. Gametocytes of these birds
were seen only in roundish host cells (Fig. 1a–c). The cyto-
plasm contains small vacuoles; the host cell nucleus had cap-
like shape, and it extends less than one half of the circumfer-
ence of gametocyte (Fig. 1a–c). However, both birds showed
low intensity of infection and scarce number of morphological
stages, making impossible the species identification.
Nevertheless, it was possible to obtain both a cytochrome b
lineage and complete mitochondrial DNA from the Antpitta
captured in Pupiales (GenBank Accession nos. KM272251,
KM610045). On the other hand, the Chestnut-crowned
Antpitta captured in the Palacio forest showed an infection
with morphologically unique L. pterotenuis sp. nov. (preva-
lence 0.13 %) (Table 1); its white blood cell counts were 68 %
of heterophils, 18% of eosinophils, and 16% of lymphocytes.
This individual was also found coinfected with microfilaria
and Trypanosoma sp.

Description

L. (Leucocytozoon) pterotenuis sp. nov.

Macrogametocytes (Fig. 1d–k) Develop in fusiform (Fig. 1f–
k) and roundish (Fig. 1a–c) host cells (Table 2). Gametocytes
in roundish host cells are roundish in shapes (Fig. 1d, e).

Gametocytes in fusiform host cells vary from oval to ellipsoid
in shapes. Parasite nucleus varies from roundish (Fig. 1j) to
elongate (Fig. 1g); its position is markedly variable in game-
tocytes. Nucleolus was visible in 57 % of gametocytes in
fusiform host cells. The parasite cytoplasm contains large
number of small vacuoles (Fig. 1i, j); volutin granules were
seen in 43 % of gametocytes (Fig. 1f, h). The nucleus of
fusiform host cell is displaced, is deformed, and lies periph-
erally like a homogeneous band with ends markedly extend-
ing beyond the circumference of gametocytes and not touch-
ing the gametocytes (Fig. 1f–k). The cytoplasm of host cells
forms two long, narrow spindle-shaped processes, which are
of needle-like shape, and their length is markedly greater than
widths (Fig. 1f–k). Host cell nucleus markedly extends into
the cytoplasmic processes, a distinctive character of this spe-
cies (Fig. 1f–k). Gametocytes in roundish host cells possess
roundish nucleus of variable position; nucleolus was seen in
28 % of the gametocytes. Small vacuoles (Fig. 1d, e) and
volutin granules were seen in 43 and 85 % of the gametocytes
developing in fusiform and roundish host cells, respectively.
The nucleus of roundish host cell is pushed aside, is deformed,
and looks like a cap; it extended less than one half of the
circumference of gametocyte (Fig. 1d, e). Remnants of the
host cell cytoplasm are usually seen around the gametocytes
as an envelope of variable form (Fig. 1d, e).

Microgametocytes (Fig. 1l) General configuration and other
features as for macrogametocytes with the usual hemosporidian
sexual dimorphic characters. Proportion of microgametocytes
and macrogametocytes in the type material is 1:4.
Measurements were taken upon one parasitized cell due to
marked fragility of the gametocytes during preparation of blood
smears, resulting in distorted morphology of the majority
observed parasites.

Remarks

L. pterotenuis develops in roundish and fusiform host cells.
This parasite can be readily distinguished from other de-
scribed leucocytozoids due to unique shape of nuclei of its
fusiform host cells. Mainly, the nuclei of fusiform host cells
assume band-like forms (without thickenings on the ends);
their covering between 30 and 55 % of the circumference of
the gametocytes possesses markedly narrowed ends and ex-
tends into the cytoplasmic processors of host cells. These
morphological characters are unique for this parasite.

Gametocytes in fusiform host cells develop in many
species of Leucocytozoon which parasitize different orders
of birds, but they are rare in passeriform birds. Only three
species of leucocytozoids, which inhabit fusiform host
cells, parasitize passerines. These are Leucocytozoon
balmorali, which parasitizes Grey-headed Bush-shrike
(Malaconotus blanchoti), Willow Warbler (Phylloscopus
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trochilus), Olive Bush-shrike (Malaconotus olivaceus), and
Brown-crowned Tchagra (Tchagra australis) and some oth-
er bird species (Peirce 1984), Leucocytozoon maccluri
which type host is Dark-sided Thrush (Zoothera
marginata) (Greiner 1976) and Leucocytozoon hamiltoni
which type host is Turkestan Tit (Parus bokharensis)
(Valkiunas et al. 2002). None of these parasites possesses
band-like host cell nuclei, which extend into the cytoplas-
mic processers. Due to this character, L. pterotenuis is
similar to Leucocytozoon simondi, a specific parasite of
birds belonging to the Anseriformes. In the latter parasite,
nucleus of fusiform host cell looks like a more or less

evident dumbbell-shaped band with clear thickenings at
both ends (Valkiūnas 2005). The latter character is not
characteristic of the new species.

Taxonomic summary

Type host: the Chestnut-crowned Antpitta, G. ruficapilla
(Grallaridae, Passeriformes).

Additional hosts: unknown.
Type locality: Palacio Forest at the damping zone of

Chingaza NNP (4° 41′ N, 73° 50′ W, 2950 m asl),
Cundinamarca, Colombia.

Fig. 1 Leucocytozoon spp. from
Grallaria sp. of Colombia.
Leucocytozoon sp. found in
Tawny Antpitta Grallaria
quitensis captured at Otun
Lagoon (a, b) and Pupiales (c).
Macrogametocytes (d–k) and
microgametocyte (l) of
Leucocytozoon pterotenuis sp.
nov. from the blood of its type
vertebrate host, Chestnut-
crowned Antpitta Grallaria
ruficapilla Antpitta. d–e
Gametocytes in roundish host
cells. f–lGametocytes in fusiform
host cells. Black arrowheads
parasite nucleus, open
arrowheads parasite nucleolus,
black long arrows vacuoles, open
long arrows volutin granules,
double-triangle arrows host cell
nucleus, asterisk host cell
cytoplasm. Giemsa-stained thin
blood films. Scale bar=10 μm
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Table 1 Occurrence of Leucocytozoon sp. and Leucocytozoon pterotenuis sp. nov. in Colombian birds sampled during this study

Family and bird species No. captured birds Infected birds

No. birds infected with Leucocytozoon sp. No birds infected with L. pterotenuis

Cotingidae

Ampelion rubrocristatus 1 1 0

Emberizidae

Arremon brunneinucha 5 1 0

Arremon torquatus 9 2 0

Atlapetes pallidinucha 14 1 0

Atlapetes schistaceus 5 1 0

Zonotrichia capensis 52 2 0

Grallariidae

Grallaria quitensis 2 2 0

Grallaria ruficapilla 1 1 1

Thraupidae

Anisognathus igniventris 19 1 0

Buthraupis montana 6 1 0

Catamenia inornata 80 2 0

Diglossacyanea 23 1 0

Dubusia taeniata 1 1 0

Hemispingu sverticalis 5 1 0

Phrygilus unicolor 116 1 0

Trochilidae

Heliangelus amethysticollisb 5 1 0

Coeligena heliantheab 13 1 0

Metallura tyrianthinab 26 4 0

Turdidae

Turdus fuscatera 21 6 0

Tyrannidae

Myiotheretes fumigatus 1 1 0

Mecocerculus leucophrys 19 3 0

Phyllomyias nigrocapillus 5 1 0

Total infected with Leucocytozoon 36 1

Prevalence of Leucocytozoon sp 4.65 %

Prevalence of L. pterotenuis sp. nov. 0.13 %

Uninfected birdsc 345

Total 774

Type host of L. pterotenuis is highlighted in bold. A list of uninfected birds is provided in the end of the table
a Previous reports of birds infected with Leucocytozoon sp. were made by Lotta et al. (2013)
b Previous reports of birds infected with Leucocytozoon sp. were made by Matta et al. (2014a)
c Uninfected birds (number of examined individuals is given in parenthesis): Anatidae: Anas flavirostris (1), Caprimulgidae: Systellura longirostris (2),
Corvidae:Cyanolyca viricyana (1), Emberizidae:Atlapetes rufinucha (1), Furnariidae:Asthenes flammulata (2),Cinclodes excelsior (21), Leptasthenura
andicola (15), Margarornis squamiger (11), Pseudocolaptes boissonneautii (1), Schizoeaca fuliginosa (1), Synallaxis albescens (2), Hirundinidae:
Orochelidon murina (52), Icteridae: Amblycercus holosericeus (2), Parulidae: Basileuterus luteoviridis (1), Basileuterus nigrocristatus (25),Myioborus
ornatus (10), Picidae: Colaptes rivolii (1), Rallidae: Fulica ardesiaca (3), Ramphastidae: Andigena nigrirostris (1), Rhinocryptidae: Scytalopus
latebricola (1), Scolopacidae: Gallinago nobilis (1), Thraupidae: Conirostrum rufum (5), Conirostrum sitticolor (3), Catamblyrhynchus diadema (2),
Diglossa albilatera (10), Diglossa caerulescens (4), Diglossa humeralis (16), Diglossa lafresnayii (8), Hemispingus atropileus (8), Hemispingus
superciliaris (4), Tangara vassorii (2), Tinamidae: Nothocercus julius (1), Trochilidae: Aglaectis cupripennis (1), Chalcostigma heteropogon (3),
Coeligena bonapartei (1), Eriocnemis cupreoventris (9), Eriocnemis derbyi (4), Eriocnemis vestitus (12),Heliangelus exortis (2), Lafresnaya lafresnayi
(1),Metallura williami (5), Oxypogon guerinii (3), Ramphomicron microrynchum (1), Troglodytidae: Cinnycerthia unirufa (23), Cistothorus platensis
(2),Henicorhina leucophrys (7), Troglodytes aedon (2), Trogodytes solstitialis (2), Trogonidae: Trogon personatus (1), Tyrannidae: Anairetes agilis (6),
Anairetes parulus (1), Elaenia frantzii (3), Mecocerculus stictopterus (7), Mecocerculus minor (1), Ochthoeca cinnamomeiventris (2), Ochthoeca
diadema (1), Ochthoeca fumicolor (23), Ochthoeca rufipectoralis (3), Phyllomyas uropygialis (1)
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Type specimens: Hapantotype (accession no. GERPH-
07966, intensity of infection is 0.05 %, lineage KM272250
L_GRRUF01, collected by Rocio Hernández, 10 February
2014) was deposited in the biological collection Grupo de
Estudio Relación Parásito Hospedero (GERPH) at
Universidad Nacional de Colombia, Bogotá, Colombia.
Parahapantotypes (accession nos. GERPH-07962, GERPH-
07963, GERPH-07964, GERPH-07965, GERPH-07967,
GERPH-07968, GERPH-07969, GERPH-07970, and
GERPH-07971, other data as for the hapantotype) were de-
posited in the same collection. Digital images of blood stages
of the parasite in the type preparations are available on request
from GERPH.

DNA sequences: mitochondrial cytochrome b lineages
L_GRRUF01 (GenBank no. KM272250) were detected from
the same individual bird, from which hapantotype was origi-
nated. The L. pterotenuis complete mtDNA genome sequence
was deposited in the GeneBank (KM610046).

Site of infection: blood cells, which origin is unclear.
Prevalence: The prevalence in the type host was 1 of 1

(100%). In the type locality, 1 of 278 birds captured at Palacio
Forest (0.36 %) was infected, as determined by microscopic
examination. The overall prevalence (1 of 774 examined
birds) was 0.13 % (Table 1).

Etymology: The species name (pterotenuis) was derived
from the Latin words tenuis (thin) and ptero (wing); it refers to
the slender elongated cytoplasmic processes of host cells of
the parasite.

Phylogenetic relationships of parasites

Lineages used to estimate phylogenies based on partial cyto-
chrome b sequences clustered in similar clades in the trees
constructed using both phylogenetic methods: Bayesian
(Fig. 2a) and ML (Fig. 2b). Nevertheless, it is important to
note the low support obtained in many nodes from these

Table 2 Morphometry of gametocytes and host cells of Leucocytozoon pterotenuis sp. nov. Microgametocytes in roundish host cells were not seen in
the sample

Feature Leucocytozoon pterotenuis sp. nov Lineage KM272250 L_GRRUF01a

Gametocytes in roundish host cells Gametocytes in fusiform host cells

Macrogametocyte n=7 Macrogametocyte n=31 Microgametocyte n=1

Parasite

Length 10.3–14.8 (12.7±1.9) 12.7–17.3 (14.6±1.2) 17.9

Width 10.0–13.9 (11.8±1.3) 5.4–10.0 (8±0.9) 4.7

Area 83.5–145.6 (120.0±25.1) 76.5–116.0 (94.2±9.7) 72.8

Perimeter 32.4–44.4 (39.3±4.5) 34.2–43 (38.2±2.4) 39.8

Parasite nucleus

Length 2.9–5.1 (3.5±0.7) 2.7–5.2 (3.7±0.6) 13.85

Width 2.2–3.4 (2.7±0.4) 1.8–3.3 (2.5±0.4) 4.46

Area 6.5–13.6 (8.4±2.4) 4.2–9.9 (7.3±1.4) 31.11

Host cell–parasite complex

Length 13.3–20.1 (17.0±2.0) 36.3–54 (45.6±4.8) 47.1

Width 12.2–17.2 (14.8±2.0) 6.6–11.3 (9.3±1) 5.4

Area 130.0–240.4 (200.3±38.1) 135.0–196.6 (165.6±13.1) 131.8

Host cell nucleus

Length 8.6–16.2 (12.0±2.8) 29.8–46.3 (37.2±3.7) 40.9

Width 2.2–3.3 (2.8±0.4) 1.0–2.7 (1.6±0.4) 1.37

Area 14.3–29.2 (24.8±5.2) 40.6–59.1 (50.3±5.1) 54.8

Perimeter of parasite covered 9.9–15.3 (12.0±2.1) 20.0–27.5 (23.4±1.8) 22.64

Length of host cell nucleus, which locates inside the
cytoplasmic processes

3.5–11.2 (6.8±1.9) 9.12

Cytoplasmic processesb

Length 10.3–21.3 (14.9±3.0) 16.0

Width 1.4–3.4 (2.6±0.6) 2.2

Area 9.8–35.3 (21.4±6.9) 21.1

aMeasurements are given in micrometer or squared micrometer. Minimum and maximum values and mean ± SD are provided
b In each parasite, only one of two cytoplasmic processes was measured
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analyses. However, in both phylogenetic trees, the cyto-
chrome b sequences of L. pterotenuis did not cluster with
other sequences of passerine Leucocytozoon spp. Unlike
Leucocytozoon sp. lineages detected in the Peruvian
Grallaria species, the Colombian Leucocytozoon sp. found
in birds of the same genus has clustered close to
Leucocytozoon quynzae, a parasite recently reported in birds
of the Trochilidae (Matta et al. 2014a). It is noteworthy that
this parasite is located in unsolved clades in both phylogenies.

Genetic distance between L. pterotenuis (L_GRRUF_01
GenBank accession no. KM272250) and Leucocytozoon sp.
from Tawny Antpitta (GRQUI_01 GenBank accession no.

KM272251) estimated on partial cytochrome b sequences
was 4.3 %, being the smallest difference reported when com-
pared with another leucocytozoids of passerine birds
(Table 3).

The phylogeny estimated with complete mitochondrial
genomes is shown in Fig. 3. In this limited dataset, two
well-supported clades of Leucocytozoon species were found
sharing a common ancestor. In one clade, L. pterotenuis ap-
pears as sister taxa of Leucocytozoon sabrazesi (AB299369)
isolated fromMalaysian chicken, and the other clade included
Leucocytozoon fringillinarum, Leucocytozoon majoris, and
L. quynzae. The average genetic divergences using complete

Fig. 2 Bayesian (a) and
maximum likelihood (b)
phylogenetic hypothesis
constructed using 476 bp of
cytochrome b sequences of
Leucocytozoon sp. from different
bird hosts. Lineage of
Leucocytozoon pterotenuis sp.
nov. is given in bold font. A
lineage of Haemoproteus
columbae was used as outgroup.
GenBank accession numbers or
alternative lineage names of
sequences from MalAvi are
provided before the parasite
species names. Bootstrap values
and posterior probabilities are
shown above the nodes. The
branch lengths are drawn
proportionally to the amount of
change and the scale bars shown
substitutions per site
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mtDNA and the three mitochondrial genes among
Leucocytozoon species are given in Table 4.

Discussion

The northern portion of the Andean mountain ranges has
almost the same number of species of the Amazon basin in
an area that is 14-fold smaller (Herzog and Kattan 2011).
These levels of species richness and endemicity likely involve
a great number of host–parasite relationships that have not
been explored. Indeed, in the last 10 years, Leucocytozoon
spp. ceased to be considered as exotic parasites in the
Neotropical countries, to become common element of resident
bird parasitic fauna. However, transmission of leucocytozoids
seems to be restricted to mountain areas and is rare on low-
lands of the Neotropic (Forrester et al. 2001; Rodríguez et al.
2009; Lotta et al. 2013; Matta et al. 2014a). Leucocytozoids
are nearly absent from birds at lowlands of the Neotropics,
including the Amazonian basin (White et al. 1978; Belo et al.
2011; Lacorte et al. 2013; Svensson-Coelho et al. 2013). Such
markedly spotty occurrence in birds is a unique character of
Leucocytozoon spp. distribution of the Neotropics in compar-
ison to other zoographical regions, in which these parasites are
present and often prevalent both in lowlands and highlands
(Valkiūnas 2005). Experimental research on vectors of

leucocytozoids is lacking in the Neotropics but is essen-
tial for understanding distribution, epidemiology, and
evolution of these parasites, some species of which cause
diseases, sometimes even lethal, both in domestic and
wild birds (Forrester and Greiner 2008; Santiago-Alarcon
et al. 2012).

Antpittas (Grallaridae) are territorial ground passerines,
which are of broad altitudinal distribution in Colombia; they
have been reported between 300 and 4000 m asl. This genus
reaches its highest diversity in Andean mountains above
800 m.; the four endemic species reported for this country
are distributed upon 1200 m asl. Few individuals of
Grallaridae have been reported as infected by avian
hemosporidans (Galindo and Sousa 1966; White et al.
1978). The scarce number of infections of Antpittas might
be explained by the ecological and behavioral traits of these
birds (Kattan and Beltran 1999); since they are difficult to
capture by mist netting. It is noteworthy that 100 % (3 of 3) of
individual birds belonging to this genus sampled in Colombia
were infected with Leucocytozoon spp. In general
hemoparasite infections may be overlooked due to low
parasitemias that make difficult to detect parasites using mi-
croscopic examination (Valkiūnas et al. 2008). It is notewor-
thy that the type host was coinfected with other two blood
parasites (Trypanosoma and microfilaria) and the proportion
of eosinophils was high when compared with previous data of
white blood cell counts in birds (Hauptmanova et al. 2002;

Table 3 Genetic distance (percentage) calculated using Kimura two-parameter model of substitutions, between some cytochrome b lineages of
Leucocytozoon spp. used in Fig. 2

1. 2. 3. 4. 5. 6. 7. 9. 11. 12. 13. 14. 15. 16. 17. 18. 19.

1. FJ168564

2. FJ168563 9.1a

3. AB299369 18.3 18.5

4. FJ168562 22.2 21.9 21.2

5. GALLUS06 7.5a 7.3a 17.8 22.4

6. ACNI1 20.5 19.9 18.4 20.9 18.9

7. AEFUN02 9.8 8.4 19.9 21.3 7.7a 23.3

9. BUBT2 22.7 21.5 19.9 23.2 20.0 9.7 23.0

8. KF309188 (HEAME01) 9.4a 7.0a 17.2 21.1 4.9 18.8 7.3 21.3

9. KM272251 (GRQUI_01) 9.1 7.9 18.0 21.3 5.8 20.2 7.3 23.1 3.8

10. KM272250 (GRRUF_01) 9.8 8.2 18.3 22.5 6.5 18.9 9.6 19.7 5.2 4.3

11. KF717049 (L_PHNIG01) 1.4 9.1 19.1 22.5 7.7 20.7 9.4 23.0 9.1 9.1 10.3

12. KF717047 (MYFUM01) 9.8 3.8 19.1 21.9 6.8 21.3 7.5 22.2 5.9 6.5 7.2 9.4

13. KF717051 (L_ATBRU01) 10.1 4.1 18.8 22.2 6.0 21.3 8.2 21.8 5.7 7.2 7.7 9.6 1.0

14. KF717066 (DICYA_01) 8.6 6.8 17.2 21.5 6.3 20.5 9.1 22.8 6.1 5.4 6.3 8.6 6.3 5.6

15. KF699313. (L_TFUS11) 5.4 8.4 18.8 22.2 6.3 20.4 8.7 21.6 7.7 8.6 8.9 4.7 8.2 7.9 8.7

16. JQ988750.1 2.5 8.6 18.0 22.2 7.0 19.6 9.4 22.2 8.4 8.9 10.1 2.1 9.4 9.1 8.4 4.5

GenBank accessions numbers followed by an alternative lineage names from MalAvi are provided. Leucocytozoon pterotenuis sp. nov. lineage is
indicated in bold. Haemoproteus columbae lineage was used as outgroup
aAccording to Matta et al. 2014a
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Gálvez et al. 2010) . It has been reported that coinfections may
have synergistic or antagonistic effect on birds (Palinauskas

et al. 2011). In this way, the effective detection of this parasite
by microscopy could be the result of an increase in the

Fig 3 Phylogenetic hypothesis
constructed using complete
mitochondrial genomes (5485 bp
excluding gaps) of
Leucocytozoon spp. The values
above branches are posterior
probabilities together with
bootstrap values (in bold) as a
percentage obtained for the
maximum likelihood tree (see
“Materials and methods” section)

Table 4 Genetic distance and standard errors between pairs of species using mitochondrion genomes (mtDNA) sequences of Leucocytozoon lineages
(Fig. 3)

Genetic distance (d ± SE)

Species COXI COXIII CYTB Complete mtDNA

L. pterotenuis vs. Leucocytozoon sp. (AN18B) 0.090±0.009 0.142±0.014 0.163±0.014 0.085±0.005

L. pterotenuis vs. L. sabrazesi 0.163±0.012 0.244±0.019 0.222±0.017 0.152±0.005

Leucocytozoon sp. (AN18) vs. L. sabrazesi 0.219±0.017 0.161±0.012 0.250±0.019 0.150±0.005

L. pterotenuis vs. L. fringillinarum 0.193±0.013 0.230±0.020 0.220±0.016 0.154±0.006

L. pterotenuis vs. L. majoris 0.196±0.013 0.218±0.020 0.237±0.019 0.157±0.006

L. pterotenuis vs. L. quynzae 0.186±0.013 0.211±0.018 0.218±0.017 0.149±0.007

L. sabrazesi vs. L. fringillinarum 0.223±0.015 0.230±0.019 0.210±0.017 0.148±0.005

L. sabrazesi vs. L. majoris 0.211±0.014 0.220±0.019 0.210±0.017 0.147±0.005

L. sabrazesi vs. L. quynzae 0.197±0.013 0.220±0.019 0.191±0.015 0.141±0.005

L. quynzae vs. L. majorisa 0.073±0.010 0.047±0.006 0.058±0.008 0.040±0.003

L. quynzae vs. L. fringillinaruma 0.109±0.013 0.093±0.008 0.069±0.008 0.059±0.003

L. majoris vs. L. fringillinaruma 0.105±0.012 0.095±0.008 0.081±0.009 0.058±0.003

d genetic distance, SE standard error
a According to Matta et al. 2014a
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intensity of infection, caused by a synergistic effect of these
parasites.

L. pterotenuis is the first parasite described in birds of the
Grallaridae; also, this is the first parasite with gametocytes
developing in fusiform host cell that is described in
Passeriformes in South America. This is an important finding
regardless the intensive samplings on the Andean passerine
birds as well as in other localities from Neotropical countries
(Gabaldon et al. 1974; Gabaldon et al. 1975; Gabaldon and
Ulloa 1976; Bennett et al. 1980; Rodríguez et al. 2009; Levin
et al. 2012; Lacorte et al. 2013; Marzal et al. 2014; Galen and
Witt 2014). The only one Leucocytozoon with fusiform ga-
metocytes reported in South America is Leucocytozoon toddi,
which infects Accipitridae (Falconiformes) (Forrester et al.
2001).

A single report of L. pterotenuis in only one avian host does
not provide much information about the parasite and its ecol-
ogy. This parasite is morphologically similar to L. simondi.
Unfortunately, the sequence available for L. simondi has poor
quality in the region that overlaps with our alignment so we
had to exclude it from our phylogenetic analyses. On the other
hand, it is worth noting that L. pterotenuis is phylogenetically
close to L. sabrazesi (possible synonym of Leucocytozoon
macleani according to Valkiūnas 2005), a parasite of the
Galliformes birds. Interestingly, the latter parasite also de-
velops gametocytes both in roundish and fusiform host cells,
but it has not been reported in the Neotropics so far (Valkiūnas
2005). We could speculate that the presence of fusiform host
cells in the type avian host might be a recent host switch from
hosts in which fusiform host cells are common. Indeed, it is
important to mention that there is sympatric presence of
Andean Guan (Penelope montagnii, Cracidae) in Palacio for-
est; however, we have not sampled this species for parasitol-
ogy research. Because parasites in new hosts often are highly
virulent and even cause mortality (Olias et al. 2011), preva-
lence of such infections should be low in wildlife populations
(Toft and Karter 1990). Determining whether this parasite
relates with others found in Cracidae, for example, is simply
a speculation at this point. It seems that the putative narrow
distribution of L. pterotenuis is better explained by the poor
sampling of these rare passerines and many species of non-
passerines in Andes (Matta et al. 2014b).

The phylogenetic relationships reconstructed for
L. pterotenuis showed different results depending on the
length of the sequences used. Reconstructions obtained using
only a fragment of the cytochrome b gene placed
L. pterotenuis inside unsolved nodes closely related with a
parasite from Apodiformes birds. Phylogenies constructed
with different methods showed low nodal supports, mainly
on the deep nodes. It is associated with the size and nature of
this mitochondrial marker. The relatively high rate of evolu-
tion of cytochrome b gene makes it ideal to discriminate
between closely related species (Escalante et al. 1998;

Perkins et al. 2011; Pacheco et al. 2011a); however, the use
of a small fragment of the gene may restrict the informative
sites for the analysis (Matta et al. 2014a). Additionally, anal-
yses carried out using a barcoding approach on sequences like
cytochrome oxidase subunit I or, in our case, cytochrome b
require a good baseline traditional taxonomy that allows to
discern intraspecific from interspecific genetic divergences
(Moritz and Cicero 2004; Valkiūnas et al. 2014). Another
factor that could affect the analysis is the use of paralogous
genes. Mainly, due to the methodology used to amplify the
fragment of cytochrome b, there is a probability to amplify
copies inserted on nuclear genome that have evolved inde-
pendently from target gene (Funk and Omland 2003), leading
to a non-reliable result. This is not our case since we also
confirmed the cytochrome b fragment with the one derived
from the complete (cloned) mtDNA. A more critical problem
in the literature is the use of direct sequencing of PCR
amplicons since mix infections in avian parasites are common
in nature (Pérez-Tris and Bensch 2005; Valkiūnas et al. 2014),
as has been reported in mammals (Pacheco et al. 2013).

In the case of primate malarias, it is well known that partial
cytochrome b sequences lead to spurious phylogenetic rela-
tionships or problems separating species (Pacheco et al. 2013).
The interest on avian malaria and related hemosporidians has
generated a great number of lineages from a variety of birds;
unfortunately many sequences are short and are the result of
direct sequencing. Regardless this growing interest, there is
still poor knowledge about infections in non-passerine birds
and rare passerines as is the case with Antpittas (Dimitrov
et al. 2014). The observed poor nodal support as well as the
contradictions in the position of L. pterotenuis in different
phylogenies might be due to limited sampling of cytochrome
b in leucocytozoids developing in fusiform host cells in pas-
serine or non-passerine birds, as well as the length of the
sequences used.

Evolutionary relationships based on complete mitochon-
drial genome shows that L. pterotenuis is more closely related
to L. sabrazesi than to other passerine leucocytozooids,
supporting the similarity of morphological traits between the-
se two parasites, which both have gametocytes in fusiform
host cells (Valkiūnas 2005). In this phylogeny, polytomies
seen in the analysis obtained using only cytochrome b frag-
ments were solved with a good nodal support. In this way, an
increase of information, preferably from genes of different
origins, can improve our interpretation of the evolutionary
history of these parasites. It is important to keep in mind that
there are only few complete mitochondrial genomes available
for Leucocytozoon species. In this way, despite of the new
informative sites gained by the inclusion of these genes to the
analysis, results obtained with few taxa could be widely
criticized by its sensitiveness to homoplasy (Soltis et al.
2004). To obtain a better estimated of the phylogenetic rela-
tionships, ideally, these analyses should be constructed using a
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larger number of informative genes and taxa (Rokas and
Carroll 2005).

Most of the surveys addressing avian hemosporidians use
mist nets; it is well known that this capture method is biased
toward small passerine birds (Valkiūnas et al. 2003). For better
estimation of avian hemoparasite, biodiversity is desirable to
use different catching methods, for instance, Noose carpet
traps (Gosler 2004) and/or Cannon nets and Bow nets
(Bennett et al. 1992).

In addition to a morphological description, this study pro-
vides the complete mitochondrial genome for the new parasite
species, which, eventually coupled with other markers, will
allow establishing more accurately phylogenetic relationships
among Leucocytozoon species. Additionally, for a better un-
derstanding of evolutionary relationships and ecology of these
parasites, more studies analyzing vector–host–parasite inter-
actions should be developed.
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