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Abstract Research of Trichinella proteins has been con-
ducted with emphasis on excretory–secretory (E–S) products
of muscle larvae because of two reasons. The first is that it
has prominent and narrow specific antigenicity, and the
second is that it may play some role in nurse cell formation
after being secreted into host muscle cells. Proteomic analysis
of E–S proteins was further advanced by the aid of new
analytical methods such as gene cloning, matrix-assisted laser
desorption–ionization time-of-flight mass spectrometry, and
expressed sequence tags database analysis. As the research
progressed, the interest of researchers moved to identification
of function of E–S products, which has shed further light on
the intriguing relationships between parasites and hosts.
Major constituents of the E–S products include 43-, 53-,
and 45-kDa glycoprotein derived from the stichosome. Many
proteins were discovered in E–S products after the 43-, 53-,
and 45-kDa proteins although the relationships among them
remain unclear. Some of the new proteins were partially
defined in terms of their function including nuclear antigens,
MyoD-like protein, TsJ5 protein, etc. There are better-
characterized proteins based on the gene molecular method,
which allow easier identification of the function of proteins of
interest. Such examples were demonstrated by proteinases,
proteinase inhibitors, heat shock proteins, glycosidases, etc.

Introduction

Trichinella is a genus of nematode that infects a wide
variety of vertebrate hosts. Larvae at a muscle stage are an

infective form of Trichinella spp. In the host stomach,
larvae are released with the aid of host gastric juice and
develop into adult worms in the host intestine, and the
female begins to produce the second generation of larvae,
which migrate through the whole body of the host.
Infection causes satellite cell proliferation (Matsuo et al.
2000; Wu et al. 2001) and transformation of muscle cell to
the nurse cell in the capsule (known as cyst; Jasmer 1990;
Despommier et al. 1990). Two clades in genus Trichinella
have been identified: the encapsulated clade and the
nonencapsulated clade (Zarlenga et al. 2006). Muscle larvae
in encapsulated species develop a thick collagen capsule,
and the nonencapsulated species develop only a very thin
collagen capsule (Xu et al. 1997).

Muscle cell transformation is likely initiated by excretory–
secretory (E–S) products released from the larvae (Ko et al.
1994). Trichinella spp. produces a variety of biologically
active proteins, which may or may not be a part of E–S
products. Proteins in E–S products likely affect host cells
and tissues for respective purposes, and non-E–S proteins
likely are engaged in internal reactions within the parasites.
Among them, E–S products of Trichinella spp. have
received a great deal of attention not only from an
immunological point of view but also from the point of
host–parasite interaction because of assumption that the
intracellular parasite secretes some functional proteins and
alters the host cell in such a way that Trichinella spp. can
establish parasitism and survive for a longer period of time.

The 43-, 53-, and 45-kDa glycoproteins in larval E–S
products contain tyvelose-containing antigen (Wisnewski
et al. 1993; Romarís et al. 2002a; Arasu et al. 1994), which
is the major antigen recognized by the host during infection
(Appleton et al. 1991). Furthermore, these glycoproteins have
been characterized at the molecular level, and it has been
shown that these proteins are important for muscle cell
transformation, capsule formation, and continuation of
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parasitism due to Trichinella spp. However, it is completely
obscure how Trichinella spp. changes terminally differenti-
ated muscle cells into nurse cell, whose architecture has
never been designed in the host genome.

Protein engineering is an extremely hot topic of recent
biological studies. Functional proteins have been produced
for many purposes including therapeutic usage. Parasite
proteins are not an exception. Efforts seeking for such an
important protein responsible for host cell transformation in
E–S products resulted in the discovery of many functional
proteins owing to recent progress in molecular technology.
In addition to the 43-, 53,- and 45-kDa glycoproteins, the
E–S proteins of Trichinella spp. contain some functional
proteins such as heat shock proteins, endonucleases,
proteinases, protein kinases, proteinase inhibitors, superoxide
dismutases, glycosidases, etc. This article will review the
characterization of Trichinella proteins with emphasis on
E–S products, including analytic information by means of
classical wet laboratory techniques as well as molecular
techniques.

Proteomic analysis of Trichinella proteins

To better understand the muscle cell transformation leading to
capsule formation, it is critical to examine the nature of
Trichinella E–S products that affect the infected muscle cells
after being released to the cell cytoplasm. In this section,
some landmark papers on the characterization of Trichinella
proteins will be reviewed in chronological order.

Early investigators used classical laboratory techniques
such as electrophoresis or gel filtration to investigate the
nature of E–S products. Despommier and Laccetti (1981)
characterized antigenic proteins derived from a large-
particle fraction of muscle larvae of Trichinella spiralis in
relation to their molecular weights, isoelectric points,
carbohydrate contents, antigenicity, and their ability to
induce protection in mice. Gel filtration yielded five major
peaks of material, while sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis (PAGE) revealed a
minimum of 28 proteins ranging in molecular weight from
11 to 200 kDa. Analytical isoelectric focusing on SDS-PAGE
yielded 37 bands of protein, while the periodic acid-Schiff
reaction performed on a similar gel revealed 22 glycoproteins.
Most proteins were within a pI range of 4.0–7.0, while all of
the glycoproteins had pI ranging from 4.0 to 6.5. Secreted
proteins of muscle larvae, adult males, and newborn larvae of
T. spiralis were relatively few in number and were different
for each stage, whereas somatic proteins demonstrated an
unresolved smear in all cases (Parkhouse and Clark 1983).

T. spiralis and Trichinella pseudospiralis are indepen-
dent species in the genus Trichinella. These two species are
similar but different in terms of host responses. By high-
power resolution (two-dimensional Western blot analysis),

Wu et al. (1999) showed that antigenic peptides of T.
spiralis consisted of about 100 peptide spots, and the
molecular weight of these peptides ranged from 22 to 80 kDa,
and pI ranged from 4 to 7. Antigenic peptides of T.
pseudospiralis consisted of about 20 to 30 peptide spots,
and the molecular weights ranged from 25 to 80 kDa, and pI
ranged from 4 to 7. The E–S products of T. spiralis and T.
pseudospiralis were highly cross-reactive with each other.

Recent investigators adapted new molecular techniques.
Robinson et al. (2005) have used matrix-assisted laser
desorption–ionization time-of-flight (MALDI-TOF) mass
spectrometry for identification of the peptide spots of
muscle larvae E–S products. In addition, MALDI-TOF
mass spectrometry and laser chromatography–mass spec-
trometry/mass spectrometry (LC–MS/MS) were used to
identify the peptide spots, and these data were analyzed by
specific Trichinella expressed sequence tag (EST) databases
(Robinson and Connolly 2005). They identified 43 out of
52 protein spots analyzed as the major secreted glycopro-
teins. The 43 protein spots represented only 13 different
proteins indicating that there are multiple proteins isoforms
present in the E–S products. Also, two major groups of
T. spiralis-specific proteins and several T. pseudospiralis-
specific proteins were identified using two-dimensional gel
electrophoresis and tandem mass spectrometry (Robinson
et al. 2007a). Liu et al. (2007) cloned six newborn larva
stage-specific and four adult worm stage-specific genes of
T. spiralis using suppression subtractive hybridization
technique.

A dataset for expressed Trichinella genes may support
proteomic methods to identify parasite proteins involved in
specific interactions. In addition, genome information pro-
vides comparative analysis among life cycle stages relative to
biological similarities and differences, some of which may
involve host cell interactions. Comparisons with other
sequences can also identify putative proteins that are
restricted to nematodes or nematode groups, thus providing
insight that may be related to parasitism. Mitreva et al. (2004)
analyzed the transcripts of Trichinella spp. using ESTs that
are produced from cDNA libraries for immature L1, mature
muscle larvae, and adult stages of T. spiralis and showed that
10,130 ESTs were grouped into 3,454 gene clusters.

Major Trichinella E–S proteins with unrevealed function

The 43-, 53-, and 45-kDa glycoproteins, which are three major
antigenic proteins, have received more attention than other
E–S proteins because these three proteins are candidates of
immunodiagnostic antigens for trichinellosis and are present
in much greater amounts in the E–S products, but the function
of the 43-, 53-, or 45-kDa protein remains unknown.

It should be emphasized that the 43-, 53-, and 45-kDa
glycoproteins share a unique so-called TSL-1 antigen
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(Wisnewski et al. 1993; Romarís et al. 2002a; Arasu et al.
1994). TSL-1 antigen is one of the most intriguing glycopro-
tein antigens, which induce a powerful antibody response
in parasitized animals and can be used for immunodiag-
nostic purposes (Appleton et al. 1991). The unique and
critical sugar of TSL-1 antigen is 3,6-dideoxyarabinohexose
(tyvelose; Wisnewski et al.1993).

The 43-kDa glycoprotein

In this section, the 43-kDa glycoprotein will be reviewed in
terms of its biochemical properties and possible functions.

The early authors Gold et al. (1990) isolated 43-kDa
glycoprotein from E–S products of T. spiralis muscle larvae
by biochemical methods and provided convincing character-
ization with respect to their biochemical and immunological
properties. This was followed by molecular characterization
by Su et al. (1991) who cloned and expressed the 43-kDa
glycoprotein (they called the 49-kDa antigen) in Escherichia
coli. The predicted 344 amino acid of the 43-kDa glycopro-
tein have an N-terminally located signal peptide and a
potential helix–loop–helix motif (HLH) that resembles HLH
domains critical in the function of muscle differentiation
factors such as MyoD and myogenin in the main body of the
protein (Vassilatis et al. 1992).

The 43-kDa glycoprotein may be responsible for capsule
formation that occurs immediately after the entrance of
muscle cells by the newborn larvae because the gene
encoding a 43-kDa glycoprotein is expressed by either
precapsule or postcapsule muscle larvae but not expressed
by adult worms (Wu et al. 2002). And the diverse isoforms
of the 43-kDa gene appear to be expressed by immature L1
(Mitreva et al. 2004).

T. spiralis and T. pseudospiralis are similar but different
in terms of host response, including morphology of the
capsule, immunological responses, and expression of genes
and E–S proteins. Infection causes muscle cell degeneration,
which is restricted around the worm in the case of T. spiralis
infection, but the affected area spreads over the entire length
of muscle cell in the case of T. pseudospiralis infection
(Matsuo et al. 2000; Wu et al. 2001). These different
pathological changes in muscle cell could be attributed to the
differences of the E–S products released to the host cells.
The homolog of the 43-kDa glycoprotein of T. spiralis exists
in the E–S products of T. pseudospiralis (Vassilatis et al.
1996a). Comparison of the amino acids sequence of the T.
pseudospiralis glycoprotein with the T. spiralis 43-kDa
glycoprotein indicated that the two proteins are very similar
(about 84% homology), but the molecular weight of the
homologous glycoprotein from T. pseudospiralis was
38 kDa (Nagano et al. 2004).

The 43-kDa glycoprotein of T. spiralis is secreted in the
host muscle cell and may influence and alter the host cells

that may lead to the nurse cell formation. Therefore, the
location of the 43-kDa protein in the host muscle cell is
critical. Vassilatis et al. (1992) reported that the antibodies
against the 43-kDa recombinant protein strongly reacted
with the nurse cell nuclei and the nematode itself. However,
Jasmer et al. (1994) reported that antibodies which
specifically recognized 43-kDa glycoprotein failed to bind
detectably with in situ and isolated host nuclei and nuclear
extracts. In addition, immunodominant epitopes of specific
43-kDa glycoprotein of T. spiralis could not be detected in
hypertrophic nuclei of injected muscles (Ko et al. 1994).
The protein immunologically related to the 43-kDa glyco-
protein but not to the 43-kDa glycoprotein itself was
detected in the nuclei of mature nurse cells (Vassilatis
et al. 1996b).

Recently, it has been reported that the 43-kDa glycoprotein
may have deoxyribonuclease IIα (DNase IIα) activity. DNase
IIα, which is an acidic endonuclease, was found in lysosomes
and nuclei, and it is also secreted. Its Caenorhabditis elegans
homolog is required for digesting DNA of apoptotic cell
corpses and dietary DNA. The homologs of DNase IIα with
differences at the purported active site histidine residue were
detected in the 43-kDa glycoprotein of T. spiralis and T.
pseudospiralis (MacLea et al. 2003). This study was
expanded by Jasmer and Kwak (2006) who investigated
the ability of a 43-kDa glycoprotein to interfere with
mammalian skeletal muscle gene expression. They con-
structed a plasmid containing the gene of 43-kDa glycopro-
tein, and the gene was expressed as a recombinant protein in
C2C12 myoblasts. They showed that the effects of transfec-
tion of the 43-kDa gene to the cell lines resulted from
similarities of the 43-kDa glycoprotein to DNase IIα.

The 53-kDa glycoprotein

In this section, the 53-kDa glycoprotein will be reviewed in
terms of its biochemical properties and possible functions.

Zarlenga and Gamble (1990, 1995) first identified genes
encoding the 53-kDa glycoprotein of T. spiralis and
elucidated the complete sequence and characteristic of the
53-kDa gene. The homolog of the T. spiralis 53-kDa
glycoprotein is present in T. pseudospiralis E–S products
(Wu et al. 1998), and the complete sequences and character-
istics of the genes encoding the 53-kDa glycoprotein of T.
pseudospiralis have been determined (Nagano et al. 2004).
The amino acid sequence of the T. pseudospiralis 53-kDa
glycoprotein shows a low homology (about 68%) to that of
the T. spiralis 53-kDa glycoprotein.

The gene encoding the 53-kDa glycoprotein of T.
spiralis is expressed by postcapsule larvae and adult worms
but not by precapsule larvae and newborn larvae (Wu et al.
2002). And the 53-kDa glycoprotein is present in the
β-granules but not in the α-granules (Romarís et al.2002a).
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Type I stichocyte granules, which are present within adult
stichocytes, resemble β-granules of muscle larvae, and the
two granules share antigenicity (Takahashi et al. 1992).
Therefore, the 53-kDa glycoprotein, which is present within
β-granules, could be expressed in adult worms. These data
indicate that the 53-kDa glycoprotein is not responsible for
muscle cell transformation nor capsule formation, but the
protein plays some role in the continuation of parasitism
and modulation of host immune response.

The immunogenicity of the 53-kDa glycoprotein using
monoclonal antibodies (mAbs) was consecutively studied
by Romarís and her colleagues. The native 53-kDa
glycoprotein in larval E–S products of T. spiralis contains
tyvelose-containing antigen and shows a marked heteroge-
neity in glycosylation (Romarís et al. 2002a). Some of the
epitopes recognized by mAbs are differentially expressed in
Trichinella spp. The epitope recognized by mAb US5 on
the 53-kDa glycoprotein (another O-glycan/peptide epitope)
is present only in T. spiralis, whereas those recognized by
mAbs US8 and US9 (peptide epitopes) are present in
encapsulated Trichinella species (Romarís et al. 2002a).
The 53-kDa glycoproteins from the species Trichinella
britovi, Trichinella murrelli, and genotype T8 have higher
molecular weight (60 kDa) than the 53-kDa glycoprotein
from T. spiralis, Trichinella nelsoni, and genotype T6 and
from Trichinella nativa (55 kDa; Romarís et al. 2003). The
variation in molecular weight of the 53-kDa glycoprotein is
due to small differences in amino acid sequence, leading to
change in the number of glycosylation sites. The 53-kDa
glycoprotein from T. spiralis bears species-specific epitopes
that induce antibody formation during infection. The
antigenicity of the 53-kDa glycoprotein is mainly due to
protein epitopes, and the antibody response against glycan
epitopes is less important (Romarís et al. 2003). The
epitope recognized by mAb US9 which is present in all
encapsulated Trichinella species is a linear peptide of eight
residues and located in the amino-terminal region, while the
corresponding epitope recognized by mAb US5 which is
present only in T. spiralis is a 47-amino-acid sequence
containing two alpha-helix regions flanked by random coils
(Perteguer et al. 2004).

The 45-kDa glycoprotein

A novel 45-kDa protein as well as the 43-kDa glycoprotein
secreted from T. spiralis was biochemically isolated (Gold
et al. 1990). Molecular analysis by Arasu et al. (1994)
revealed that the secreted 45-kDa protein is a tyvelose-
bearing glycoprotein and is present in the β- and γ-
stichocytes of the secretory organs of muscle larvae. The
gene encoding this protein belongs to a multicopy gene
family present on a single DNA and encodes several larval
proteins in the 40-50 kDa range.

The homolog of the 45-kDa protein of T. spiralis exists in
the E–S products of T. pseudospiralis, and the 45-kDa protein
is composed of two distinct subgroups, tyvelosylated and
untyvelosylated (Robinson et al. 2007a). Bioinformatics
analysis identified that the secreted 45-kDa protein is a family
of trypsin-like serine proteases (Robinson et al. 2007a).

Minor Trichinella proteins with unrevealed function

In E–S products or not E–S products, there are many interesting
proteins which have been partially characterized. These minor
proteins will be briefly reviewed in the following section.

Nuclear antigens

The so-called nuclear antigens are parasite proteins
(approximately 71, 79, 86, and 97 kDa) detected in host cell
nuclei by means of immunostaining with antibodies against T.
spiralis proteins (Jasmer et al. 1994; Yao and Jasmer 1998).
These nuclear antigens can be depleted from the host nuclei
of muscle cells by mebendazole treatment, which further
strengthens the hypothesis that these nuclear antigens are
secreted by parasites (Yao et al. 1998). Nuclear antigens may
play a role in regulating the infected cell phenotype, but the
functions of these nuclear antigens are unresolved.

Myogenic regulatory factor, MyoD-like protein

A gene encoding a T. spiralis helix–loop–helix protein with
homology to the MyoD-like gene was cloned by Connolly
et al. (1996). This gene is expressed constitutively during
the muscle larval and adult stages. A purified recombinant
MyoD-like protein binds to a high-affinity mouse MyoD:
DNA-binding site in vitro.

TsJ5 protein

The tsJ5 gene was cloned from the muscle larvae of T.
spiralis (Lindh et al. 1998). The TsJ5 protein is not a helix–
loop–helix protein but represents a novel protein with
properties in common with some myogenic repressors. The
tsJ5 gene is expressed at higher levels in encapsulating
species than in nonencapsulating species, and the tsJ5
recombinant protein affects the formation of MyoD:DNA
complexes in vitro (Kuratli et al. 1999). The TsJ5 protein is
found in E–S products, on the cuticular surface and in the
body wall muscle of T. spiralis and T. pseudospiralis
muscle larvae (Kuratli et al. 2001).

T. pseudospiralis-specific 15-kDa protein

Chung and Ko (1999) reported that the protein with a
molecular weight of 15 kDa is present in E–S products of
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T. pseudospiralis. This protein exists only in the stichocytes
of T. pseudospiralis and not in T. spiralis. However, the
functions of this protein are unknown.

DNA-binding protein

A DNA-binding protein (approximately 30 kDa) is present
in the E–S products of the infective-stage larvae of T.
pseudospiralis (Mak and Ko 2001).

The 21- and 28-kDa proteins of T. pseudospiralis
and T. spiralis

The proteins with a molecular weight of 21 or 28 kDa are
present in E–S products of T. pseudospiralis and T. spiralis.
Any related proteins with a significant homology have not
been identified by database searches. The expression of
these genes is restricted largely to the 30 days postinfection
muscle larvae (Nagano et al. 2001a, 2002).

Newborn-larvae-specific protein

The glutamic acid-rich protein is transcribed specifically in
the newborn larvae stage of T. spiralis and is present in the
periphery of the developing stichocytes within newborn
larvae (Zarlenga et al. 2002).

Nematode-specific cysteine–glycine domain proteins

Nematode-specific proteins of T. spiralis have a similarity
to a predicted secreted or extracellular C. elegans protein.
The region of similarity includes a conserved cysteine–
glycine (CCG) domain, which is nematode specific. Two
cysteine–glycine domains (Ts-CCG-1 and Ts-CCG-2) are
present in the predicted T. spiralis protein, and particularly
Ts-CCG-2 protein is present in E–S products (Gare et al.
2004). The Ts-CCG-1 gene is constitutively expressed, and
Ts-CCG-2 gene expression is restricted to the muscle
larvae.

The proteins with FYVE zinc-finger domain

The FYVE finger domain is a cysteine-rich zinc-finger-like
motif that coordinates two zinc atoms. The function of this
domain is to target signal-transducing proteins to cell
membranes through binding to the membrane lipid
phosphatidylinositol-3-phosphate with high specificity. A
protein with zinc-finger domain in T. spiralis (approximately
55 kDa) is present in the crude extracts of muscle larvae,
adult worms, and newborn larvae (Fu et al. 2005). Another
protein with zinc-finger motifs is present only in the adult
worms of T. spiralis, and this protein contains putative
DNA-binding motifs (Hu et al. 2005).

Rcd1-like protein

Required cell differentiation 1 (Rcd1) was initially identified
as a factor essential for the commitment to nitrogen
starvation-invoked differentiation in fission yeast. The
murine Rcd1 protein was identified as a cofactor of the
c-myb proto-oncogene product, and the c-Myb and Rcd1
proteins physically interact with each other and that the
c-myb-specific mim-1 promoter is downregulated by Rcd1
(Haas et al. 2004). The Rcd1-like gene was cloned from
muscle larvae of T. pseudospiralis (Nagano et al. 2006).
The Rcd1-like protein is mainly synthesized in the
stichocytes, secreted into the host cell.

Trichinella proteins with defined function

The functions of some proteins of Trichinella spp. have
been revealed. Such information is not only useful for cell
biological understanding of host–parasite relationships but
it also raises the possibility of application to therapeutic
treatment. Defining protein function used to be difficult, but
recent molecular techniques allow easier identification by
homology searching between specimen genes and DNA
sequences posted to the GeneBank database.

Proteinases

Among functional proteins, proteinase is one of most well
investigated. Proteinases secreted by parasitic organisms
may be involved in a wide variety of adaptive functions
such as tissue penetration, larval migration, immunoevasion,
retardation of blood coagulation, digestion, molting, and
degradation of cellular matrix. These proteinases can also
serve as immunodominant antigens, stimulating a protective
immune response, or as potential targets for chemotherapy
(Todorova and Stoyanov 2000).

Several authors have reported proteinases in the E–S
products of the infective-stage larvae or adult worms of
Trichinella spp. Serine proteinases and metalloproteinases
in whole crude extracts and E–S products from T. spiralis
muscle larvae were identified by Criado-Fornelio et al.
(1992). The proteinases in crude extracts had molecular
weights of 48, 54, and 62 kDa, and the proteinases in E–S
products had molecular weights of 33, 62, and 230 kDa. de
Armas-Serra et al. (1995) reported a class-undetermined
proteinase from E–S products of T. spiralis muscle larvae,
which was a single polypeptide with an estimated molecular
weight of 35 kDa and an isoelectric point of 6.2.

Todorova et al. (1995) showed that the proteinases
secreted from adult worms of T. spiralis degraded fibrinogen
and plasminogen, and degradation was susceptible to the
action of serine, cysteine, and aspartyl proteinase inhibitors.
Serine proteinases in adult worms were present in E–S
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products, and the purified enzymes (approximately 18, 40,
and 50 kDa) displayed enzymatic activity (Todorova and
Stoyanov 2000).

A T. spiralis muscle larvae stage-specific antigenic
serine proteinase was cloned and characterized as a
secretory tyvelose-bearing glycoprotein using molecular
techniques (Romarís et al. 2002b). Nagano et al. (2003)
also identified the serine proteinase from T. spiralis muscle
larvae and confirmed the proteinase activity of the
recombinant protein. They showed that the serine protein-
ase gene is mainly expressed in muscle larvae, but the
proteinase is not present in E–S products. Whereas,
Robinson et al. (2005) showed by proteomic analysis that
this serine proteinase is present in the E–S products.
Recently, a putative serine proteinase composed of two
proteinase domains was identified (Trap et al. 2006). This
proteinase is expressed at various developmental stages of
T. spiralis but not found in E–S products.

These works mentioned above mainly dealt with serine
proteinase. A cysteine proteinase secreted from the muscle
larvae of T. spiralis was reported by Moczon and Wranicz
(1999), and a metalloproteinase in E–S product of T.
spiralis was reported by Lun et al. (2003).

Proteinase inhibitors

Serine proteinase inhibitor (serpin) inactivates proteinases
by forming complexes with serine proteinase. Possible
functions of serpin have been postulated in a number of
other systems including modulation and inhibition of host
immune responses (Macen et al. 1993). A serpin gene of T.
spiralis muscle larvae was cloned by Nagano et al. (2001b).
The recombinant protein of the serpin inhibited 82% of the
activity of the serine proteinase. The serpin gene was
restricted largely to the newborn larvae and muscle larvae,
and serpin is found within the stichocytes of muscle larvae
in the early stage of infection.

Cystatins comprise a diverse group of cysteine protease
inhibitors and important immunomodulatory factors when
secreted by parasitic nematodes. A novel cystatin-like
protein (46 kDa) secreted from T. spiralis is identified as
a new member of the noninhibitory cystatin-related proteins
by Robinson et al. (2007b). Cystatin-like protein gene
expression is largely restricted to intracellular stages,
predominantly in the adult worms. Interestingly, this protein
is not present in the E–S products of T. pseudospiralis. This
may explain why inflammatory response in T. pseudospiralis
infections is less than in T. spiralis infection because the
cystatin-like protein of T. spiralis acts as a proinflammatory
factor. Sugane and Matsuura (1990) reported DNA sequen-
ces of a 46-kDa protein from muscle larvae of T. spiralis
without referring its function. But this 46-kDa protein seems
to be the cystatin-like protein because the sequences of this

protein are completely identical to that of the cystatin-like
protein published by Robinson et al. (2007b).

Heat shock proteins

Heat shock proteins (Hsps) may protect parasites against
stress or injury and may play an important role in tissue
invasion and intracellular survival. They have been docu-
mented in a large variety of species.

The Hsps in Trichinella spp. were documented for the
first time in both crude extracts and E–S products of the
heat-shocked infective-stage larvae using SDS-PAGE (Ko
and Fan 1996). The major Hsps in crude extracts of T.
spiralis are 20, 47, 50, 70, 80, and 86 kDa, and the major
Hsps in the E–S products are 11, 45, 53, and 64 kDa. In T.
pseudospiralis, the major Hsps in the crude extracts are 20,
26, 31, 50, 53, 70, 80, and 86 kDa, and in the E–S products
11, 35, 37, 41, and 64 kDa. The 70-kDa Hsp of T. spiralis
was detected by Western blotting using mAbs (Martinez
et al. 2000). The 70-kDa Hsp of T. britovi was detected in
the nuclei of the muscle larvae but not in adult worm nuclei
(Vayssier et al. 1999).

Martinez et al. (1999) compared three stimuli, elevated
temperature, hydrogen peroxide, and mebendazole for their
ability to induce heat shock responses in T. spiralis muscle
larvae and observed that the exposure to hydrogen peroxide
resulted in the induction of constitutive and higher Hsps.
The expression levels of the 50-kDa Hsp from infective-
stage larvae of T. spiralis immediately and persistently
increased after oxidative and cold shock (Martinez et al.
2002). They investigated the relationship between infectivity
and the expression levels of Hsp 70 and Hsp 60. Oxidative
stress caused a significant increase in Hsp levels and total
loss of infectivity, but cold oxidative stress caused no
alterations in either Hsp levels or infectivity (Martinez and
Rodriguez-Caabeiro 2005).

Three heat-induced genes in T. spiralis were identified
using the suppression subtractive hybridization technique
(Mak et al. 2001). These genes are homologous to histone
H3 gene, histone H2B gene, and translationally controlled
tumor protein (TCTP) gene. The TCTP is a stress- and
growth-related protein with antiapoptotic and immunomod-
ulatory activities. After heat shock treatment, the expression
levels of histone H3, histone H2B, and TCTP increased, but
the RNA level of TCTP did not (Mak et al. 2007). The
expression of TCTP may be upregulated at the translational
level rather than at transcriptional level during early stage
of stress adaptation.

Hsp 60 is a family of ubiquitous molecular chaperonins
that regulate posttranslational folding, assembly, and the
targeting of proteins. Some chaperonins are known to be
expressed as a response to stress whereas others are
constitutively expressed. However, the thermal, cold,
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acidic, and oxidative treatment did not elicit significant
changes in the expression of mitochondrial Hsp 60 of the T.
spiralis muscle larvae (Wong et al. 2002). A small heat
shock gene of T. spiralis, which had a high sequence
identity in alpha crystallin domain, was cloned by Wu et al.
(2007b). This small heat shock protein is expressed at
various developmental stages of T. spiralis and possesses
chaperone activity to suppress the thermally induced
aggregation of citrate synthase.

Glycosidases

In extracts of T. spiralis adult worms and muscle larvae, the
exoglycosidases, β-N-acetyl-D-glucosaminidase, β-N-
acetyl-D-galactosaminidase, alpha-1-fucosidase, alpha-D-
glucosidase, and alpha-D-mannosidase, are present at high
levels (Rhoads 1985). These glycosidases are detected also
in culture fluids of both muscle larvae and adult worms.

Theβ-N-acetyl-D-hexosaminidase has been detected in the
E–S products of various parasitic organisms. Its functional
roles have been postulated to be linked to various events
including host cell invasion, modification and/or remodeling
of cell surfaces, or carbohydrate breakdown for nutritional
purposes. The β-N-acetyl-D-hexosaminidase is present in the
muscle larvae of T. spiralis, and the enzyme is a glycoprotein
with an estimated molecular weight of 100 kDa and is
localized on cell membranes and the epicuticle (Rhoads
1988). The secreted glycosidase from T. spiralis with
significant activity is only an exo-β-hexosaminidase (Bruce
and Gounaris 2006). This enzyme is glycosylated with an
apparent molecular weight of 50 kDa, and the glycan is
decorated with tyvelose.

Protein kinases

Arden et al. (1997) showed that serine–threonine protein
kinases activity is present in E–S products of T. spiralis
infective-stage larvae and identified two serine–threonine
protein kinases of 70 and 135 kDa in E–S products using
autophosphorylation. The major phosphorylated proteins
(50- and 55-kDa proteins) contain mainly phosphoserine
and appear to represent differentially glycosylated variants
of a 35-kDa polypeptide.

Endonucleases

Double-stranded endonuclease activity is present in the E–S
products of the infective-stage larvae of T. spiralis and is
present in much smaller amounts in the E–S products of T.
pseudospiralis. The endonuclease activity is associated with
at least three molecular forms, designated approximately as
25, 30, and 58 kDa, respectively (Mak and Ko 1999). Unlike
the double-stranded endonuclease, the single-stranded

molecule is divalent cation independent and is present in
both T. spiralis and T. pseudospiralis E–S products (Mak
et al. 2000). The single- and double-stranded endonucleases
are likely to be encoded by different proteins and may have
different functions.

Thymidylate synthase

Thymidylate-synthase-specific activity is present at a high
and constant level in crude extracts from muscle larvae and
adult worms of T. spiralis and T. pseudospiralis (Rode et al.
2000). Dabrowska et al. (2004) cloned thymidylate synthase
gene from the cDNA of T. spiralis and confirmed
enzymatic activity of recombinant thymidylate synthase.
The expression level of thymidylate synthase was similar in
muscle larvae, adult worms, and newborn larvae.

Macrophage migration inhibitory factor

Migration inhibitory factor (MIF) was first identified as a
soluble protein secreted by sensitized lymphocytes, which
inhibited the migration of macrophages. Recently, it has
been discovered that MIF not only plays a critical role in
inflammation but also has endocrine and enzymatic
function. Parasites usually possess the ability to escape
from host immune attack. Some parasites secrete a homolog
of host MIF that has the capability of modifying the activity
of human monocytes–macrophages.

The MIF of T. spiralis was detected in E–S products of
muscle larvae (Tan et al. 2001). The MIF recombinant
protein inhibited migration of human peripheral blood
mononuclear cells but had no effect on anti-CD3-stimulated
murine T cell proliferation. The homolog of MIF from T.
spiralis is present in T. pseudospiralis E–S products (Wu
et al. 2003). The MIF gene is expressed in various
developmental stages, including in adult worms, newborn
larvae, and muscle larvae. The MIF exists in the muscle
cells of the body wall and some stichocytes of larvae. The
MIF recombinant protein profoundly inhibited the macro-
phage accumulation around the Sephadex beads trans-
planted in mice.

Nucleotide-metabolizing enzymes

Tissue damage results in a variety of molecular signals that
activate elements of the immune system. Recently, it has
been shown that the key regulators of these events are
extracellular nucleotides, which signal through purinergic
receptors (Gounaris and Selkirk 2005).

Nucleoside diphosphate kinases (NDPKs) play a key
role in the maintenance of intracellular pools of deoxy-
nucleoside triphosphates and nucleoside triphosphates
(NTPs) via the transfer of phosphate from an NTP donor
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to an NDP acceptor. T. spiralis secretes an NDPK with
molecular weight of 17 kDa, and a possible function of
NDPK might lie in the regulation of host cell proliferation
and differentiation (Gounaris et al. 2001).

Exoenzymes: apyrase, 5'-nucleotidase, and adenosine
deaminase are secreted by T. spiralis (Gounaris 2002).
These proteins constitute an enzymatic cascade which
catalyzes the degradation of extracellular nucleotides, with
a potential physiological role in the regulation of purinergic
signaling.

A nucleotidase secreted from T. spiralis catalyzes
the hydrolysis of nucleoside 5'-diphosphates and 5'-
monophosphates but not 5'-triphosphates (Gounaris et al.
2004). The sequence of the nucleotidase is homologous to
5'-nucleotidases from a wide variety of organisms but
contains no sequences specifically conserved in apyrases,
suggesting that it is a representative of a new class of
secreted nucleotidase.

Prosaposin and GM2 activator protein

The lysosomal degradation of glycosphingolipids with
small carbohydrate chains requires the presence of nonen-
zymatic cofactor like prosaposin and ganglioside GM2
activator protein (GM2AP).

Infective-stage larvae and adult worms of T. spiralis
secrete a protein homologous to prosaposin (Selkirk et al.
2004). The protein is secreted in an unprocessed form with
an estimated molecular weight of 56 kDa and contains the
TSL-1 antigens. The protein is localized to membrane-
bound vesicles and more complex multilamellar organelles
in diverse tissues including the hypodermis, intestine, and
stichocytes. The prosaposin facilitates invasion of intestinal
epithelial cells and subsequent migration through this cell
layer. GM2AP secreted from T. spiralis was reported by
Bruce et al. (2006). This protein does not facilitate
degradation of GM2 ganglioside by N-acetyl-β-hexosamin-
idase A because of the absence of a domain implicated in
binding to hexosaminidase.

Enolase

Enolase is an enzyme which catalyzes 2-phospho-D-
glyceric acid (2PGA) to phosphoenolpyruvate (PEP) in
the glycolytic pathway where ATP is synthesized in the
process of metabolizing glucose to pyruvic acid. Enolase of
parasites enhances the activation of plasminogen, and
plasminogen mediated by enolase contributes to tissue
migration of the parasites (Bernal et al. 2004).

The enolase from T. spiralis muscle larvae was identified
by Nakada et al. (2005). The recombinant full-length
enolase of T. spiralis had no activity in the conversion of
2PGA to PEP but gained enolase activity after cutting off

the signal peptide from the full-length protein. The enolase
is in crude extracts of muscle larvae but is not present in the
E–S products.

Superoxide dismutases

Superoxide dismutase (SOD) is an important antioxidant
and catalyzes the conversion of superoxide anion into
hydrogen peroxide and molecular oxygen. It exists com-
monly in most organisms to protect against endogenous
oxidative stress.

Copper–zinc SOD activity is present in both crude
extracts and E–S products of T. pseudospiralis, and the
expression of cytosolic SOD is substantially higher in
infective-stage larvae than in adult worms (Wu et al. 2006).
The manganese SOD of T. pseudospiralis was reported by
Wu et al. (2007a). This manganese SOD is a mitochondrial
enzyme because of the presence of mitochondrial transit
peptides and maturation cleavage site in this protein. The
expression level of manganese SOD is lower than that of
copper–zinc SOD in infective-stage larvae. The manganese
SOD is highly expressed in the infective-stage larvae but
not in adult worms.

Caveolin

Caveolins are integral membrane proteins which play a role in
cholesterol homeostasis and transport, endocytosis mecha-
nisms, and regulation of signal transduction in differentiated
cells. The caveolin of T. spiralis is an adult stage-specific
protein and gradually accumulates on the surface of oocytes
and embryos, suggesting that the caveolin of T. spiralis plays
some role in oocyte maturation and embryogenesis during
development (Hernandez-Bello et al. 2007).

Prolactin

The prolactin-like hormone (23 kDa) of T. spiralis was
identified in E–S products and the stichocytes within the
muscle larvae (Quintanar et al. 2007).
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