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Abstract The present work involves an ultrastructural
study of the mature spermatozoon of the anoplocephalid
cestode Gallegoides arfaai (Mobedi and Ghadirian, 1977)
Tenora and Mas-Coma, 1978, obtained from the small
intestine of naturally infected wood mice, Apodemus
sylvaticus Linnaeus, 1758 (Rodentia, Muridae). The
mature spermatozoon of G. arfaai is a filiform cell,
tapered at both ends and lacking mitochondria. It is
characterized by the presence of a 1,000-nm-long apical
cone and two 140-nm-thick crest-like bodies in its ante-
rior extremity. The axoneme, of the 9+’1’ trepaxonem-
atan pattern, lacks a periaxonemal sheath, and
disorganization occurs at the level of the nuclear region
of the sperm cell. The cortical microtubules form two to
four fields according to the different regions of the male
gamete. They are twisted at an angle of about 35�,
becoming parallel towards the posterior extremity of
spermatozoon. The nucleus, spiralled around the
axoneme, shows an irregular shape in both longitudinal
and cross-sections. Numerous electron-dense granules
were observed, which transform into an electron-dense

material in the posterior extremity of the cell. Moreover,
we describe for the first time the total length of the
anterior region of sperm containing the helical crest-like
bodies. This anterior extremity measures around 15 lm
and presents two helical crest-like bodies of different
lengths that describe 13–14 turns around the sperm body.
Our ultrastructural results on the G. arfaai spermato-
zoon are compared with the ultrastructural organization
of the spermatozoa of other previously studied species,
with particular emphasis on the anoplocephalids.

Introduction

The ultrastructural characters of the spermatozoa of
Platyhelminthes are useful in the interpretation of the
relationships within this group of parasites (Euzet et al.
1981; Swiderski 1986; Justine 1991, 1995, 1998, 2001;
Bâ and Marchand 1995; Hoberg et al. 1997; Xylander
2001). Several ultrastructural characters present during
spermiogenesis and in the spermatozoon have been
established as synapomorphies for the major groups of
Platyhelminthes. In fact, the absence of mitochondria as
a synapomorphy for the Eucestoda has been used by
Ehlers (1984, 1985a, 1985b, 1986) and Brooks (1989).
Furthermore, the twisting pattern of cortical microtu-
bules is a synapomorphy, in this case, for the Tetrabo-
thriidea and Cyclophyllidea (Justine 1991, 2001). The
presence of one or more crest-like bodies in the anterior
extremity of the spermatozoon has also been considered
as a synapomorphy for the Eucestoda (Bâ and Marc-
hand 1995). However, there are presently several char-
acters detected in the mature sperm, the usefulness of
which as phylogenetic tools is yet to be described, for
example the angle of rotation of the cortical microtu-
bules, the morphology of the nucleus, the thickness of
the crest-like bodies and the morphometry of the apical
cone, among others. Nevertheless, several characters,
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such as the presence or absence of a periaxonemal
sheath, electron-dense granules or intracytoplasmic
walls will probably play an interesting role in the future
interpretation of the relationships between the different
families of cyclophyllideans (Justine 1998).

Within the order Cyclophyllidea, the family Ano-
plocephalidae Cholodkowsky, 1902 has already been
extensively studied from the ultrastructural point of
view. The family Anoplocephalidae comprises four
subfamilies: Anoplocephalinae Blanchard, 1891, Ine-
rmicapsiferinae López-Neyra, 1943, Linstowinae Fuhr-
mann, 1907 and Thysanosomatinae Skrjabin, 1933.
Ultrastructural studies on spermatology have been car-
ried out on several species of these subfamilies, partic-
ularly in the Anoplocephalinae. To date, ultrastructural
studies on the sperm of anoplocephalid cestodes refer to
13 species belonging to 11 genera (Swiderski 1968, 1984;
MacKinnon and Burt 1984; Swiderski and Subilia 1985;
Bâ et al. 1991, 2000; Bâ and Marchand 1992a, 1992b,
1994a, 1994b, 1994c, 1994d; Miquel and Marchand
1998a, 1998b; Li et al. 2003). The present paper
describes the first ultrastructural study of the sperma-
tozoon of a species belonging to the genus Gallegoides
Tenora and Mas-Coma, 1978 and increases the available
data on spermatology of the anoplocephalids.

Materials and methods

Adult specimens of Gallegoides arfaai (Mobedi and
Ghadirian, 1977) Tenora and Mas-Coma, 1978 were
obtained live from the small intestine of naturally
infected wood mice, Apodemus sylvaticus Linnaeus, 1758
(Rodentia, Muridae) captured in Mosset and in the
Natural Reserve of Py (Pyrenean Mountains, France).
The living cestodes were placed in a 0.9% NaCl solution.
Mature proglottids of these cestodes were routinely
processed for transmission electron microscopy exami-
nation; they were fixed in cold (4�C) 2.5% glutaraldehyde
in a 0.1 M sodium cacodylate buffer at pH 7.2 for 1 h,
rinsed in a 0.1 M sodium cacodylate buffer at pH 7.2,
postfixed in cold (4�C) 1% osmium tetroxide in the same
buffer for 1 h, rinsed in a 0.1 M sodium cacodylate buffer
at pH 7.2, dehydrated in an ethanol series and propylene
oxide, and finally embedded in Spurr’s resin. Ultrathin
sections were obtained using a Reichert-Jung Ultracut E
ultramicrotome, placed on copper grids and double-
stained with uranyl acetate and lead citrate according to
Reynolds (1963). Ultrathin sections were examined using
a Jeol 1010 transmission electron microscope.

Results

The observation of numerous sections of mature sper-
matozoa of G. arfaai contained in the seminal vesicle in
the mature proglottids allows the establishment of five
different regions in the mature sperm of this anoplo-
cephalid according to its distinct ultrastructural features.

Region I

This region constitutes the anterior extremity of the
spermatozoon. It measures about 15 lm in length
(Fig. 1) and its maximum width is around 475 nm. It is
characterized by the presence of a slightly electron-dense
apical cone measuring 1,000 nm in length and 275 nm in
width at the base (Figs. 1, 2, 3), and two crest-like bodies
which have different lengths and one of which initiates
its helical course around the sperm cell at the level of the
apical cone (Figs. 2, 3, 4). These crest-like bodies are
spiralled around the spermatozoon (Figs. 1, 3, 4, 5, 6, 7).
They have a maximum thickness of 140 nm (Figs. 3, 6)
and describe 13–14 turns around the sperm body
(Fig. 1). In the apical cone, the cortical microtubules are
parallel and grouped (Figs. 2, 4). Later, they become
twisted at an angle of 35� to the hypothetical sperma-
tozoon axis. The cortical microtubules constitute an
electron-dense submembranous layer formed by two
fields partially covering each other (Figs. 5, 6). These
two fields of cortical microtubules are separated from
each other by submembranous electron-dense material
which constitutes the above mentioned crest-like bodies.
The centrally located axoneme of the 9+’1’ pattern of
the trepaxonematan Platyhelminthes lacks a periaxone-
mal sheath (Figs. 5, 6). At the base of the apical cone,
the central core of the 9+’1’ axoneme appears apically
from the peripheral doublets (Figs. 2, 3, 4). The crest-
like bodies progressively reduce their thickness and
disappear (Figs. 1, 5, 7).

Region II

Figures 1, 7, 8, 9, 10 show region II, which is charac-
terized by the absence of crest-like bodies. Its maximum
width is around 425 nm. In this region, the twisted
submembranous and electron-dense layer of cortical
microtubules is divided into two to four discontinuous
bundles (Figs. 8, 10).

Region III

Region III is characterized by the presence of electron-
dense granular material (Figs. 9, 11). In this region, the
maximum width of the spermatozoon increases to
around 750 nm. The submembranous and spiralled layer
of cortical microtubules forms three fields (Fig. 11).

Region IV

Region IV constitutes the principal nuclear region of the
sperm, in which both the axoneme and nucleus coexist
(Figs. 12, 13, 14, 15). It also contains electron-dense
granules (Figs. 12, 13, 14, 15). Its maximum width is
around 800 nm. In this region the twisted cortical
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microtubules form three fields (Figs. 12, 15). The
nucleus is spiralled around the axoneme and shows an
irregular shape in both cross and longitudinal sections
(Figs. 12, 13, 14, 15). In certain areas of this region, the
nucleus surrounds the axoneme more than once

(Fig. 15). In the posterior areas the axoneme becomes
disorganized and disappears (Fig. 14).

Region V

Region V (Figs. 14, 16, 17, 18) constitutes the posterior
extremity of the spermatozoon presenting a maximum
width of about 650 nm. It lacks an axoneme, and in this
region it is possible to observe the posterior nuclear
extremity (Fig. 17). The postnuclear area of the mature
spermatozoon of G. arfaai measures around 1.4 lm in
length (Fig. 17). The spiralled cortical microtubules
progressively become parallel reaching the posterior
tip of the spermatozoon (Figs. 16, 17, 18). In this
extremity, the electron-dense granules progressively
transform into a posterior electron-dense material
(Figs. 17, 18).

Schematic diagram

Figure 19 is a schematic diagram of the entire mature
spermatozoon showing regions I–V.

Fig. 1 Longitudinal section of region I. Ase Anterior spermato-
zoon extremity, Cb crest-like bodies. Bar 2 lm
Fig. 2 Cross-section of region I at the base of the apical cone.
Notice the appearance of the central core (Cc) of axoneme before
the doublets. A parallel group of cortical microtubules (Cm) is also
present. Bar 0.2 lm
Fig. 3 Longitudinal section of region I showing the apical cone
(Ac). The arrowhead indicates the beginning of the longest crest-like
body. Ase Anterior spermatozoon extremity, Ax axoneme, Cb
crest-like bodies. Bar 0.5 lm
Fig. 4 Another cross-section of region I at the level of the base of
the apical cone showing the first crest-like body (Cb). Cm Cortical
microtubules. Bar 0.2 lm
Fig. 5 Cross-section of the mature spermatozoon at the level of the
end of region I. Cb Crest-like bodies. Bar 0.2 lm
Fig. 6 Cross-section of region I showing the maximum thickness of
crest-like bodies (Cb). Ax Axoneme. Bar 0.2 lm
Fig. 7 Longitudinal section of the transition between regions I and
II. Cb Crest-like bodies. Bar 0.5 lm
Fig. 8 Cross-section of region II showing the spiralled layer of
cortical microtubules formed by three fields (arrowheads). Bar
0.2 lm
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Discussion

The mature spermatozoon of G. arfaai, as with other cy-
clophyllideans, is characterized by the presence of a single

axoneme of the 9+’1’ pattern of the trepaxonematan
Platyhelminthes (Ehlers 1984, 1985a, 1985b, 1986). It also
presents crest-like bodies and lacks mitochondria as in all
of theEucestoda studied to date (Bâ andMarchand 1995).

Fig. 9 Longitudinal sections of regions II and III. G Dense
granules. Bar 0.5 lm
Fig. 10 Cross-section of the region II showing the spiralled layer
of cortical microtubules formed by four fields (arrowheads). Bar
0.2 lm
Fig. 11 Cross-section of region III. The spiralled layer of cortical
microtubules is formed by three fields. G Dense granules. Bar
0.2 lm
Fig. 12 Cross-section of region IV showing the simultaneous
presence of dense granules (G) and nucleus (N). The cortical
microtubules form three fields. Bar 0.2 lm
Fig. 13 Longitudinal section of the transition between regions III
and IV. G Dense granules, N nucleus. Bar 0.5 lm
Fig. 14 Longitudinal section of the transition of regions IV and V.
Notice the disruption of the axoneme at the level of the nuclear

area. Ape Axonemal posterior extremity, G dense granules, N
nucleus. Bar 0.5 lm
Fig. 15 Cross-section of region IV showing the beginning of the
disorganization of the axoneme. Notice the irregular morphology
of the nucleus (N). Bar 0.2 lm
Fig. 16 Cross-section of region V. Notice that several cortical
microtubules (Cm) are parallel to the spermatozoon axis. N
Nucleus. Bar 0.2 lm
Fig. 17 Longitudinal section of region V. The nuclear posterior
extremity (Npe) nearly reaches the posterior spermatozoon
extremity (Pse). The cortical microtubules (Cm) become parallel
to the spermatozoon axis. Bar 0.5 lm
Fig. 18 Cross-section of region V near the posterior spermatozoon
extremity. Cm Cortical microtubules, Pd posterior dense material.
Bar 0.2 lm
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The crest-like body or bodies always characterize the
anterior extremity of the spermatozoon. They constitute
a synapomorphy for the Eucestoda (Bâ and Marchand
1995). In the anoplocephalids, most of the species have
one or two crest-like bodies in the anterior tip of the
sperm. Only Aporina delafondi (Bâ and Marchand
1994a) with five crest-like bodies and Sudarikovina
taterae (Bâ et al. 2000) with seven crest-like bodies differ
from this pattern. Other than these, all of the species of
the subfamily Anoplocephalinae present two crest-like
bodies (Table 1). The anterior tip of the spermatozoon
presently studied is very similar to two other Anoplo-
cephalinae species: Anoplocephaloides dentata (Miquel
and Marchand 1998a) and Paranoplocephala omphalodes
(Miquel and Marchand 1998b). Both morphology and

morphometry of the anterior spermatozoon extremity
are quite similar in these three species (1,000 nm in G.
arfaai versus 1,400 nm and 900 nm in A. dentata and
P. omphalodes, respectively). They are also very similar
in terms of their crest-like bodies, with a thickness of
between 140 nm in A. dentata (Miquel and Marchand
1998a), and 180 nm in P. omphalodes (Miquel and
Marchand 1998b), and G. arfaai (this study).

The anterior extremity of the spermatozoon of
G. arfaai constitutes the most interesting aspect of this
study. Its total length and the number of turns
described by the crest-like bodies around the sperm
body were observed for the first time. To date, even
though the ultrastructure of the mature spermatozoon
has been studied in more than 75 species of Eucestoda
(see Ndiaye 2003) this character (length and number
of turns described by the crest-like bodies) has never
been observed. It has been demonstrated in several
studies that the spermatozoon of Platyhelminthes
measures around 300 lm in length. Considering that
the anterior extremity (region I) of the spermatozoon
of G. arfaai measures about 15 lm, it is relatively
short compared to the total length of the mature
spermatozoon. Another interesting aspect observed in
the mature spermatozoon of G. arfaai is the occur-
rence of the central element of the 9+’1’ trepaxo-
nematan axoneme before the formation of the nine
peripheral doublets. This occurs at the base of the
apical cone where a single crest-like body (the longest
one) is present. The same was described in A. dentata
and P. omphalodes (Miquel and Marchand 1998a,
1998b).

The spiralled pattern of cortical microtubules has
been postulated as a synapomorphy for the Tetrabo-
thriidea and Cyclophyllidea (Justine 1991, 2001).
However, there are two species which seem to disrupt
this concept, the mesocestoidid cyclophyllidean Mesoc-
estoides litteratus (Miquel et al. 1999), which exhibits a
parallel disposition of cortical microtubules, and the
proteocephalidean Sandonella sandoni (Bâ and Marc-
hand 1994e), which presents twisted cortical microtu-
bules. In fact, except for M. litteratus (see Miquel et al.
1999), all of the cyclophyllideans studied to date present
spiralled cortical microtubules. The angle of the cortical
microtubules to the hypothetical spermatozoon axis
ranges from 15� to 60� in species of the order
Cyclophyllidea (see Ndiaye 2003). In the case of ano-
plocephalids, this angle of rotation varies from 15� in
A. delafondi (Bâ and Marchand 1994a) to 50� in Stilesia
globipunctata and Thysaniezia ovilla (Bâ et al. 1991, Bâ
and Marchand 1992a). The angle of cortical microtu-
bules in the mature spermatozoon of G. arfaai is within
this range with a value of 35�. In G. arfaai, the
submembranous layer of cortical microtubules is
constituted by several fields (two to four, according to
the different regions) which cover each other. A similar
pattern is observed in three other anoplocephalids,
Moniezia benedeni, M. expansa and T. ovilla (Bâ et al.
1991, Bâ and Marchand 1992b).

Fig. 19 Diagram showing the ultrastructural organization of the
mature spermatozoon of G. arfaai. Aae Axonemal anterior
extremity, Ac apical cone, Ase anterior spermatozoon extremity,
Ape axonemal posterior extremity, Ax axoneme, Cb crest-like
bodies, Cm cortical microtubules, D doublets, G dense granules, N
nucleus, Npe nuclear posterior extremity, Pd posterior dense
material, Pm plasma membrane, Pse posterior spermatozoon
extremity
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According to Justine (1998), there is mutual exclu-
sion between the character dense granules and the
paired characters periaxonemal sheath and transverse
intracytoplasmic walls. In our study, the presence of
electron-dense granules and the simultaneous absence
of a periaxonemal sheath and transverse intracyto-
plasmatic walls are in agreement with previous find-
ings by other authors (see Justine 1998). For the
Anoplocephalinae, all of the species studied to date
present the same characters. These are A. dentata
(Miquel and Marchand 1998a), A. delafondi (Bâ and
Marchand 1994a), M. benedeni and M. expansa (Bâ
and Marchand 1992b), Monoecocestus americanus
(MacKinnon and Burt 1984), P. omphalodes (Miquel
and Marchand 1998b) and S. taterae (Bâ et al. 2000).
The same characters are also present in the mature
spermatozoon of the Thysanosomatinae T. ovilla (Bâ
et al. 1991). On the other hand, the opposed features
are observed in the two representatives of Inermicap-
siferinae studied to date, Inermicapsifer guineensis and
I. madagascariensis (Bâ and Marchand 1994b). In the
present work, we corroborate the homogeneity of
these three features in species of the subfamily Ano-
plocephalinae.

Concerning the posterior areas of spermatozoon
within the anoplocephalids, the disorganization of the
axoneme at the level of the nuclear region has been
previously described only for the mature spermato-
zoon of P. omphalodes (Miquel and Marchand 1998b).
In general, most of Platyhelminthes show the disap-
pearance of the central core of the axoneme before
disorganization of the peripheral doublets. Neverthe-
less, in G. arfaai, in an initial stage of disorganization
of the 9+’1’ axoneme, the displacement of doublets
occurs before the disappearance of the central core. A
posterior extremity constituted by electron-dense
material, such as occurs in G. arfaai, has been
observed in the following species: A. dentata (Miquel
and Marchand 1998a), A. delafondi (Bâ and Marchand
1994a), P. omphalodes (Miquel and Marchand 1998b),
I. guineensis and I. madagascariensis (Bâ and Marc-
hand 1994b), Mathevotaenia herpestis (Bâ and Marc-
hand 1994c), and T. ovilla (Bâ et al. 1991). In all of
these species, with the exception of I. guineensis, I.
madagascariensis and M. herpestis (Bâ and Marchand
1994b, 1994c), this posterior electron-dense material
seems to result from the condensation of the granular
material.

In conclusion, more ultrastructural studies on
spermatozoa are needed to establish possible differ-
ences in the ultrastructural organization of sperm
between the different families of Cyclophyllidea in
general and, more particularly, to the subfamilies of
the Anoplocephalidae. Nevertheless, according to the
present ultrastructural studies, the presence of granular
material and the absence of both a periaxonemal
sheath and intracytoplasmic walls are three constant
characters in all of the species of the subfamily
Anoplocephalinae.
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