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Abstract More than 2 billion people are infected with
helminth parasites across the globe. The burgeoning drug
resistance against current anthelmintics in parasitic worms
of humans and livestock requires urgent attention to tackle
these recalcitrant worms. This review focuses on the ad-
vancements made in the area of helminth drug target dis-
covery especially from the last few couple of decades. It
highlights various approaches made in this field and enlists
the potential drug targets currently being pursued to target
economically important helminth species both from human
as well as livestock to combat disease pathology of schisto-
somiasis, onchocerciasis, lymphatic filariasis, and other im-
portant macroparasitic diseases. Research in the helminths
study is trending to identify potential and druggable targets
through genomic, proteomic, biochemical, biophysical, in
vitro experiments, and in vivo experiments in animal
models. The availability of major helminths genome se-
quences and the subsequent availability of genome-scale
functional datasets through in silico search and prioritization
are expected to guide the experimental work necessary for
target-based drug discovery. Organized and documented list
of drug targets from various helminths of economic impor-
tance have been systematically covered in this review for
further exploring their use and applications, which can give
physicians and veterinarians effective drugs in hand to enable
them control worm infections.

Introduction

Helminths (the word is derived from the Greek meaning
“worms”) are macroparasitic worms. They are the most
common infectious agents of humans in tropical countries
and produce a global burden of disease that exceeds malaria
and tuberculosis. Helminth parasites are a significant cause
of economic loss in livestock and crop industries around the
world. Today, it is estimated that approximately one-third of
the humanity (more than 2 billion people) especially those
living on less than two US dollars per day in developing
regions of sub-Saharan Africa, East Africa, Asia, and the
Americas are infected with one or more helminths (Brooker
et al. 2009; de Silva et al. 2003; Hotez et al. 2008; Hotez et
al. 2007; Hotez et al. 2006). More than one helminth may
thrive in a single host due to their synergistic interactions
and non-specific parasite-induced immunosuppression of
the host (Christensen et al. 1987). In the USA alone, nem-
atodes cost the livestock industry an estimated $2 billion per
year in lost productivity and increased operating expenses.
In cattle, buffaloes, sheep, and goats, most emphasis is seen
in the field of losses as a result of gastrointestinal nematode
infections in livestock as well as liver condemnation
(Gasbarre 1997; Rapsch et al. 2008). Liver condemnations
as a result of helminth infections by liverflukes, schistosomes,
and cestodes have been described quantitatively. Helminth
infection for a very long time-period (several years!) is respon-
sible for a huge health burden and causes productivity loss in
developing countries across tropical regions. They are consid-
ered the masters of immunoregulations capable of escaping
host defence system through suppression of either humoral or
cellular or both arms of the host immunity and establish
chronic infections (Aranzamendi et al. 2013). These worms
compromise nutritional status, affect cognitive processes, in-
duce tissue reactions, such as granuloma, and provoke intesti-
nal obstruction or rectal prolapse. These are notablymanifested
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through major parasitic diseases such as schistosomiasis, on-
chocerciasis, and lymphatic filariasis. These long-term chronic
diseases rarely results into death, but their morbid manifesta-
tions in humans are involved in worsening the cases of
HIV/AIDS, TB, malaria, and allergy (Hotez et al. 2006).
Helminths have been primarily divided into two major phyla.
The first one called nematodes (known as roundworms) in-
clude the major intestinal worms (also known as soil-
transmitted helminths) and the filarial worms that cause lym-
phatic filariasis (LF) and onchocerciasis, whereas the platyhel-
minths (also known as flatworms, the second phyla) include
the flukes (also known as trematodes), such as the schisto-
somes, and the tapeworms (also known as the cestodes), such
as the pork tapeworm that causes cysticercosis (Wang et al.
2008). The most prevalent helminthiases are those caused by
infection with intestinal helminths, ascariasis, trichuriasis, and
hookworm, followed by schistosomiasis and LF. Control of
helminthiasis is based on drug treatment, improved sanitation
and health education. Current efforts for the control of helmin-
thiases have been devised and funded, mainly by international
donor agencies, major funding bodies, and academic institu-
tions from the developed world, contributing to the creation of
usually North–south "partnerships". All that is required is to
shift this paradigm in disease-endemic countries (DECs) by
refocusing political will and harnessing commitment by the
countries' governments, towards health research and capacity
building policies to ensure long-term investment in combating
and sustaining the control and eventual elimination of helmin-
thiasis from developing countries (Osei-Atweneboana et al.
2012). To completely eliminate helminth parasites, constant
research on major drug targets has to go on in DECs and mass
drug administration (MDA) of the available anthelmintic has to
be merged with monitoring, education, sanitation, and access
to health services (Prichard et al. 2012).

New insights into fundamental helminth biology are accumu-
lating through newly completed genome projects and the nascent
application of transgenesis and RNA interference technologies
(Chuan et al. 2010; Martin et al. 2011; Pierson et al. 2009; Song
et al. 2011; Xu et al. 2010). With the help of second-generation
sequencing techniques (454 and Illumina), Welcome Trust
Sanger Institute (WTSI) is producing de novo reference quality
genomes for parasitic helminth species from cestodes, trema-
todes, and nematodes (Holroyd and Sanchez-Flores 2012). In the
absence of vaccines, control of helminth infections relies mainly
on a limited number of drugs, such as the benzimidazoles, the
macrocyclic lactones, and the imidazothiazoles (Kaminsky et al.
2008). However, the number of drugs available to treat helminth
infections is very limited, and moreover, the mechanism of their
action is not fully explored. Almost a century has been lapsed in
search of chemotherapeutic drugs for schistosomiasis but in vain
(Ribeiro-dos-Santos et al. 2006). Coupled with the threat of
impending drug resistance, there is a need to discover new
compounds which can feed into the pipeline for drug

development (James et al. 2009; Keiser and Utzinger 2010).
The current vistas for the future hope is to approach, discover,
and study the helminthic drug targets and anthelmintics for
rational designing and inventing of compounds which canwaive
off the drug resistance compounding for the existing drugs
(James et al. 2009). Successful drug development has to be
stymied by a general focus on target selection rather than clinical
safety and efficacy. The very process of validating the targets
themselves is inefficient, and in many cases, leads to drugs
having poor efficacy and undesirable side effects. The numbers
of potential drug targets so far characterized are few in numbers
and enlisted in Table 2. The current time and scenario therefore
entails further research and development to identify, expand, and
select the appropriate drugs and finally deploy the next-
generation anthelmintic drugs to combat helminthiasis from
humans, livestock, and crops (Keiser and Utzinger 2010).

Molecular approaches to drug targets identification
and characterization

Target-based drug discovery starts with the identification
and elucidation of the function of a potential therapeutic
drug target and understanding its essentiality and its role in
the disease process. Drug targets are basically molecular
structures (chemically definable by at least a molecular
mass) that will undergo a specific interaction with chemicals
(drugs) because they are administered to treat or diagnose a
disease. Most of the times, they are enzymes or proteins
involved in biological activity which are produced by ex-
pression of active genes in a cell. In helminthes, drug targets
are primarily identified through genomic (Abubucker et al.
2011; Chuan et al. 2010; Hagen et al. 2011; Holroyd and
Sanchez-Flores 2012; Martin et al. 2011), proteomic
(Brophy et al. 2012; Chuan et al. 2010; Mutapi 2012), or
through in silico approaches (Abubucker et al. 2011; Martin
et al. 2011) and are then structurally and functionally char-
acterized through various approaches viz. biochemical en-
zymatic reactions, biophysical methods such as x-ray
crystallography or NMR technique and gene knockout or
RNA interference using model worm Caenorhabditis
elegans (Chuan et al. 2010; Crowther et al. 2010; Kumar
et al. 2007; Lee et al. 2011; Modis 2012; Yadav et al. 2010).
This is typically depicted through a simplified picture in
Fig. 1, and the details of the contemporary techniques asso-
ciated with them have been enlisted in Table 1. When the
drug target has been evaluated and characterized from one
or more methods, then screening of the hits to leads and
finally leads to potential drug candidates can be carried out
conventionally using 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) reduction assay rou-
tinely used to assess the viability of the worm (Misra et al.
2011; Srinivasan et al. 2009). Recently, two more in vitro
inhibitors screening techniques have been developed viz.
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redeployment based drug screening and newly transformed
schistosomula (NTS) assay (Khanim et al. 2011; Marxer et al.
2012). Genetically modified C. elegans are also used to increase
throughput in early discovery of drugs (Kaletta and Hengartner
2006). The last step of preclinical study is to use primary model
organisms for in vivo characterization of anthelmintics against
drug targets when the drug target has been identified and char-
acterized in vitro. For example, Mastomys coucha and BALB/c
are successfully being used for Schistosoma mansoni, Brugia
malayi, and Onchocerca volvulus infection respectively to test
the action of anthelmintics on different stages of worms (Allen et
al. 2008; Dangi et al. 2009; Hanelt et al. 2010). Tropical Disease
Research (TDR, an special program for research and training in
tropical diseases) has already supported four centres focused on
anthelmintic drug screening: the Theodor Bilharz Research
Institute (TBRI, Cairo) and London School of Hygiene and
Tropical Medicine (LSHTM) for schistosomiasis; the
Northwick Park Institute for Medical Research (NPIMR,
London) for onchocerciasis/LF as well as the CSIR-Central
Drug Research Institute for LF.

Classification of current drug targets

We have specifically selected approximately 35 drug targets
(Table 2) from various infectious helminths, which have
been studied so far from the standpoint of huge loss of
health of community as well economy of the developing

countries. The most prominent targets among them include
the mitochondrial enzyme complex I and II, cathepsin B,
voltage gated Ca2+ ion channels, receptors such as acetyl-
choline and DAF-2, β-tubulin, FMRFamide-like signaling
pathway, and endosymbiotic bacteria called Wolbachia in
nematodes. The identification of a target in this count is a
result of thorough and extensive study of the up to date
research in the field of helminth, the different types of
helminths and nature of the helminthiasis that affect the
tropical world, the format of assays (chemotherapy of com-
pounds, C. elegans being used as an alternative model along
with in vitro and in vivo study), and lastly the drug targets
insight under each category of classification.

Enzymes

Since enzymes are highly specific for their substrate, the
difference in specificity between human and helminth en-
zyme for their substrate analogs/inhibitors can be utilized to
generate target suitability. The enzymes from helminths
have now been pursued using molecular approach to hit
the target enzymes with highly specific inhibitors against
them. A decade ago, mitochondrial complex I and II
(NADH-fumarate reductase system, a unique respiratory
system in parasitic helminths and the terminal step of the
phosphoenolpyruvate carboxykinase-succinate pathway
found in many anaerobic organisms) had been investigated

Fig. 1 Various contemporary approaches to identify and characterize
drug targets in helminth parasites. a Rapid sequencing of parasites
genome using next-generation sequencing machines like 454 and
Illumina to quickly spot and identify unique/divergent genes. b Prote-
omic analysis (2D, mass spectrometry, SILAC, etc) of the parasites or
part of the parasites. c Biophysical and biochemical characterization
(X-ray crystallography, UV–Visible spectroscopy, circular dichroism
spectroscopy, isothermal titration calorimetry, neurobiology, enzymol-

ogy, etc.) of drug targets. d Localization study and RNA interference of
genes to know the essentiality and functions of unknown genes in
nematode model organism called C. elegans. e In vitro screening of
hits against drug targets in culture plates using MTT assay, NTS assay,
etc. f In vivo screening of leads (obtained after multiple screening and
selecting the best hits) in appropriate animal model for specific hel-
minthiasis
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for drug discovery against Ascaris suum which is still a hot
concern for lead optimization (Omura et al. 2001; Sakai et
al. 2011). Nafuredin competes for quinone binding site and
inhibits NADH-fumarate reductase and NADH-rhodoquinone
oxidoreductase, a unique anaerobic electron transport system
in helminth mitochondria, at nanomolar concentration (Omura
et al. 2001). Moreover, nafuredin exerts anthelmintic activity
against Haemonchus contortus in in vivo trials with sheep.
Specific inhibition by nafuredin indicates that the structure of
the domain in helminth complex I differs somewhat from that
of its mammalian counterparts (Kita et al. 2003; Omura et al.
2001). The intestinal human helminth S. mansoni possesses
several eukaryotic protein kinases (ePKs) and one important
and essential is polo-like-kinases 1(SmPlk1) involved in mi-
tosis and/or meiosis in schistosomes (Long et al. 2010). This
has been supported by the in situ detection of SmPlk1 tran-
scripts in female vitelline cells and oocytes as well as in male
spermatocytes. Several Plk inhibitors have been found to
inhibit SmPlk1 activity in Xenopus oocytes and the first-in-
class prototype Plk1 inhibitor (BI 2536) induced in vitro
dramatic alterations in schistosome gonads, which affected
oogenesis and spermatogenesis, indicating a major role for
SmPlk1 in parasite reproduction and suggest its importance
as a potential new target against schistosomiasis (Long et al.
2010; Long et al. 2012). Another drug target Cathepsin B
(CB), a cysteine protease present in a number of helminths
like Fasciola hepatica, Clonorchis sinensis, and S. mansoni
which has attracted much attention for its essential roles in
parasite physiology as well as in host–parasite interactions
through their modulation of various pathobiological events,
including host tissue invasion, nutrient uptake, host immune
evasion, and molting (Chen et al. 2011; Horn et al. 2011;
Jilkova et al. 2011). Two vinyl sulfones K11017 and K11777
as inhibitors of cathepsin B have been crystallized with
SmCB1 at 1.3 Ao resolution and insight of interaction and
inhibition specificity has been worked out with the enzyme
(Jilkova et al. 2011). The Chinese liver fluke C. sinensis and
Taenia asiatica has been studied to possess lactate dehydroge-
nase as drug target (Huang et al. 2009; Yang et al. 2006), with
gossypol as potential lead compound. Recently, glutathione-
S-transferase (GST) of filarial worms has been found to be a
good target molecule for a number of inhibitors identified
through molecular docking study (Awasthi et al. 2009;
Srinivasan et al. 2009; Yadav et al. 2010). Topoisomerase II
(gyrase) is an another emerging target from a number of study
and recently methanolic extract from Micrococcus luteus
BI252 has been shown to inhibit the enzyme and the growth
of Setaria cervi (Kumar et al. 2008; Misra-Bhattacharya et al.
2004; Sivasamy et al. 2011). The active ingredient was found
to be a fatty acid methyl ester derivatives (Z) 15-tetracosenoic
acid, such derivatives can be used for development of anti-
virulence drug lead compounds (Sivasamy et al. 2011).
Another enzyme which also changes the topological propertiesT
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of nucleic acid called RNA helicase has been found to be drug
target in Brugia malayi and S. mansoni (Singh et al. 2009;
Skinner et al. 2012), and further research is along the way on to
screen specific inhibitors against this drug target. In trehalose
biosynthesis, the Trehalose phosphate phosphatase (TPP)
seems to be a novel drug target as silencing of tpp gene in C.
elegans and B. malayi caused the arrested growth of larvae;
however, the lethality was not correlated with the accumulation
of toxic levels of trehalose-6-phoshate while tps gene could not
produce any lethal phenotype (Kushwaha et al. 2012). In the
absence of known TPP inhibitors, commonly available phos-
phatase inhibitors, e.g., sodium meta vanadate and sodium
azide were used; however, these could not inhibit Bm-TPP
enzyme activity, thereby warranting designing of specific tpp
inhibitors (Kushwaha et al. 2011). Another nematode enzyme,
asparaginyl-tRNA synthetase (AsnRS) has been recently con-
sidered as an excellent antifilarial target (Yu et al. 2011). There
are five tirandamycins (TAMs), TAM E (1), F (2), and G (3),
TAM A (4) and B (5), from Streptomyces sp. 17944 out of
which five selectively inhibit the B. malayi AsnRS and effi-
ciently kill the adult B.malayi parasite, representing a new lead
scaffold to discover and develop antifilarial drugs. Although
not an enzyme, the microtubule of parasitic worms has been a
shown to be a unique dynamic structure within the cells which
is involved in shaping multicellular parasites. There are at least
six β-tubulins present in case of F. hepatica, which associate
with ∝-tubulins to form 13-stranded staggered polymeric struc-
ture called microtubule. Several benzimidazoles derivatives are
now known to inhibit microtubule assembly in various hel-
minths. Albendazole has been found to disrupt the microtubule
structure by tightly binding to the β-tubulin isotype 2
(Chambers et al. 2010), and therefore is still a potent drug to
combat helminthic diseases.

Receptors and ion channels

A receptor is a structure on the surface of a cell (or inside a
cell) that selectively receives and binds a specific substance
such as its canonical ligands, hormones, neurotransmitters,
or neuromodulators. They are coupled to various signal
transduction systems located both accross the membrane
and intracellularly, which ultimately regulate responses to
the cellular/tissue microenvironment. The definition of a
receptor in pharmacological or physiological terms requires
that there is specificity in its interaction with ligands that
belong to a given pharmacological class. Receptors are
highly selective for its ligand and accordingly react for its
biological function. Cholinergic anthelmintics such as le-
vamisole and pyrantel which cause ion channels to open act
on Nicotinic Acetylcholine Receptor (nAChR) of nerve and
muscle leading to prolonged muscle contraction and spastic
paralysis of the parasite (Williamson et al. 2009). A novel
chemical class of synthetic anthelmintics, the Amino-T
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Acetonitrile Derivatives (AADs), has been recently discov-
ered which specifically acts on nAChR (Kaminsky et al.
2008). nAChR and related nAChRs in other species of
parasitic nematode can be used to predict the effectiveness
of AADs like monepantel against those species, which
could be useful when deciding on a course of treatment for
worm-infected animals. In case of C. elegans and H.
contortus, AAD-1566 (monepantel) acts via nicotinic ace-
tylcholine receptors (nAChR) of the nematode-specific
DEG-3 subfamily (Rufener et al. 2009). New combinatorial
approach such as when agonists of Cry5B and nAChR are
combined, their activities are strongly synergistic, producing
combination index values as good or better than seen with
antitumor, anti-HIV, and insecticide combinations (Hu et al.
2 0 1 0 ; H u e t a l . 2 0 0 9 ) .
Cry5B is the crystal (Cry) proteins made by Bacillus
thuringiensis. Combination drug therapies are considered
the ideal treatment for infectious diseases. G-protein-
coupled receptors (GPCRs) are often revealed to play a
key role in the signalling cascade. More than 40 % of all
prescription pharmaceuticals target GPCRs. The
latrophilin-like receptor HC110-R of the parasitic nema-
tode H. contortus has been identified as a target for the
novel anthelmintic drug emodepside (Kruger et al. 2009).
FMRFamide-like neuropeptides as putative ligands have
been also investigated as novel anthelmintics when used
against latrophilin receptor of H. contortus (Muhlfeld et al.
2009).

Nuclear receptors (NRs) constitute a unique group of
transcription factors. They act as sensors for metabolic as
well as systemic hormonal signals and regulate a number of
cellular processes from growth and differentiation to metab-
olism. The fact that their activity can be pharmacologically
modulated by specific ligands, thereby allowing for
agonism, partial agonism, and antagonism, has made them
primary therapeutic targets for many years. DAF-12 is an
evolutionarily conserved nuclear hormone receptor in sev-
eral parasitic nematodes including Strongyloides stercoralis,
Ancylostoma spp., and Necator americanus involved in
signaling pathway which governs development of the stage
3 infective larvae (iL3) (Wang et al. 2009). Administration
of dafachronic acid (steroid like molecule and a ligand to
DAF-12) has been shown to markedly reduce the pathogen-
ic iL3 population in S. stercoralis, indicating the potential
use of DAF-12 ligands to treat disseminated strongyloidia-
sis. Another nuclear receptor of the same family character-
ized recently is DAF-16 in C. elegans which regulates
numerous biological activities including larval growth, re-
sistance to oxidative stress, and longevity by activating
target genes. Apigenin is a flavone which causes activation
of DAF-16 receptor, and its translocation inside nucleus
leads to DAF-2/insulin-like signaling which eventually
leads to larval growth inhibition (Kawasaki et al. 2010).

Here, the target is activated rather than inhibited and is a
remarkable and unusual example of receptor induced inhi-
bition of cell growth.

Ion channels are intrinsic membrane proteins which are
multimers that act as gated pores (ligand or voltage gated)
and regulate the movement of ions across cell membranes.
Ion channels present in the nervous system of parasites
constitute the majority of targets for current anthelmintics
(Wolstenholme 2011). When these ion channels are targeted
by therapeutics means, these are either inhibited, preventing
the flow of ions, or held constitutively open by the action of
agonists, preventing the accumulation of ions on one side of
the membrane. The desired activity of the ion channel
modulator will depend on its specificity, its nature of action,
and the location of the ion cannel in the helminth body. The
nervous system of helminth consists of neuronal cells,
nerve–nerve innervations, and neuromuscular junctions.
Ions channels are present in these cells to control the move-
ment of ions and build a voltage gradient for motor func-
tions. Being the third most targeted molecules for drug
discovery after enzymes and GPCRs, ion channels
(GABA, glutamate, aspartate, glycine) in helminth are the
prioritized target molecules for current anthemintics being
applied constantly through FDA approval including those
used in mass drug administration (Robertson and Martin
2007). The voltage-gated Ca2+ channel (Cav) is an impor-
tant factor in regulating the intracellular Ca2+ level in the
neuromuscular system of helminths. Cav from schistosomes
and other platyhelminths have several unique properties that
make them attractive potential drug targets, and the unique-
ness of the subunit structures also provide insights into
structure–function relationships as well as evolution of
Cav channels (Salvador-Recatala and Greenberg 2010).
One of the current drugs used against schistosomiasis is
praziquantel (PZQ), which not only affect Ca2+ homeostasis
in schistosomes, but which has an undefined molecular
target and mode of action. PZQ is the only available anti-
schistosomal drug in most parts of the world, making reports
of PZQ resistance particularly troubling (Doenhoff et al.
2008; Nogi et al. 2009; Salvador-Recatala and Greenberg
2010; Zhang and Zhou 2008). The Ca2+ ion concentration
when raised inside the cell can activate potassium ion chan-
nel. Calcium-activated potassium channel, SLO-1 also
called Big Potassium channel (BK channel) belongs to
another family of channels that are highly conserved across
the animal phyla and regulate neurosecretion, hormone re-
lease, muscle contraction, and neuronal network excitability,
first characterized in helminth model organism C. elegans
(Carre-Pierrat et al. 2006; Guest et al. 2007). An emerging
molecule called emodepside is a resistance-breaking anthel-
mintic of a new chemical class, the cyclooctadepsipeptides
which is found to interact with SLO-1 channels. Ectopic
overexpression of slo-1 gene in pharyngeal muscle confers
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sensitivity of the muscle to emodepside, consistent with a
direct interaction of emodepside with the channel (Crisford
et al. 2011). Orthologues of slo-1 are present in Ancylostoma
caninum, Cooperia oncophora, and H. contortus, all impor-
tant parasitic nematodes to be targeted (Welz et al. 2011).
Another important ligand gated channel present in nematode
is cys-loop ligand gated ion channels (CLGIC) which mediate
neurotransmission and are important targets (Williamson et al.
2007). The binding of neurotransmitter (ligand) triggers a
conformational change in the receptor, opening an intrinsic
chloride channel, and thereby dampening neuronal excitabil-
ity (Hibbs and Gouaux 2011). The CLGIC superfamily in
nematodes comprises ion channels gated by acetylcholine,
gamma-amino butyric acid (GABA), glutamate, glycine,
and 5-hydroxytryptamine (5-HT). These CLGIC are targets
of a number of anthelmintic drugs (Lees et al. 2012). The
invertebrate glutamate-gated chloride channels (GluCls)
are receptor molecules and targets for the avermectin-
milbemycin (AM) group of anthelmintics (McCavera et
al. 2009; Tandon et al. 2006). The macrocyclic lactones
target the glutamate-gated chloride channels and the nico-
tinic agonists act on the nicotinic acetylcholine receptors
and classified as important category of anthelmintics.
Transporters of ions are also classified as under ion chan-
nels. Two novel serotonin transporters, SmSERT-A and
SmSERT-B from S. mansoni are pharmacologically indis-
tinguishable from each other, efflux experiments but they
have significantly higher substrate selectivity for serotonin
compared with their mammalian counterparts (Fontana et
al. 2009). The screening of compounds against the electro-
genic SmSERT could result into selective drugs against this
essential transporter of S. mansoni. Aquaporins (AQPs) are
another class of transporter for water molecules which some-
times also transport glycerol and other small solutes as well
across biological membranes. The structure, function, and
pathology of AQPs have been extensively studied in mam-
mals but data for AQPs from helminths is still limited. An
aquaporin from Fasciola gigantica has been shown to have
altered and lowered water permeability when compared to rat
AQP-1 (Geadkaew et al. 2010).

Biochemical pathways

1. Cell signaling pathways

Targeting a single molecular mechanism should be suffi-
cient to achieve a significant therapeutic effect; however, a
single-target drug would have very little therapeutic impact
unless and until it is associated with physiological process of
the cell or involved in cell signaling. Anthelmintic niclosamide,
a drug used for the treatment of tapeworm, promotes
Frizzled1 endocytosis, downregulates Dishevelled-2 pro-
tein, and also reported to inhibit Wnt3A-stimulated β-

catenin stabilization and LEF/TCF reporter activity (Chen
et al. 2009). Additionally, following niclosamide-mediated
internalization, the Frizzled1 receptor co-localizes in vesicles
containing transferrin and agonist-activated β2-adrenergic
receptor. Therefore, niclosamide may serve as a negative
modulator of Wnt/Frizzled1 signaling by depleting upstream
signaling molecules (i.e., Frizzled and Dishevelled), and
moreover, may provide a valuable means of studying the
physiological consequences of Wnt signaling. Wnt-4 sig-
naling has been shown to be involved in the development
of Schistosoma japonicum through canonical pathway (Li
et al. 2010). Moreover, in S. japonicum, an inhibitor of
programmed cell death pathway (apoptosis) has been found to
be a potential small molecule that act on a caspase to control
the schistosomiasis (Peng et al. 2010b). Besides Wnt/catenin
signaling, short amidated neuropeptides such as FMRFamide-
like (FLPs), neuropeptide F (NPF)-like, myomodulin-like,
buccalin-like, and neuropeptide FF (NPFF)-like peptides are
widespread signaling molecules within the nervous systems of
all flatworms and roundworms examined (McVeigh et al.
2009) and could therefore represent a starting point for new
lead drug compounds with which to combat parasitic helminth
infections (Marks and Maule 2010; Mousley et al. 2010).
KHEYLRF-NH2 (AF2) is the most abundant FMRFamide-
related peptide (FaRP) in A. suum and also in many other
parasitic and free-living nematodes (Verma et al. 2007). The
AF2 abundance in the highly diverse nematodes and its potent
and profound effects on the neuromuscular systems make
AF2 and its receptors such as G Protein Coupled Receptors
(GPCRs) very attractive targets for the discovery of novel
broad-spectrum anthelmintics.

2. Metabolic pathways

A clear understanding of the mode of action of anthel-
mintics awaits greater knowledge of the biochemical path-
ways operating in helminth parasites. Here, we present the
contrasts between helminth and human metabolism so that
strategic differences can be harnessed for newer develop-
ments in chemotherapy. Platyhelminth parasites have a
unique and simplified thiol-based redox system, in which
the selenoprotein thioredoxin-glutathione reductase (TGR)
(Otero et al. 2010), a fusion of a glutaredoxin domain to
canonical thioredoxin reductase domains, is the sole enzyme
supplying electrons to oxidized glutathione (GSSG) and
thioredoxin. This enzyme has recently been validated as a
key drug target for flatworm infections (Bonilla et al. 2011;
Boumis et al. 2011; Martinez-Gonzalez et al. 2010).
Furthermore, TGR has been characterized in schistosomes
through molecular docking and in vitro study with a novel
inhibitor (8-hydroxyquinoline-5-sufonyl 1,4-diazepine de-
rivative) and has been found to be a promising anti-
schistosomal agent (Eweas et al. 2012). Protein–protein in-
teractions with unique helminth proteins and helminth
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proteins with unique features relative to the host, such as
indels, have been prioritized as drug targets. The PPIs were
scored based on RNAi phenotype and homology to the PDB
(Protein DataBank). EST data for the various life stages, GO
annotation, and druggability were also taken into consider-
ation. Several PPIs emerged from this study as potential
drug targets. A few interactions were supported by co-
localization of expression in Meloidogyne incognita (plant
parasite) and B. malayi (Homo sapiens parasite), which have
extremely different modes of parasitism (Taylor et al. 2011).

Endosymbiotic bacteria

Wolbachia are obligate endosymbiont α-proteobacteria in
filarial nematodes and are essential for the female worm
survival, reproduction, and fecundity. After coming of the
genome data of both B. malayi and its endosymbiont
Wolbachia, the astonishing finding was that Wolbachia
containing filarial nematodes lacks all heme biosynthetic path-
way enzymes except the last step enzyme ferrochelatase
(Foster et al. 2005; Wu et al. 2009). Therefore, Wuchereria
bancrofti, B. malayi, and Onchocerca vulvulus depend on the
α-proteobacterial heme for activating their own heme-
containing enzymes. This shows that the heme biosynthetic
genes in theWolbachia ofB.malayi (wBm) are essential for the
filarial host survival. In addition, the enzymes are likely can-
didate drug targets based upon significant differences in phy-
logenetic distance, biochemical properties, and sensitivities to
heme biosynthesis inhibitors, as compared to their human
homologues. The presumptive transporters, responsible for
heme trafficking, could be drug targets as well. Also, since
Wolbachia are essential for the nematode, so targeting essential
genes ofWolbachia is another alternative for delving into anti-
filarial drug research.Wolbachia endosymbionts of filariae are
potent inducers of innate and adaptive inflammation, and
bacterial lipoproteins have been identified as the ligands that
bind toll-like receptors (TLR) 2 and TLR6. Lipoproteins are
important structural and functional components of bacteria,
and therefore enzymes involved inWolbachia lipoprotein bio-
synthesis are potential chemotherapeutic targets. Globomycin,
a signal peptidase II (LspA) inhibitor, has activity against
Wolbachia, and a putative lspA gene has been identified from
the Wolbachia genome of B. malayi. Globomycin was
screened using this assay, which resulted in a dose-dependent
reduction in Wolbachia load. Furthermore, globomycin was
also effective in reducing the motility and viability of adult B.
malayi in vitro (Johnston et al. 2010). Phosphoglycerate mu-
tases (PGM) interconvert 2- and 3-phosphoglycerate in the
glycolytic and gluconeogenic pathways. A putative cofactor-
independent phosphoglycerate mutase gene (iPGM) was iden-
tified in the genome sequence of theWolbachia endosymbiont
from the filarial nematode, B. malayi (wBm). Since iPGM has
no sequence or structural similarity to the cofactor-dependent

phosphoglycerate mutase (dPGM) found in mammals, it may
represent an attractive Wolbachia drug target (Foster et al.
2009). A notable wolbachial protein FtsZ, an analog of eu-
karyotic β-tubulin which is expressed in all developmental
stages of B. malayi, is a GTPase, thereby making the protein
an attractive drug target. Recently, berberine as a small mole-
cule inhibitor and a natural drug identified from a high-
throughput screen has been used to inhibit GTPase activity of
FtsZ for combating filarial infections (Li et al. 2011).

Discussion

Currently, we do not have any good vaccines for the majority
of the helminths due to complex immunological interactions
occurring during helminth infections (Aranzamendi et al.
2013; Kozak and Kolodziej-Sobocinska 2009). As such, drugs
are really the only direct intervention currently available. The
prospects for specific and effective anthelmintic development
are bright through drug target approach. The list of drug
targets, its inhibitors, and the helminths in target are summa-
rized in Table 2. Helminths are in vitro uncultivable parasites at
defined laboratory conditions and due to the lack of true
experimental animal models, the research on drug targets has
to go on due to rapid development of resistance with the heavy
use of current anthelmintics. It is important to note that the
above refer only to the early stages of the drug discovery
process. As active compounds emerge against the current drug
targets, this will create a demand for chemistry to support hit
expansion and lead identification. Further on in the process,
lead optimization will require yet more dedicated chemistry
supported by resource for ADMET (absorption, distribution,
metabolism, excretion, and toxicity) studies at the clinical level
(Lin et al. 2003).

It is not the final numbers of targets we have considered
here, rather, we have stressed on the important develop-
ments going on in target research and how insights into
molecular reactivity with their inhibitors is bringing out
active pharmaceutical ingredients against pathogenic hel-
minths. We have considered helminthic enzymes such as
polo like kinases, cathepsin B, microtubule, GST, ion chan-
nels such as K+ and Ca2+, cys-loop ligand gated; cell surface
receptors (nAcR and DEG), latrophilin receptors and nucle-
ar receptors (DAF); cell signaling wnt pathway and neuro-
peptide signalling; thioredoxin system as well as
endosymbiotic bacteria Wolbachia. Many of these proteins
and processes have been targeted for therapeutic purposes in
mammals, which demonstrate at least the theoretical possi-
bility that helminth specific compounds could be developed.
Potential targets, in addition to those already discussed,
could include the transporters that carry transmitters across
plasma and vesicle membranes or the enzymes involved in
the biosynthesis, processing, and degradation of
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neurotransmitters especially small peptides. Some of these
potential drug target candidates which further needed to be
explored so as to screen, identify new lead compounds of
anti-parasitic importance in near future are myophilin-like
protein, lactate dehydrogenase, methionine aminopeptidase
2, thioredoxin peroxidase-2, aldose reductase, etc. (Hong et
al. 2012; Huang et al. 2009; Huang et al. 2012; Liu et al.
2012; Lu et al. 2006; Peng et al. 2010a; Yang et al. 2006).
There are also many downstream signaling proteins and
chaperones that are essential for accurate neurotransmission
and disruption of which, by genetic means, have been
shown to be lethal or deleterious to C. elegans, but these
potentially antiparasitic targets remains unexplored.

The current druggable biomolecules are very few, and the
available drugs are being nullified in a small period of time
very fast by rapid development of drug resistance possibly
by section of drug resistance genes of helminths (Beech et al.
2011; James et al. 2009; Jones and George 2005). However,
recent developments in genomics data for a number of helminths
have paved the way for rapid drug discovery after identifying
appropriate drug target and the constant research and develop-
ment on these targets ultimately leading to potential drugs
(Abubucker et al. 2011; Chuan et al. 2010; Hagen et al. 2011;
Martin et al. 2011). The endosymbiotic bacteria Wolbachia is
being approached with substantial amount of interdependent
pathway enzymes with its host worm having certain enzymes
unique to it (Wu et al. 2009). Therefore, the potential gains to be
made from parasitic helminth genome projects are huge. Not
only will they directly provide new insights—perhaps revealing
novel metabolism to be exploited in drug discovery—but will
also provide a welcome boost to pump prime activities through-
out the helminth research community.

There is remarkable differences in the physiology of
various helminths (Halton 2004; Parker et al. 2003; Von
Brand 1948), and therefore target prioritization could be
given according to the structural features as well as unique-
ness of enzymes, receptors, ion channels, or biochemical
pathways and the sensitivity of the these parasites towards
small molecules that are potential drugs against these tar-
gets. Despite the structural differences between the morpho-
logical features of nematodes (the cuticle) and the
morphological features of cestodes and trematodes (the teg-
ument), the mechanism of drug entrance into both types of
helminth depends on the lipophilicity of the anthelmintic
compound which is the major physicochemical determinant
for the drug to reach a therapeutic concentration in the body
of parasite (Alvarez et al. 2007). There is no denying the fact
that humility follows hand in hand with side effects of the
drugs or development of drug resistance in medical and
pharmaceutical research, and this is the driving force for
developing newer drugs against debilitating helminth infec-
tions. The search for a novel drug targets against parasitic
helminths remains a challenge in developing countries.
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