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Abstract Ingestion of the larval nematode Angio-
strongylus cantonensis can cause the human eosinophilic
meningitis known as angiostrongyliasis. Analysis of the
extracts and excretory-secretory (ES) products of A.
cantonensis larvae and adult stages on gelatin substrate
zymography demonstrated the presence of distinct gel-
atinolytic enzymes. In worm extracts, inhibitor studies
showed that the metalloproteinases revealed in L,
(23 kDa), L; (66, 42 and 30 kDa), young adult worm (72
and 94 kDa) and adult worm (72 and 94 kDa). In ES
products, the L; revealed one low (42 kDa) and two
high (105 and 94 kDa) molecular weight proteolytic
bands that degraded gelatin in substrate gels. The L;
revealed three low (66, 50, and 30 kDa) and one high
(105 kDa) molecular weight proteolytic bands. Inhibitor
studies confirmed that the 105 and 94 proteolytic
bands of the L;, and the 50 and 30 kDa proteolytic
bands of the Lj classification were metalloproteinases.
These metalloproteinases secreted in the infective lar-
vae may be associated with the parasite dissemination
or pathogenesis.

Introduction

The parasitic nematode Angiostrongylus cantonensis,
which dwells in the rat pulmonary artery, is the most
common infectious cause of eosinophilic meningitis
worldwide (Kliks and Palumbo 1992). The adult worm
of males typically measure 14-15 mm in length, and has
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a tail with copulatory bursa and long spicules. Females
typically measure 24-26 mm in length, and present a
characteristic barber-pole appearance (Lindo et al.
2002). The nematode has a complex life cycle (Alicata
1965). Eggs hatch in the lungs, and first-stage larvae (L)
pass out in the faeces, to subsequently enter a molluscan
intermediate host where they moult twice. The third
stage larvae (L3) of 4. cantonensis typically measure
425-524 um in length and 23-34 pum in width. The
posterior end of the tail always terminates in a fine point
(Ash 1970). The infective L5 orally infect the final host
and are carried in the blood to the central nervous sys-
tem, where they moult twice to become immature adults.
Once reaching the branches of the pulmonary artery,
they grow rapidly, attain sexual maturity, and release
eggs (Alicata 1965).

The production of proteolytic enzymes and their
release as excretory-secretory (ES) products have been
reported for various helminthes (Matthews 1982;
McKerrow and Doenhoff 1988; McKerrow et al. 1990).
Cysteine proteases have been found in Ancylostoma
caninum (Harrop et al. 1995) and Toxocara canis
(Loukas et al. 1998). Serine proteinases have been
identified in Anisakis simplex (Morris and Sakanari
1994). Metalloproteinases have also been identified in a
variety of helminthes including Brugia malayi (Petra-
landa et al. 1986), T. canis (Robertson et al. 1989),
Strongyloides stercoralis (McKerrow et al. 1990), Nip-
postrongylus brasiliensis (Healer et al. 1991), Dirofilaria
immitis (Richer et al. 1992), Trichuris suis (Hill et al.
1993), A. caninum (Hawdon et al. 1995), Caenorhabditis
elegans (Wada et al. 1998) and Gnathostoma spinigerum
(Uparanukraw et al. 2001).

Matrix metalloproteinases (MMPs) are a family of at
least 20 zinc metallo-endopeptidases in vertebrates that
regulate cell-matrix composition. They have been
divided into subgroups according to their structure and
function (Matrisian 1992). These enzymes are thought to
participate in extracellular matrix (ECM) remodeling
and degradation, and have been implicated in impor-
tant roles during organ morphogenesis, embryonic



development and pathological processes (Stetler-Ste-
venson et al. 1993; Sato and Seiki 1996).

We have previously shown that the A. cantonensis
could induce host MMP-9 production in the brain (Lai
et al. 2004; Lee et al. 2004). However, knowledge about
the MMPs in nematodes is limited and whether the
proteinases can produce from A. cantonensis remains
unclear. The present study sought to investigate the
activity of metalloproteinases in the extracts and ES
products of A. cantonensis.

Materials and methods
Parasite preparation

The L; (infective larvae for mammalian host) of
A. cantonensis originally obtained from the field mollusk
host that were propagated for several months in our lab-
oratory by cycling through rats and snails (Biomphalaria
glabrata). The larvae within tissues were recovered using a
modification of the method of Parsons and Grieve (1990).
Briefly, the shells were crushed, the tissues were homog-
enized, and digested in a pepsin-HCl solution (pH 1-2,500
I.U. pepsin/g tissue), and incubated with agitation in a
37°C water bath for 2 h. Host cellular debris was removed
from the digest by centrifugation at 1,400g for 10 min.
The larvae in the sediment were collected by serial washing
in double-distilled water and counted under the micro-
scope. Immature adult worms were dissected from rat
brains on day 25 post-inoculation (PI). Each brain was
torn into small pieces and homogenized separately in
15 ml of 0.25% sodium citrate in phosphate-buffered
saline (PBS) followed by centrifugation. Adult worms
were obtained as described previously (Joshuaetal. 1995).
L, (infective larvae for mollusk host) were obtained by
pepsin:HCI digestion of lungs obtained at 40 days PI,
followed by purification from lung tissue by pelleting
through 100% isopaque (Pharmacia, New York, NY)
(Bessarab and Joshua 1997).

Parasite extracts

Worms were thoroughly washed in PBS to free them of
enzyme, ground in liquid nitrogen, homogenized in PBS
in an ice bath and subjected to repeated brief sonica-
tions. The success of this procedure in completely
breaking worms apart was confirmed microscopically.
The extracts were centrifuged at 12,000¢ for 10 min.

In vitro cultivation of A. cantonensis

For the experiments, five groups were used. All experi-
ments utilized RPMI-1640 medium (Sigma, USA). The
groups were: control (no worm); L;, 2000 L; cultured in
medium; L3, 2000 L3 cultured in medium; young adult,
60 young adult worms cultured in medium; adult, 60
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adult worms (30 males and 30 females) cultured in
medium. The control medium or worm-containing
media were incubated at 37°C for 72 h in 200 pl of sterile
medium, pH 7.2, containing 100 IU/ml penicillin and
100 pug/ml streptomycin. The motility of the worms was
checked microscopically. The medium was changed ev-
ery 24 h by pelleting the worms at 150g for 5 min and
resuspending them in fresh complete medium. The cul-
ture medium was checked for bacterial contamination
during each experiment. Bacterial contamination was
prevented prior to the experiments by passing the med-
ium through a 0.2 um filter (Millipore, Eschborn, Ger-
many) and storing the filtrate at —70°C before use.

Experimental animals and infection

Five-week-old male rodents, BALB/c mice and
Sprague-Dawley rats, were purchased from the National
Laboratory Animal Center, Taipei, Taiwan. They were
maintained at 12 h light/dark cycle photoperiods, pro-
vided with Purina Laboratory Chow and water ad libi-
tum, and kept in our laboratory for more than one week
before the experimental infection. The rodents were
prohibited food and water for 12 h before infection.
They were infected with 60 A. cantonensis Ly by oral
inoculation and sacrificed on day 25 post-infection (PI).
Control rodents received only water and were also sac-
rificed on day 25 PI.

Gelatin substrate zymography

The A. acntonensis samples (extracts and cultured fluids,
20 pg protein) were diluted 1:1 in sample buffer (1%
SDS, 2% glycerol, 10% bromophenol blue and 0.5 M
Tris—HCI, pH 6.8). Samples were loaded on 7.5% (mass/
volume) SDS-polyacrylamide gels that had been copo-
lymerized with 0.1% gelatin (Sigma, USA). Stacking
gels were 4% (mass/volume) polyacrylamide and did not
contain gelatin substrate. Electrophoresis was per-
formed in running buffer (25 mM Tris, 250 mM glycine,
1% SDS) at room temperature at 120 V for 1 h. The gel
was washed two times at room temperature for 30 min
each in 2.5% Triton X-100, and then washed two times
with double-distilled water for 10 min each. The gel was
incubated in reaction buffer (50 mM Tris—HCI, pH 7.5,
containing 200 mM NaCl, 10 mM CaCl,, 0.02% Brij-
35, 0.01% NaN3) at 37°C for 18 h. The gel was stained
with 0.25% Coomassie Brilliant Blue R-250 (Sigma,
USA) for 1 h and destained in 15% methanol/7.5%
acetic acid. Gelatinase activity was detected as unstained
bands on a blue background.

Inhibition of gelatinase on gelatin zymography

Samples were resolved by SDS/PAGE on 7.5%
polyacrylamide gels impregnated with 0.1% gelatin
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(Sigma, USA). Following electrophoresis, gels were
soaked in 2.5% Triton-X-100 to replace SDS, washed
twice with water, then incubated at 37°C for 18 h in
MMP activation buffer (50 mM Tris, pH 8.0, 5 mM
CaCl,). In control experiments, calcium was replaced
with 10 mM ethylenediamine tetraacetic acid (EDTA,
Sigma, USA) in the activation buffer. For inhibitor
studies, either 20 pM leupeptin (Sigma, USA), 2 mM
phenylmethanesulphonyl fluoride (PMSF, Sigma, USA),
5 mM 1,10-phenanthroline (Sigma, USA), solvent was
added to the Triton and activation buffers. Zymography
gels were stained with Coomassie Brilliant Blue and
destained in 15% methanol/7.5% acetic acid. Proteins
with gelatinolytic activity were revealed as clear bands
on a blue background.

Results
Gelatinase activity from worm extracts

Angiostrongylus cantonensis L, extracts had a restricted
profile when examined by gelatin substrate SDS-PAGE.
Three dominant bands at 94, 42 and 23 kDa. In L; ex-
tracts, five gelatinase bands were evident at 94, 86, 66, 42
and 30 kDa. In extracts from both young and adult
worms two gelatinase bands were observed at 94 and
72 kDa (Fig. 1a). Inhibitor studies showed the 23 kDa
L, gelatinase band share characteristics of metallopro-
teinase/cysteine-proteinase/serine-proteinase, and the
42 kDa band was serine-proteinase. In L3 gelatinase
bands, the 66, 42 and 30 kDa bands showed share
characteristics of metalloproteinase/cysteine-proteinase.
The 72 and 94 kDa gelatinase bands in the young adult
worm and adult worm showed share characteristics of
metalloproteinase/cysteine-proteinase (Fig. 1b—e).

Gelatinase activity from worm ES products

Analysis of L; ES products revealed one low (42 kDa)
and two high (105 and 94 kDa) molecular weight pro-
teolytic bands that degraded gelatin in substrate gels.
Similar analysis of L3 products revealed three low (66,
50, and 30 kDa) and one high (105 kDa) molecular
weight proteolytic bands. In contrast, gelatinase activi-
ties were not detected in the ES obtained from young
adult and adult worms (Fig. 2a). Inhibitor studies
showed the 105 and 94 kDa L, gelatinase bands, and 50
and 30 kDa L; gelatinase bands were metalloproteinases
(Fig. 2b-e).

Differentiation the gelatinases from worms and hosts
The gelatinase bands of 94 (MMP-9) and 72 (MMP-2)

kDa were detected in 60 4. cantonensis-infected mice but
not in rats or following culturing of 60 worms. Cere-
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Fig. 1 Gelatinase activity from worm extracts. a L of Angiostrongylus
cantonensis extracts have a restricted profile when examined by gelatin
substrate SDS-PAGE, with three dominant bands at 94, 42 and
23 kDa; five gelatinase bands at 94, 86, 66, 42 and 30 kDa of the L;
two gelatinase bands at 94 and 72 kDa in young adult and adult
worms. b—e In L, gelatinase bands, the 23 kDa band was significantly
inhibited by 1,10-phenanthroline, leupeptin or PMSF; the 42 kDa
band was significantly inhibited by PMSF. In L; gelatinase bands, the
66, 42 and 30 kDa bands were significantly inhibited by 1,10-
phenanthroline or leupeptin. The 72 kDa gelatinase bands in the
young adult worm and adult worm were significantly inhibited by
EDTA and 1,10-phenanthroline, partially inhibited by leupeptin. The
94 kDa gelatinase bands in the young adult worm and adult worm were
significantly inhibited by leupeptin, partially inhibited by EDTA or
1,10-phenanthroline. Other gelatinase bands from worm extracts could
not be inhibited by EDTA, 1,10-phenanthroline, leupeptin or PMSF
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Fig. 2 Gelatinase activity from LI L; YA Ad L] Ls YA Ad
worm secretory products. a The a - b )
analysis of the excretory-
secretory products of the L, :
revealed one low (42 kDa) and ]gz ﬁBa - 105 kDa —
two high (105 and 94 kDa) Lo 94 kDa —
molecular weight proteolytic :
bands that degraded gelatin in 5861(%[23‘1 -
substrate gels. In addition, the 42 kDa 66 kDa —
L; revealed three low (66, 50, — 50 kDa
and 30 kDa) and one high 30 kDa 42 kDa —
(105 kDa) molecular weight P
proteolytic bands. The 105 and 30 kDa
94 kDa gelatinase bands of the
L,, and the 50 and 30 kDa 2
gelatinase bands of the L; were Control Leupeptm
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phenanthroline (¢), and c d
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brospinal fluid from mice infected with A. cantonensis
contains metalloproteinase. However, MMPs were not
b Ly, Ly YA Ad Rat Mouse

detected in experiments utilizing 60 larvae, 60 young
adult worms, or 60 adult worms (Fig. 3).

Discussion

Proteinases serve a variety of functions in parasite
development including the facilitation of host tissue
invasion, digestion of host proteins, inhibition of blood
clotting, molting and evasion of the host immune
response (McKerrow 1989). In the present study, we
observed metalloproteinases secretion in the L3 (50 and
30 kDa). These molecular weights and responses to the
inhibitory agents are consistent with the classification of
these species as metalloproteinases. These bands were
observed in gelatin zymography after proteolysis by

94 kDa —

72 kDa —

Fig. 3 Differentiation of gelatinase from worms and hosts. The
gelatinase bands of 94 and 72 kDa were detected in Angiostrongy-
lus cantonensis-infected mice. Geleatinase activity could not be
detected in rats or in the 60 worm homogenates of L, L3, young
adult and adult worms, respectively
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ES products from A. cantonensis. This means that
metalloproteinases secreted by A. cantonensis Lz exhibit
diversity based on the differential migration in poly-
acrylamide gels. These enzymes may play a role in the
parasite penetration of the stomach or intestinal wall of
the host, although more directed investigations will be
needed to confirm these roles.

Cerebrospinal fluid from mice infected with
A. cantonensis also contains metalloproteinase. Earlier
studies in our laboratory demonstrated that, following
infection with 60 A. cantonensis, MMP-9 can be induced
in ICR mice (Lai et al. 2004) and BALB/c mice (Lee
et al. 2004). Presently, at least 2000 larvae (L; or L)
were required for the detection of the enzyme activity. In
contrast, MMPs were not detected in 60 A. cantonensis
of L;, L3, young adult worms or adult worms, respec-
tively. These data can differentiate the metalloprotein-
ases in this study secreted by the L;, young adult or
adult worms, and previous studies (Lai et al. 2004; Lee
et al. 2004) secreted by the mice. Moreover, our findings
strongly support the suggestions that the production of
metalloproteinases is by the host rather than the parasite
(Hotez et al. 1985; Petralanda et al. 1986; Knox and
Kennedy 1988; Lackey et al. 1989).

Proteinase secreted by the infective larvae facilitates
penetration of skin or intestinal walls of humans (Tort
et al. 1999). Metalloproteinase-mediated degradation of
ECM components is also a feature of some helminthes
(Petralanda et al. 1986). Ingestion of larval nematode
A. cantonensis can cause the human disease known as
angiostrongyliasis (Alicata 1965). After ingestion,
A. cantonensis larvae can be invasive, penetrating host
stomach or intestinal wall (Wang et al. 1991). Thus, we
suggest that metalloproteinases secreted in the infective
larvae may be associated with the parasite dissemination
or pathogenesis.
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