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Abstract Anisakis morphotype I is the principal etiologic
agent of human anisakiasis, with differences in pathogenicity
found between the Anisakis simplex s.s. and A. pegreffii spe-
cies; however, the role of morphotype II larvae in this illness is
not well understood. The purpose of this study is to verify the
ability of morphotype II larvae to invade tissues via the
experimental infection of Wistar rats, an animal model which
simulates infection in humans. In the in vivo assay, 7.1 %
(4/56 L3 morphotype II) showed pathogenic potential, defined
as the capacity of the larvae to cause lesions, attach to the
gastrointestinal wall or penetrate it. Two of these larvae, one of
A. physeteris and one of A. paggiae, penetrated the stomach
wall and were found within the abdominal cavity, with the first
one producing a small lesion with blood vessel breakage. The
majority of the L3 larvae of morphotype II were found in the
intestine (51.8 %; 29/56) with the caecum being the least
frequent location (8.9 %; 5/56). In contrast, 44.0 % (11/25)
of the morphotype I larvaec demonstrated pathogenic potential.
Isoenzyme electrophoresis, PCR-RFLP of ITS1-5.8 s-ITS2
and PCR-sequencing of the cox2 mitochondrial gene were
used to identify these larvae as A. physeteris (42.9 %),
A. paggiae (30.3 %) and A. brevispiculata (1.8 %).
Although the morphotype II larvae of A. physeteris and
A. paggiae have lower pathogenic potential than morphotype
I larvae of 4. simplex s.s. (93 and 91 % lower, respectively),
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they may still be implicated in human anisakiasis, as they are
capable of attaching to and penetrating the gastrointestinal
wall of animals, demonstrating a similar pathogenicity to that
of A. pegreffii. The techniques used for the identification of
species reveal a great genetic heterogeneity of 4. paggiae and
A. physeteris, suggesting the existence of sibling species.

Keywords Anisakis physeteris - Anisakis paggiae -
Pathogenic potential - Wistar rat - ITS1-5,8s-ITS2 - cox2

Introduction

Anisakiasis is a parasitic disease occurring in certain countries
in which insufficiently cooked or raw fish is regularly eaten.
The majority of the reported cases are caused by Anisakis L3
larvae of morphotype I which are capable of producing gas-
trointestinal illnesses and/or allergic reactions in humans
(Daschner et al. 2000; Repiso Ortega et al. 2003; Umehara
et al. 2007). Recently, it was found that 4. simplex s.s. and
A. pegreffii larvae of morphotype I have different abilities of
penetrating the muscular tissue of fish and surviving in artifi-
cial gastric fluids, also presenting pathogenecity differences in
Wistar rats, an animal model used to simulate the infection
occurring in humans (Suzuki et al. 2010; Quiazon et al. 2011;
Romero et al. 2013; Zuloaga et al. 2013). However, little is
known regarding the ability of morphotype II larvae to infect
humans, as only a few cases of infections have been reported
(Clavel et al. 1993; Arizono et al. 2012). In the Iberian
Peninsula, 4. physeteris is the most frequent morphotype 11
anisakid, found mainly in the Mediterranean region. However,
it is not very prevalent (Adroher et al. 1996; Mattiucci et al.
2007; Valero et al. 2000, 2006a, b). Only a few larvae of
A. paggiae have been reported in several hake (Merluccius
merluccius) specimens from the Galician coasts (northeastern
Spain), and A. brevispiculata has not been found in this region
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(Mattiucci et al. 2007). The limited morphological differences
found in the species of each of these morphotypes, particularly
in the L3 larval stage, suggest the need for species identifica-
tion by biochemical or molecular techniques (D’ Amelio et al.
2000; Perteguer et al. 2004; Martin-Sanchez et al. 2005;
Umehara et al. 2007, 2008; Murata et al. 2011). Techniques
such as isoenzyme analysis, PCR-RFLP of the ITS1-5,8 s-
ITS2 or PCR-sequencing of the cox2 mitochondrial gene have
been shown to be usefulness in the genetic characterization
and specific identification of these parasites, even in cases of
human infection (D’ Amelio et al. 1999; Perteguer et al. 2004;
Umehara et al. 2007; Fumarola et al. 2009, Mattiucci et al.
2007, 2011, 2013). Given the limited information on the
pathogenicity of the Anisakis species of morphotype II in
humans, this study was designed to determine its behavior in
an animal model that simulates a human infection, for com-
parison with morphotype I, whose pathogenicity is better
known. The use of molecular tools allowed for proper species
identification.

Materials and methods
Parasite

Anisakis spp. L3 larvae were obtained from blue whiting
(Micromesistius poutassou) caught at different points along
the Atlantic and Mediterranean coasts of the Iberian Peninsula
(Fig. 1). Collected larvae were identified morphologically
using a stereo microscope, and based on their characteristics,
they were subsequently assigned to morphotypes I or II. For
this study, those larvae with the greatest degree of mobility

Fig. 1 Areas of the Atlantic
and Mediterranean coasts of the
Iberian Peninsula where blue
whiting were caught and
proportions of the Anisakis
morphotype II species
identified
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were selected (56 morphotype I1 L3 larvae and 25 morphotype
1 L3 larvae).

Experimental infection

81 female Wistar rats weighing approximately 150 g were
infested with one L3 of morphotype II or morphotype I
Anisakis via gastric probe. Regulated necropsy of the rats
was performed at 4 h post-infestation (Zuiga et al. 2011),
recording the morphotype and locations of the larvae, whether
they were alive or dead and the presence of any gastrointesti-
nal lesions. Later, larvae that were recovered in good condi-
tion were introduced individually into Eppendorf tubes and
frozen at —80 ° C prior to their genetic identification.

Isoenzyme analysis

Each individual larva was cut into two fragments, reserving
the smaller piece for subsequent molecular identification. The
larger piece was subjected to physical and mechanical disrup-
tion by freezing/thawing in liquid nitrogen and the use of a
pistil. After the addition of Triton (5 %) to encourage cell lysis,
the samples were centrifuged at 3,000 rpm for 5 min. In order
to prevent enzyme degradation, the entire manipulation pro-
cess was carried out under cold conditions. The enzymes
studied in order to identify the different species of morphotype
IT were: Isocitrate dehydrogenase (ICD, EC 1.1.1.42) and 6-
phosphogluconate dehydrogenase (6 PGD, EC 1.1.1.44)
whose alleles are considered to be of diagnostic value for the
identification of A. brevispiculata and A. physeteris at a 99 %
level (Mattiucci et al. 2001). L3 larvae of A. simplex s.s. were
used as references. For electrophoresis and the subsequent
enzymatic activity processing, the buffers and solutions listed
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Table 1 Composition of solutions used for electrophoresis and enzyme processing. Electrophoretic separation was conducted in starch gels prepared at

10 % in TME solution with pH of 7.4, adding 1 % NADP

Enzyme/Locus/ EC Code Electrophoresis

Enzyme activity processing

Buffer TME (pH 7.4)

Reaction buffer

Glucose-6-phosphate dehydrogenase
(6PGD) EC 1.1.1.44

Tris (0.1 M)

Maleic Acid (0.1 M)
EDTA (0.01 M)
MgCl,-6H,0 (0.01 M)
Distilled water

Isocitrate dehydrogenase
(ICD) EC 1.1.1.42

Tris-HCl (0.2 M)
pH8, 10 ml

Tris-HCI (0.2 M)
pHS, 8 ml

Substrate Cofactors and additional colorants
MgCL+6H,0 (0.5 M)  NADPI %
Gluconate-6-phosphate ~ NBTI %

0.1 M)
MgCl,+6H,0 (0.25 M) NADP1 %
Isocitric acid (0.1 M) NBTI %

in Table 1 were used. For the result interpretation and allele
identification, different values were assigned so as to indicate
their mobility, with 100 being the most common allele value
(Martin-Sanchez et al. 2004). Subsequently, attempts were
made to find a match of these alleles with those described by
Mattiucci et al. (2001).

DNA extraction and PCR-RFLP

The DNA of each larva was extracted individually using the
RealPure kit for genomic DNA extraction by REAL (Ref
RBMEGO1), having previously ruptured the tissue of the
fragment parasite by mechanical means using a pistil and
subjecting it to processes of freezing/thawing in liquid Nj.
The precipitated pellet was resuspended in 20 pl of bidistilled
water and maintained at —20 ° C until use.

PCR amplification of the ITS1-5,8 s-ITS2 of the IDNA
was carried out using the primers NC5 (Forward), 5" GTA
GGT GAA CCT GCG GAA GGA TCA TT 3’ and NC2
(Reverse), 5' TTA GTT TCT TTT CCT CCG CT 3' reported
by Zhu et al. (1998). Digestion with Taq I (Bioron interna-
tional), Hinf I (Bioron international), and Cfo (Roche)
enzymes was carried out following the manufacturer’s
recommendations.

The digestion product was subjected to 3 % agarose gel
electrophoresis for species identification according to the gen-
erated band pattern, using the genetic markers identified by
D’Amelio et al. 2000; Martin-Sanchez et al. 2005; Farjallah
et al. 2008; Ceballos-Mendiola et al. 2010; Cavallero et al.
2011 and Murata et al. 2011 as a reference.

Fig. 2 Lesion found in a rat
caused by Anisakis morphotype [
(a) and morphotype II (b).
Morphotype II larva of Anisakis
attached to the stomach of a rat (c¢)

PCR-Sequencing and comparative sequence analysis

For further confirmation of the taxonomical identity of the
PCR-RFLP-identified morphotype Il Anisakis species, the
mtDNA cox2 region of 38 specimens was amplified and
sequenced. The mitochondrial cox2 region was amplified
using the forward primer 211 (5-TTT TCT AGT TAT ATA
GAT TGR TTY AT-3') and the reverse primer 210 (5-CAC
CAA CTC TTA AAA TTA TC-3'); (Nadler and Hudspeth
2000). The PCR products were purified using the Real
Clean Spin Kit (Real; Ref. RBMCSO01) and then were directly
sequenced in both directions using the primers used for DNA
amplification. The obtained sequences were aligned using the
Clustal X 1.81 program and were adjusted when necessary so
as to identify the different haplotypes. They were compared
with those published in the GenBank using the BLASTn and
Megablast tools.

Once the sequences were compared, phylogenetic analysis
of the same was undertaken using the PHYLIP 3.65 software
package (http://evolution.genetics.washington.edu/phylip). A
published sequence of the A. simplex s.s. (DQ116426;
Valentini et al. 2006) corresponding to our capture area was
used as an outgroup. Phylogenetic analysis was carried out
using maximum parsimony (MP) and analysis based on dis-
tance matrices (Neighbor Joining and UPGMA). We used the
F84 model of nucleotide substitution (the default method)
with both NJ and UPGMA methods of clustering. The F84
model incorporates different rates of transition and
transversion, and different frequencies of the four nucleotides.
We used the bootstrap as a measure of support or stability of
the clades. In order to be considered sufficiently robust, the

@ Springer


http://evolution.genetics.washington.edu/phylip

4380

Parasitol Res (2014) 113:4377-4386

Table 2 Classification of larvae according to their experimental pathogenic potential, showing the morphotype and the species to which it belongs and

their location upon necropsy

Species Pathogenic larvae Non-pathogenic larvae
Cavity Attached in stomach Intestine Stomach Intestine Total
Morphotype 11 A. physeteris 2 (3.6 %) - - 12 (21.4 %) 10 (17.9 %) 24 (42.9%)
A. paggiae - 2 (36 %) - 3 (5.4 %) 12 (21.4 %) 17 (30.3%)
A. brevispiculata - - - - 1(1.8 %) 1(1.8%)
Unidentified - - - 3(54 %) 11 (19.6 %) 14 (25%)
Total 2 (3.6 %) 2 (3.6 %) - 18 (32.2 %) 34 (60.7 %) 56 (100%)
Morphotype 1 A. simplex 2 (8 %) 2 (8 %) 3(12 %) 2 (8 %) 3 (12 %) 12 (48%)
A. pegreffii 1 (4 %) - - 5 (20 %) 4 (16 %) 10 (40%)
Hybrid genotype 2 (8 %) — 1(4 %) - - 3 (12%)
Total 5(20 %) 2 (8 %) 4 (16 %) 7 (28 %) 7 (28 %) 25 (100%)

clades had to have a bootstrap percentage greater than or equal
to 50 %. Estimation of genetic distance (p-distance) and
number of nucleotide base differences between and within
the Anisakis species was carried out using the MEGA 5.05
software (http://www.megasoftware.net/).

For intra-specific analyses, statistical parsimony in TCS
(v. 1.21) software was used. TCS is a Java computer program
used to estimate genetic genealogies including multifurcations
and/or reticulations (i.e. networks) (Clement et al. 2000).

Statistical analysis

Logistic regression analysis was performed using the categor-
ical variable of L3 larvae pathogenic potential (no, yes) —
defined as its capacity to cause lesions, attach itself onto the
gastric or intestinal wall, or penetrate them to reach the ab-
dominal cavity— as the dependent variable (N=81). The inde-
pendent variable consisted of the larval morphotype
(morphotype I, morphotype II) or the species (4. simplex

Table 3 Allele frequencies for each of the two loci studied for each
species of morphotype 1l Anisakis obtained in waters of the Iberian
Peninsula

Alleles Allelic frequencie Allelic frequencie Allelic frequencie
for A. physeteris  for A. paggiae for A. brevispiculata
ICD-95 0.056 0.214 0
ICD-100  0.555 0.643 0
ICD-105  0.389 0.143 0
ICD-150 0 0 1
6PGD-50 0.222 0 0
6PGD-60 0.223 0 0
6PGD-95  0.185 0.154 1
6PGD-100 0.259 0.769 0
6PGD-105 0.074 0.077 0
6PGD-110 0.037 0 0

@ Springer

s.s., A. pegreffii, A. physeteris, A. paggiae, A. brevispiculata
and unknown species). A similar analysis was also conducted
using “ability to cause lesions” as the dependent variable.

Statistical analysis was carried out using SPSS 15.0.; p-
values 0f<0.05 were considered significant.

Results
Experimental infection

7.1 % of the morphotype II larvae (4/56) displayed pathogenic
potential, in accordance with the aforementioned description.
Two of these larvae, one of A. physeteris and one of
A. paggiae, penetrated the stomach wall and were found
within the abdominal cavity, with the first one producing a
small lesion with blood vessel breakage (1 mm?) (Fig. 2b).
The other two larvae, also of the 4. physeteris and A. paggiae
species, were found attached to the rodent’s stomach wall
(Fig. 2¢), with the latter causing a lesion with vascular damage
(1 mm?) (Table 2). The majority of the L3 larvae of
morphotype II were found in the intestine (51.8 %; 29/56)
with the caecum being the least frequent location (8.9 %;
5/56). In contrast, 44.0 % (11/25) of the morphotype I larvae
demonstrated pathogenic potential; details of this classifica-
tion and location of both larvae types in the animal upon
necropsy are shown in Table 2.

Table 4 Diagnostic band patterns for each species of the Anisakis
morphotype II larvae obtained via PCR-RFLP of the ITS1-5,8S-ITS2

Taql Hinfl CFO
A. physeteris 300-280 380-290-270 520-430-290-270
A. brevispiculata 300 900 400-320-200
A. paggiae 380-290 900 520400
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apparent fixed differences detected in each of the 3 species are highlighted

sakis
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Table 5 Haplotypes, networks and species identified in the 4n

in light grey while the apparent fixed differences in the networks gener-
ated by analysis of statistical parsimony are highlighted in dark grey

ic posi-

dentified in the amplified 629 bp fragment of the cox2 gene. The

morphotype II larvae studied. Alignment of the 137 polymorph
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Table 5 (continued)

Position number
3 3 34444444 4444444444 444550505055052505555555550505050505050586°6 6 6
7 990000122 3335252566 888990001223 3445667778889 999 90012
Specie Network | Haplotype [5 6 9 2 5 6 8 7 6 9 2 5 8 0 6 9 2 5 3 6 9 5 8 4 5 7 6 2 8 1 4 3 9 5 1 4 0 3 5 2 8 9 0 1 2 47 46 0 1
AP31 TTTTTACTTGTTAGGTAGTGGTGTTATAGGTTTGTGTTGATGCTTGACTGA
AP26 o B Y e N B G
AP22 | L P . .c . . ... .. ... . B2 B G
AP27 | T o P B R I B G
AP3 | P A . . B G
AB592799 | . . . . . . . L. AL P A e N B G
Y B Y e N B G
AP32 | P R [ A G
AP2 | P B [ A G
N1 APt P Y e N B G
A. physeteris AP25 | [ P ... . ... GCTGA . . . . . G
AP21 | P .. AL G
AP1A L P A T . B G
APS | P A e N B G
AP28 | L P Y e N B G
AB592798 | . . . .. . G P T c .. .. G
DQMB432 | . . . .. P B R I B G
AP29 B Y e N B G
AP T o [ . . . .cCc . . ™. . . . . . . . ... . . G
N2 AB592801 T A . C .o c .G B B [ G
APIS | A . C . . c .G R R N O G
N3 KC342901 |G . .. .. T .. .TG . . AA . G . . AA . . . . G . . . . T S G T A . G
A b N4 | AP7 A . Bl 7T 7Te. AA.Gc . MWAA. c. o o A G TA_.G
N5 pai16433 |G . . . . . T . .CG . . . ACG . . AA . . . . G.. .. A G TA .G
kc3a2895 | . G . . T. . TG . T . CcT . AA A . TAT LA A . G . ... AGTA .G
N6 KC342896 | . G . . T . . TG . T cT . AA . A . TAT CC A A . G . . ... AGTA .G
EU560910 | . G . . T . .. T C .. T . c. T . A_A_C A . . T AT e A A G A G T A . G
N7 DQ116434 | . G . . T T c T T A_A_. A _. G T AT e A A C G AG . A . G
AP c A . c T.cTCCT . G . A A A . . T .7 LA AC . . . . AGTA .G
APY C A . . T.CcTC . T. G . A A A . T T c . A AC . . . . AGTA .G
AP23 c A . c T.cTC . T. .G . AA A T T oA AC . . . . AGTA .G
N8 AP19 cGcCc . C T.ccCcC . T. .G . AA . A T .7 LA AC . . . AGTA . G
A. paggiae AP13 cG . .C T .cCcT LT .G DA A LA T .7 LA AC . . . . .. AGTA .G
AP10 cGcC T cT T G A A A T T A A C AGTA G
AP30 .G6C.C.T.CT . .T. . .G. .AA.A. T .7 oA AC . . . . AGTA .G
AP20 . 6¢ . ¢ . T . . T . . T . . CG . . AA_ . A . T...T e A A Coo A G T A . G
N9 AP16 ce6c¢c .Cc . T . CT . T . . .G . . AA_ . A T...T . A A Co AGTA . G
N10 AP11 cG . . . .T .CC . . T . . .G . . AA . A T .71 WA AC o AGTA . G
N11 AP17 .. G c.T .cccC .. T . . .G . . AA_ . A . T...T e A Acll . o A G T A . G
N12 AP12 s c . T .c¢ccC .. T . . .G . . AA_ . A T...T LA A Co AGTA . G
N13 AP24 A G . cl@l™ ccc .1 A .G . . AA . A . T ... T LA A Coe AGTA . G
N14 AP18 . G c . T cTcCc . T . . .G . . AA . A T . T A AC . . . AGTA.G

Isoenzyme analysis

42 of the 56 morphotype II larvae used in the in vivo assay
were recovered alive and were available for use in the isoen-
zymatic study. Table 3 shows the alleles identified in each of
the two loci studied (6PGD and ICD), as well as their corre-
sponding allele frequencies.

Identification of species by PCR-RFLP

Of the morphotype Il larvae, 4. physeteris represented
429 % (24/56 L3), 30.3 % (17/56 L3) were identified
as A. paggiae and 1.8 % (1/56 L3) as A. brevispiculata.
The remaining 25 % could not be identified at a species
level. Table 4 shows the band patterns obtained through
use of the three restriction enzymes, Hinfl, Cfo and Taql.
Of the morphotype I larvae, 48.0 % (12/25) were identified as
A. simplex s.s. and 40.0 % (10/25) were identified as
A. pegreffii. In this case, the differentiating enzymes were
Hinfl and Taql. As for the remainder of the morphotype I
larvae, 12.0 % (3/25) revealed a hybrid PCR-RFLP band
pattern with the two restriction enzymes, which is the sum
of the patterns generated for the two above-mentioned species
(Table 2).

@ Springer

Comparative analysis of cox 2 sequences

In the 38 morphotype Il Anisakis larvae, comparative analysis
sequences allowed us to identify 32 haplotypes defined by
137 polymorphic sites (Table 5). 98 sites were found to be
parsimony informative, occurring in more than one haplotype.
The trees generated by the cox2 sequence confirmed the
identification of the larvae by PCR-RFLP of the ITS1-5,8 s-
ITS2 fragment as A. physeteris (22 samples, 17 haplotypes),
A. paggiae (15 samples, 14 haplotypes) and A. brevispiculata
(1 sample, 1 haplotype). The topology of the trees constructed
with both distance analysis methods (UPGMA and NJ) and
maximum parsimony (MP) analysis was very similar (Fig. 3,
NJ and MP trees not shown). In all three cases, 3 large
branches strongly supported by the bootstrap analysis (values
between 71 and 100 %) were differentiated, formed by the
haplotypes of A. physeteris, A. brevispiculata and A. paggiae,
respectively (Fig. 3); a closer relationship was found between
the first two. The intra-specific study of the 4. brevispiculata
species reveals a p-distance value of between 0.019 and 0.032
and the existence of 12 to 20 polymorphic sites in their
sequences. For 4. physeteris, the p-distance ranges from
0.002 to 0.04 and between 2 and 25 polymorphic sites are
found in its sequences. Relative to 4. paggiae, in all of the
trees, two sub-branches are generated having bootstrap values
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Fig. 3 Phylogenetic tree based

on mtDNA cox2 sequence data

and obtained by distance analysis

with a UPGMA method of

clustering. Anisakis simplex s.s.

is used as an outgroup. The

numbers above the branches

are bootstrap percentages

(1000 replications) for clades

supported above the 50 % 1005

A. physeteris (DQ116432)
AP29

A.phy 798)

t— A physeteris

60.4%

93.4%

level

99.3%

AP7
1005 A. brevispic A brevispiculoto
A. brevispi (0Q116423)

AP19
65.8% AP10
AP30
AP13
AP20

65.0% APg
61.3% AP
AP23

AP16

i — A poggice

AP11

100%

A. simplex (DQ116426)

of 100 %. In one sub-branch the 14 identified haplotypes
having p-distance of between 0.005 and 0.022 (3-24 poly-
morphic sites) were found while the other sub-branch
contained the sequences deposited in GenBank (KC342895,
KC342896, EU560910, DQ116434). Between the haplotypes
integrated in these two sub-branches, the p-distance value
ranged between 0.040 and 0.061 and 25 to 38 polymorphic
sites were found. The number of fixed differences was 18 for
A. physeteris, 19 for A. paggiae and 12 for A. brevispiculata.

The cox2 haplotype sequences were subjected to further
analysis by statistical parsimony. This algorithm sorted the 32
sequences into 14 independent networks: three for
A. brevispiculata, two for A physeteris and nine for
A. paggiae (Fig. 4). The program calculates the frequencies
of the haplotypes in the sample. These frequencies are used to
estimate haplotype outgroup probabilities, which correlate

100% A ige (KC342895)
S6% py— paggiae )
A. paggiae (DQ116434)

AP17

AP24
Ap18
77.5% A. paggiae (KC342896)

700.0

with haplotype age. The oldest ancestral haplotype, from
which the rest would have been derived by mutation, appears
in each network, enclosed within a rectangle. A certain rela-
tionship was found to exist between these networks (Fig. 4)
and the subgroups of the phylogenetic tree (Fig. 3). Fixed
differences were detected, characterizing some of these net-
works (Table 5).

Association between experimental pathogenic potential
and Anisakis morphotype or species

Within the framework of the method used, the pathogenic
potential of the larva was defined as its ability to cause lesions,
attach itself'to the gastric or intestinal wall or penetrate them to
reach the abdominal cavity. 7.1 % (4/56) of the morphotype 11

Fig. 4 Parsimony network based on mtDNA cox2 sequence data. The haplotype with the highest outgroup probability is displayed as a rectangle, while
other haplotypes are displayed as ovals. The size of the rectangle or oval corresponds to the haplotype frequency
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larvae and 44.0 % (11/25) of the morphotype I larvae used in
the in vivo tests displayed this pathogenic potential.

A logistic regression analysis of the data was conducted in
order to detect the potential association between experimental
pathogenic potential and morphotype of the larva or Anisakis
species. In these univariate models, both independent vari-
ables showed associations with the pathogenic role of the
larva. In the first of these, using morphotype I as our reference,
the OR for the morphotype I was 0.1 (p<0.001). In the
second one, using A4. simplex s.s. as our reference, the OR
for A. pegreffii was 0.079 (p=0.036), for A. physeteris it was
0.068 (p=0.004) and for 4. paggiae it was 0.089 (p=0.011).
Statistically significant differences were not detected between
the pathogenic potentials of 4. pegreffii, A. physeteris and
A. paggiae (p>0.543).

Discussion

A. physeteris is the predominant anisakid species of
morphotype II found in the Iberian Peninsula coasts, followed
by A. paggiae. Their prevalences are much lower than those of
species of morphotype I (Valero et al. 2000; Mattiucci et al.
2007). A. brevispiculata is not well represented here, given
that only one larva has been found in a blue whiting from the
Atlantic Coast and this was the first time that this species has
been cited along the coasts of the Iberian Peninsula. It was also
the first time that 4. paggiae was found in different fishing
points of the Mediterranean, thus broadening the geographic
zone and host organisms of this species. Despite the fact that
the presence of Anisakis of morphotype Il is apparently low, a
case of human infection in Spain has been reported and
allergic reactions have been attributed to this morphotype
(Clavel et al. 1993; Valero et al. 2000, 2003). In our experi-
mental model using Wistar rats (Romero et al. 2013; Zuloaga
et al. 2013), 7.1 % (4/56 L3) of the morphotype II larvae
penetrated or were found attached to the animal’s gastric wall,
and therefore, A. physeteris, like A. paggiae were responsible
for lesions with signs of vascular damage (Table 2). This
preference for the wall of the stomach was also observed in
the Anisakis morphotype I species (Fig. 2a) (Romero et al.
2013).

The obtained results reveal that pathogenic potential is
linked to the morphotype or species is linked to the larva’s
morphotype or species. Thus it was found that the morphotype
I larva had a 90 % lower risk of penetrating than morphotype
I larva (CI 95 %: 64 to 97). In addition, as seen in Table 2 and
Fig. 2, morphotype II larvae produced less vascular damage,
as found in previous studies (Romero et al. 2012, 2013). In our
study, morphotype I larvae were 42 times more likely to
produce lesions than the morphotype II larvae (p=0.001)

(Fig. 2).

@ Springer

Romero et al. (2013), using the same experimental model,
demonstrated that within the morphotype [, 4. simplex s.s. is a
more pathogenic species than A. pegreffii, thus justifying its
status as an etiological agent in the majority of human cases.
In addition, this study finds that the respective risk of
A. physeteris and A. paggiae morphotype Il larvae penetrating
the rodent’s gastric wall is 93 % (CI 95 %: 57 to 99) and 91 %
(CI 95 %: 42 to 99) lower than that of A. simplex s.s. The
pathogenic potential of these species of morphotype II is
similar to that of 4. pegreffii.

The cox2 gen sequences were useful in confirming the
species identification of the morphotype II larvae, based on
the PCR-RFLP technique of the ITS1-5,8 s-ITS2 fragment
(D’Amelio et al. 2000; Cavallero et al. 2011; Murata et al.
2011). On the other hand, isoenzyme analysis was not found
to be useful. Comparative analysis of the sequences obtained
in this study and those taken from the GeneBank allowed us to
verify the existence of a wide genetic diversity in morphotype
I larvae, particularly within 4. paggiae (Figs. 3 and 4). The p-
distance values obtained for this species are similar to those
obtained by Valentini et al. (2006) for the complex of sibling
species, A. simplex. It has been argued that traditional phylo-
genetic methods are based on certain assumptions which make
them inappropriate for intra-specific studies but which, on the
other hand, would be well represented by network approaches
such as those presented in Fig. 4 (Posada and Crandall 2001;
Franco et al. 2010). In natural populations, ancestral haplo-
types are expected to persist in the population and to be
sampled together with their descendants. Figure 4 reveals that
morphotype II larvae identified by PCR-RFLP as
A. physeteris form two independent networks while those
identified as 4. paggiae form nine networks. This, along with
the existence of fixed differences (Table 5), supports the
hypothesis that each of the two is a complex of sibling species,
as previously observed in 4. paggiae of the Philippine archi-
pelago (Quiazon et al. 2013).
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Parliament and of the Council of 22 September 2010
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