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Abstract
Purpose  Neoadjuvant chemotherapy serves as an effective strategy for treating osteosarcoma (OS) not only by targeting 
cancerous cells but also by influencing the tumor's immune and stromal elements. Gaining insights into how chemotherapy 
reshapes the tumor's local environment is crucial for advancing OS treatment protocols.
Methods  Using single-cell RNA sequencing, this study analyzed tumor samples from patients with advanced osteosarcoma 
collected both before and after chemotherapy.
Results  The results revealed that chemotherapy caused the remaining OS cells to express higher levels of genes associated 
with stemness. Additionally, this process enhances the presence of cancer-associated fibroblasts, increasing their ability 
to modify the extracellular matrix (ECM). Chemotherapy also increases the number of endothelial cells, albeit with 
compromised differentiation capabilities. Importantly, the treatment reduced the immune cell population, including myeloid 
and T/NK cells, particularly impacting the subpopulations with tumor-fighting capabilities.
Conclusion  These findings highlight the complex reaction of the tumor environment to chemotherapy, providing valuable 
insights into how chemotherapy influences OS cells and the tumor microenvironment (TME). This knowledge is essential 
for understanding OS resistance mechanisms to treatments, potentially guiding the development of novel therapies for 
managing advanced OS.

Keywords  Osteosarcoma · Chemotherapy · Single-cell sequencing · Tumor microenvironment · Cancer-associated 
fibroblasts

Introduction

Osteosarcoma typically manifests as spindle cell tumors 
that give rise to malignant osteoid tissue (Klein and Siegal 
2006). It is widely believed to originate from the malig-
nant transformation of mesenchymal lineage cells at an 
indeterminate stage of differentiation toward osteoblasts. 
This malignancy predominantly affects children and young 
adults, with the highest incidence occurring between the 
ages of 10 and 25 years (Mirabello et al. 2009). Osteosar-
coma ranks as the most prevalent primary malignant bone 
tumor, characterized by its high aggressiveness, primarily 
affecting long bones in the extremities, such as the arms or 
legs; however, it can also manifest in other skeletal locations 
(Bielack et al. 2023). Standard treatment for osteosarcoma 
typically combines chemotherapy, surgical resection of the 
affected bone and adjacent tissue, and radiation therapy 
(Beird et al. 2022). However, in some cases, chemotherapy 
resistance develops, posing challenges to treatment efficacy 
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(Lilienthal and Herold 2020). Overcoming chemotherapy 
resistance presents a formidable obstacle in osteosarcoma 
management, emphasizing the urgent need for novel strate-
gies to enhance therapeutic outcomes for patients afflicted 
with this malignancy.

Single-cell RNA sequencing (scRNA-seq) is an 
advanced technology enabling the scrutiny of individual 
cell gene expression profiles, offering a greater degree 
of precision and intricacy than conventional bulk RNA 
sequencing techniques (Kolodziejczyk et al. 2015). Zhou 
et al. elucidated the landscape of intratumoral heterogeneity 
and the immunosuppressive microenvironment in advanced 
osteosarcoma following chemotherapy (Zhou et al. 2020). 
Liu et al. presented the single-cell atlas of treatment-naive 
osteosarcomas, illustrating the foundational state of these 
tumors (Liu et al. 2021). Although recent advancements in 
single-cell studies have illuminated aspects of osteosarcoma 
biology, a critical gap remains in understanding the specific 
impacts of chemotherapy on the tumor microenvironment 
(TME). Therefore, analyzing the changes in the TME 
before and after chemotherapy could be instrumental in 
understanding osteosarcoma drug resistance and identifying 
viable treatment strategies. However, research in this domain 
is currently lacking. Consequently, we analyzed the changes 
in the osteosarcoma TME before and after chemotherapy.

In this investigation, we used scRNA-seq to determine 
the heterogeneity of the TME in OS both pre- and post-
chemotherapy. Through the scrutiny of gene expression 
profiles at the single-cell level, we discerned the intricate 
molecular pathways underlying chemotherapy resistance. 
This breakthrough allows us to develop novel therapies 
tailored to selectively target these mechanisms and 
overcome resistance. Such an approach holds promise for 
bringing about a paradigm shift in our comprehension of 
chemotherapy resistance, ultimately enhancing the prospects 
of patients with osteosarcoma.

Results

Single‑cell analysis reveals the transcriptomic 
landscape in osteosarcoma of treatment‑native 
and post‑chemotherapy tissues

To investigate the heterogeneity of osteosarcoma between 
treatment-naive patients and those who underwent 
neoadjuvant chemotherapy, single-cell RNA sequencing 
data were obtained from six primary treatment-naive 
osteosarcomas (GSE162454 (Liu et al. 2021); patients_
OS1/_OS2/_OS3/_OS4/_OS5/_OS6) and seven primary 
osteosarcomas post neoadjuvant chemotherapy (GSE152048 
(Zhou et  al. 2020); patients_BC2/_BC3/_BC5/_BC6/_
BC16/_BC21/_BC22) from the GEO database (https://​

www.​ncbi.​nlm.​nih.​gov/​geo/). Detailed clinical information 
for all patients is provided in Supplementary Table 1. After 
conducting quality control assessments based on nFeature_
RNA, nCount_RNA, and the percentage of mitochondrial 
content (Fig S1A), a total of 97,416 cells were selected for 
further analysis, with an average of 2580 genes detected. 
The Seurat package (Zhang et al. 2018) was used for the 
analysis of the scRNA data, and the Harmony was applied 
to integrate samples to mitigate batch effects (Korsunsky 
et al. 2019).

Unbiased clustering of all cells revealed seven main clus-
ters in parallel, as determined by uniform manifold approxi-
mation and projection (UMAP) analyses based on their gene 
expression profiles and canonical markers (Fig. 1A–C). 
These clusters include osteosarcoma cells (n = 26,514) 
characterized by the expression of RUNX2, ALPL, IBSP, 
ACAN1, SOX9, and COL2A1 (Zhou et al. 2020); T/ILC 
cells (n = 8873) expressing the T-cell receptor (TCR) sign-
aling mediators CD3E and CD3G (Zhang et al. 2018); B 
cells (n = 1878) marked by MS4A1 and CD79A (Martin 
et al. 2019); myeloid cells (n = 34,032) positive for CD14 
and FCGR3A expression (Cheng et al. 2021); endothelial 
cells (ECs; n = 3868) identified by PECAM1 and CDH5 
(Martin et al. 2019); osteoclast cells (n = 8352) marked by 
CTSK and MMP9 (Aliprantis et al. 2008); and mesenchy-
mal stromal cells (MSCs; n = 13,899) identified by COL1A1 
and COL3A1 (Martin et al. 2019). Among all the identified 
subgroups, myeloid cells constituted the largest proportion, 
accounting for approximately 35%, followed by osteosar-
coma cells at 27%, with the smallest fraction being B cells 
at 2% (Fig. 1D). UMAP profiles and cell type contextures 
were stratified before and after neoadjuvant chemotherapy, 
facilitating the transcriptional comparison of corresponding 
cell populations in distinct clinical settings (Fig. S1B). Each 
patient sample contributed to the major cell type clusters, 
with B cells showing a slight dominance by OS6 (Fig. 1E, 
Fig S1C).

Although almost all cell clusters were present in all 
samples, the distribution of each cell type was not uniform 
across the specimens, indicating the heterogeneity of OS 
(Fig. 1E). Significantly, an increase in the presence of 
MSCs, endothelial cells, and osteoclasts was observed 
in post-chemotherapy tissues, suggesting their potential 
involvement in the tumor response to chemical agents 
(Fig.  1F, G; Fig.  S1D, E). In contrast, immune cells, 
particularly T/NK lymphocytes, tended to be more 
prevalent in untreated osteosarcomas (Fig.  S1D, E). 
These findings may indicate that chemotherapy promotes 
mesenchymal cell and endothelial cell infiltration but 
results in an immunosuppressive tumor microenvironment. 
As expected, correlation analysis revealed that MSCs and 
ECs, as well as T/NK and B cells, exhibited the most 
significant correlations. Cluster correlation analysis 

https://www.ncbi.nlm.nih.gov/geo/
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further demonstrated that MSCs and endothelial cells 
exhibited strong positive correlations across all clusters, 
whereas osteosarcoma displayed the most positive 
correlation with MSCs and had the greatest negative 
correlation with myeloid cells (Fig. 1H). This implies 
that both the antitumor and protumor subgroups undergo 
concurrent changes within their respective subpopulations, 
but these changes occur in opposite directions. In general, 
this may reflect the chemotherapy-induced evolution of 
subpopulations that promote osteosarcoma cells while 
suppressing those with antitumor properties. Given 
the heterogeneity within each subgroup, we further 
investigated the dynamic evolution of each subgroup.

Dynamic changes in osteosarcoma cells 
before and after chemotherapy

In the clinic, osteoblastic and chondroblastic osteosarcoma 
(OS) are acknowledged as the two major primary subtypes 
of conventional OS. Using UMAP analysis of malignant 
OS cells, we identified a total of seven subclusters, six 
of which were associated with the osteoblastic lineage, 
whereas one was affiliated with the chondroblastic lineage 
(Fig. 2A; Fig. S2A, B, C). The gene expression patterns 
of OS-related genes within distinct clusters of malignant 
osteoblastic and chondroblastic OS cells are depicted in 
Fig. 2B and Fig. S2C. The osteoblastic 1 cluster exhibited 

Fig. 1   A UMAP plot depicting the distribution of 97,416 single cells 
categorized by major cell types. B Dot plot illustrating the expression 
of well-known marker genes within major cell types. C Feature plot 
highlighting the expression of recognized marker genes within major 
cell types. D Pie charts showing the proportions of various cell types. 
E The distribution of different cell types across patient samples. F 

Comparison of the composition of distinct cell types post-chemo-
therapy versus pre-chemotherapy osteosarcoma (OS) samples. G 
Box plot displaying the variations in MSCs, endothelial cells, and T/
NK cell clusters between post- and pre-chemotherapy OS samples. H 
Pearson correlation analysis indicating the relationships among major 
cell types within OS
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the characteristic expression of TAGLN and IGFBP7, and 
the osteoblastic 2 cluster exhibited the expression of TOP2A 
and CDKN3, which is indicative of a proliferating OS clus-
ter. The osteoblastic 4 cluster was characterized by the 

expression of FOS, JUN, and HSPA1A, indicating its role 
in the stress response (Fig. 2C).

The distribution of each OS cluster from various patients 
or between treatment-naïve and post-chemotherapy 

Fig. 2   A UMAP plot showing seven osteoblastic osteosarcoma sam-
ples and one chondroblastic OS subclusters. B Dot plot representa-
tion of marker genes within each OS subgroup. C Heatmap display-
ing the top 10 marker genes specific to each OS subgroup. D Box plot 
illustrating the differential distribution of each OS subgroup between 
post- and pre-chemotherapy OS. E GSEA scores for hallmark gene 
sets in the MSigDB among each OS subgroup. F Heatmap of the top 
transcription factors (TFs) associated with OS calculated based on 
PySCENIC subgroups. Transcription factor regulon and correspond-
ing SOX9 expression, indicating its regulation of OS by chondroblas-
tic cells. G Representative images of immunofluorescence coexpres-

sion of HIF1A and SOX9 in osteosarcoma tissues (n = 3 from the 
National Cancer Center). H Differentially expressed genes (DEGs) 
between post- and pre-chemotherapy OS cells, with SPP1 upregu-
lation. I Representative images of IHC staining of OPN in osteo-
sarcoma pre- and post-chemotherapy tissues (n = 5 pairs from the 
National Cancer Center). J Western blot analysis of SPP1 expression 
in cell lines, including MCF7, MB-231, hFOB1.19, 143B, U2OS, 
HOS, MG63, and Saos2, with upregulated OPN expression in 143B 
and U2OS cells treated with cisplatin
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lesions exhibited significant variation, underscoring the 
heterogeneity of advanced OS, as depicted in Fig. S2D, E. 
Notably, the osteoblastic_1 cluster, representing the major 
type of osteosarcoma cell and accounting for 35% of all 
osteosarcoma cells, showed a substantial increase in the 
chemotherapy group, suggesting its potential responsiveness 
to chemotherapy (Fig. 2D). To elucidate the underlying 
biological alterations within this subcluster, we conducted an 
analysis of hallmark gene sets from the Molecular Signatures 
Database (MsigDB) (Liberzon et al. 2015) and identified 
upregulated pathways associated with EPITHELIAL_
MESENCHYMAL_TRANSITION and ANGIOGENESIS 
in the hallmark of the osteoblastic_1 cluster (Fig. 2E). 
This common evidence indicates that OS cells undergo 
progression when subjected to chemotherapy, leading to 
enhanced epithelial–mesenchymal–transition (EMT) and 
increased endothelial cell proliferation.

BC22, a chondroblastic osteosarcoma, is the largest 
tumor measuring 18 × 15 × 12 cm and displays a necrosis 
rate of less than 90% after four rounds of neoadjuvant 
chemotherapy (Zhou et  al. 2020). The necrotic rate of 
osteosarcoma is determined by pathologists. According 
to the Huvos criteria, grade 1 equates to less than 50% 
necrosis, grade 2 is 50–90%, grade 3 is 90–99%, and grade 
4 is 100% necrosis (Luetke et al. 2014). As anticipated, the 
hypoxia and glycolysis pathways were the most activated 
pathways among all the tumors (Fig. 2E). Notably, HIF1A 
serves as the hallmark gene for hypoxia, and previous 
studies have reported that HIF1A, a critical gene within the 
hypoxia pathway, activates SOX9 as a transcription factor 
in chondroblastic osteosarcoma (Shao et al. 2021). This led 
us to investigate whether SOX9 transcriptional activity was 
indeed upregulated. We computed the transcription factors 
(TFs) for each cluster using pySCENIC (Sande et al. 2020), 
and the results clearly demonstrated that Chondroblastic_
OS was primarily regulated by the SOX9 regulon, as also 
evidenced by its elevated SOX9 expression levels (Fig. 2F). 
Immunofluorescence (IF) coexpression of HIF1A and SOX9 
(n = 3, sourced from the National Cancer Center) confirmed 
our hypothesis to some extent (Fig. 2G). These findings 
underscore the pivotal role of the SOX9 transcription factor 
in chondroblastic osteosarcoma.

Furthermore, our analysis of DEGs in OS tissues 
before and after chemotherapy revealed notable DEGs, 
such as SPP1, MMP13, FOS, and JUN (Fig. 2H). OPN is 
a pleiotropic protein encoded by SPP1 (Butti et al. 2021). 
Immunohistochemistry (IHC) confirmed the increased OPN 
protein expression in osteosarcoma cells after chemotherapy 
(Fig. 2I, Fig. S2F, n = 5 per group, sourced from the National 
Cancer Center). The Gene Ontology biological process 
analysis of DEGs revealed enrichment in processes related 
to oxidative phosphorylation and epithelial–mesenchymal 
transition (EMT), further substantiating the impact of 

chemotherapy on the induction of EMT in osteosarcoma 
cells (Fig. S2G). Given that SPP1 was one of the most 
significantly altered DEGs, we sought to validate its 
role in the chemotherapy response. We examined SPP1 
expression in osteosarcoma cells, with MCF7 serving as a 
negative control and MB231 serving as a positive control 
for SPP1 expression, as previously reported. Notably, we 
analyzed SPP1 protein levels in several osteosarcoma cell 
lines, including 143B, MNNG, U2OS, HOS, SAOS2, and 
MG63. Surprisingly, all these osteosarcoma cell lines 
exhibited SPP1 expression (Fig.  2J). Subsequently, we 
subjected osteosarcoma cell lines (143B and U2OS) to 
cisplatin, a commonly used chemical drug. As anticipated, 
SPP1 was upregulated in response to cisplatin treatment in 
both cell lines in a dose-dependent manner (Fig. 2J). These 
compelling findings strongly suggest that SPP1 may indeed 
play a critical role in imparting chemoresistance to cancer 
cells.

Additionally, we examined copy number variation 
(CNV) within sarcoma cells using the "infercnv" package. 
Surprisingly, we observed fewer CNVs in post-chemotherapy 
tissues, contrary to our initial expectations (Fig. S2H). Our 
hypothesis posits that chemical agents may selectively 
target osteosarcoma cells with a higher CNV, ultimately 
allowing cells with a lower CNV to survive and thereby 
contributing to chemotherapy resistance. In conclusion, 
our study provides insights into the dynamic changes in 
osteosarcoma cells in response to chemotherapy, shedding 
light on potential therapeutic targets and mechanisms of 
resistance.

Alterations in mesenchymal stromal cells 
before and after chemotherapy in osteosarcoma

Building on our previous investigations into the changes 
observed in OS tumor cells before and after chemotherapy, 
we now shift our focus toward studying the dynamic 
alterations in mesenchymal stromal cells. As crucial 
components of the tumor microenvironment, mesenchymal 
stromal cells play pivotal roles in tumor growth, invasion, 
and response to therapy. This subsequent study aimed to 
elucidate the molecular and functional changes occurring 
in mesenchymal stromal cells during chemotherapy in 
osteosarcoma patients, shedding light on their potential 
impact on tumor progression and treatment outcomes.

Within the 13,899 mesenchymal stromal cell population, 
we identified nine distinct cell subtypes based on specific 
markers: ASPN + MSCs (identified by the marker genes 
OGN and S100A13), ENPP1 + MSCs (marked by ANKH 
and ENPP1), ACTA2 + MSCs (characterized by ACTA2 
and RGS5), COL5A1 + MSCs (expressing COL5A1 and 
COL16A1), DCN + MSCs (with the markers DCN and 
TXNIP), LOX + MSCs (marked by LOX and TGFBI), 
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HLA_DRA + MSCs (distinct by HLA-DPA1 and C1QC), 
proliferating MSCs (determined by MKI67 and TOP2A), and 
ZFP36 + MSCs (identified by ZFP36 and JUN) (Fig. 3A–D; 
Fig. S3A, B, C). We then applied gene set enrichment analy-
sis to uncover hallmark pathways that were enriched for each 
cell type (Fig. 3E). Notably, COL5A1 + MSCs displayed the 
most pronounced signature related to angiogenesis and epi-
thelial–mesenchymal transition (EMT). Cytotrance analysis 

revealed that ZFP36 + MSCs exhibited the highest stem 
score, suggesting that they might serve as the source of all 
MSCs. Conversely, LOX + MSCs, COL5A1 + MSCs, and 
ACTA2 + MSCs exhibited the lowest stem scores, suggest-
ing that they were highly differentiated cells (Fig. 3F). DCN, 
a marker for normal fibroblasts, demonstrated the highest 
signature score for normal fibroblasts among DCN + MSCs 
(Fig.  3G). Monocle3 analysis provided evidence for a 

Fig. 3   A UMAP plot illustrating the distribution of major mesenchy-
mal stromal cells (MSC) subgroups in post- and pre-chemotherapy 
samples. B Pie charts displaying the percentage distribution of dif-
ferent MSC subgroups. C Dot plot representation of marker genes 
within each MSC subgroup. D Feature plot of marker genes within 
each MSC subgroup. E GSEA scores of each MSC subgroup for 

hallmark gene sets in MSigDB. F Cytotrace analysis highlighting the 
ZFP36 + MSCs with the highest stemness score. G AUCell analysis 
revealing that DCN + MSCs have the highest signature score for nor-
mal fibroblasts (NFs). H Monocle3 trajectory analysis demonstrating 
the differentiation potential of ZFP36 + MSCs into ASPN + MSCs, 
ACTA2 + MSCs, and COL5A1 + MSCs
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differentiation trajectory originating from ZFP36 + MSCs 
to LOX + MSCs, COL5A1 + MSCs, and ACTA2 + MSCs 
(Fig. 3H).

At the global level, we conducted a differential gene 
expression analysis of MSCs in osteosarcoma tissues 
before and after chemotherapy. Our analysis revealed that 
the most significantly upregulated genes were related to 
the extracellular matrix (ECM), particularly to TIMP1 and 
TIMP3, as well as to CXCLs (Fig. S3D). Notably, among 
all the cell clusters, COL5A1 + MSCs were increased in 
osteosarcoma tissues following chemotherapy (Fig. S3E). A 
heatmap of the differentially expressed genes illustrated the 
elevated expression of genes such as COL5A1, COL16A1, 
EMILIN1, and ADAMTS2 in this cluster (Fig. S3F). These 
genes are primarily associated with ECM remodeling, 
suggesting that MSCs may contribute to the reconfiguration 
of the ECM in response to chemotherapy, consistent with 
our previous findings from hallmark gene set enrichment 
analysis. Targeting this specific cluster of MSCs holds 
promise for enhancing osteosarcoma treatment.

In this section, we undertake a more in-depth 
exploration of the characteristics of mesenchymal cells 
within the osteosarcoma microenvironment. We aimed 
to comprehensively understand their responses to 
chemotherapy and elucidate the underlying mechanisms 
that govern their behavior. By deciphering the complex 
interplay between osteosarcoma cells and stromal cells in 
their vicinity, our goal is to uncover valuable insights into 
the intricate crosstalk within the tumor microenvironment 
and identify potential therapeutic targets.

Dynamic changes in endothelial cells 
within the osteosarcoma microenvironment 
before and after chemotherapy

In a previous study, it was reported that chemotherapy led to 
a reduction in the percentage of endothelial cells in esopha-
geal cancer (Croft et al. 2022). However, the proportion of 
endothelial cells slightly increased within the tumor micro-
environment in osteosarcoma (Fig. 1G). The endothelial 
cells were classified into six distinct clusters with specific 
markers (Fig. 4A, B; Fig. S4A–C). The proportion of each 
subgroup exhibited variations among different patients and 
groups (Fig. S4D, E). Using gene set enrichment analysis 
(GSEA), we identified the following distinct features of 
these endothelial cell clusters. Endo1 demonstrated high 
COL4A1 and SPARC expression and exhibited enrich-
ment in pathways related to PROTEIN_SECRETION and 
TGF_BETA_SIGNALING (Fig. 4C). Endo2 displayed high 
ACKR1 and VWF expression and enrichment in pathways 
associated with INTERFERON_ALPHA_RESPONSE and 
INTERFERON_GAMMA_RESPONSE. Endo4 exhib-
ited high LUM and MMP13 expression and enrichment 

in pathways associated with OXPHOS, angiogenesis, 
angiogenesis, and EMT. Endo5 expressed genes related to 
inflammatory and immune responses, such as C1QA, C1QB, 
CCL3, and HLA − DRA. Endo6 represented a proliferating 
subcluster with TOP2A and STMN1 expression, indicating 
its role in proliferation.

In general, chemotherapy induced high metabolic 
activity in endothelial cells, as indicated by the differential 
expression of the RPS and RPL genes (Fig. 4D). The cell 
proportion analysis also revealed an increase in Endo3 
expression, which is characterized by RPS and RPL genes, 
in osteosarcoma patients post neoadjuvant chemotherapy, 
corroborating findings from the previous DEG analysis 
(Fig. S4F). Moreover, the expression of Endo4 increased. 
Based on the high expression of mesenchymal markers, 
such as COL1A1 and LUM, we hypothesize that these 
cells may represent a subpopulation of cells undergoing 
chemotherapy-induced endothelial-mesenchymal transition 
(Endo-Mesenchymal transition). This hypothesis aligns 
with the earlier GSEA results (Fig. 4B). Notably, Endo4 
exhibited the highest signature for angiogenesis (Fig. 3C). 
Cytotrance analysis demonstrated that Endo1 cells had 
relatively high stemness (Fig. S4G), and Monocle 3 analysis 
revealed the potential of these cells to differentiate into other 
clusters during differentiation (Fig. 4E). The expression 
of VIM, a mesenchymal marker gene associated with 
epithelial–mesenchymal transition (EMT), increased during 
differentiation (Fig. 4F).

Endo1 was decreased post-chemotherapy, suggesting 
that chemotherapy may target endothelial stem cells and 
impede the formation of endothelial cells with normal 
functionality (Fig. S4). This led us to further investigate the 
transcription factor regulatory network. In the analysis of 
Endo1, pySCENIC highlighted the significance of ETS1 
in endothelial cell development (Fig. 4G, H). ETS1 is one 
of the key members of the ETS transcription factor family 
and plays a crucial role in vascular endothelial cells by 
reactivating quiescent endothelial cells to enter a state of 
angiogenesis (Chen et al. 2017). Additionally, we identified 
NFKB2 and CREM as key players in endothelial cells. 
Further research into these transcription factors may provide 
insights into the impact of chemotherapy on endothelial 
cells.

Alterations in osteoclasts during pre‑ 
and post‑chemotherapy osteosarcoma

Osteoclasts, a specialized lineage of relatively large, multi-
nucleated monocyte-macrophage cells, play a pivotal role 
in facilitating osteolysis and providing crucial support for 
tumor growth within osteosarcoma tissues (Akiyama et al. 
2008). We identified 8352 osteoclasts based on their distinct 
expression of ACP5, CTSK, and MMP9 and subsequently 
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categorized them into 5 distinct clusters (Fig. 5A, B). As 
illustrated in Fig. 5C, D and Fig. S1A, B, OC_1 exhibited 
notably high levels of mature osteoclastic markers, includ-
ing CTSK, MMP9, and ACP5. OC_2 displayed the second-
highest levels of these markers, indicating that it represents 
a subgroup of less mature osteoclasts. Conversely, OC_3 
displayed the lowest ACP5 and CTSK expression but exhib-
ited high levels of proliferation markers such as MKI67 and 
TOP2A. OC_5 expressed markers such as C1QA, C1QC, 
CCL3, and CCL4, indicating a potential role in the immune 

response. We confirmed these findings through gene set vari-
ation analysis (GSVA) (Fig. 5E).

The overall composition of osteoclasts exhibited 
notable differences among different patients (Fig. S5C). 
Furthermore, the overall composition of the osteoclast 
cell compartment underwent some degree of modification 
following chemotherapy (Fig.  5F). Most notably, a 
significant increase in the relative proportion of OC_1 was 
noted, with no such shift observed in other clusters (Fig. 5G, 
Fig. S5D). This suggests that chemotherapy may promote the 

Fig. 4   A UMAP plots illustrating the distribution of major endothe-
lial cell subgroups in post- and pre-chemotherapy samples. B Heat-
map displaying the top 10 marker genes among the endothelial sub-
groups. C GSEA scores of each endothelial subgroup for hallmark 
gene sets in MSigDB. D DEGs identified between post- and pre-
chemotherapy osteosarcoma cells. E Monocle3 analysis showing the 

differentiation trajectory of endothelial subgroups. F VIM (Vimen-
tin) was upregulated along the pseudotime trajectory. G Heatmap 
showing the top transcription factors (TFs) identified by PySCENIC 
among endothelial subgroups. H Transcription factor regulon analysis 
revealing that ETS1 and CREM regulate Endo1
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maturation of osteoclasts, potentially enhancing their bone 
resorption activity and, consequently, the tumor's ability 
to locally invade surrounding tissues. PySCENIC analysis 
identified FOS as a major transcription factor of OC_1 
(Fig. S5E), corroborating earlier findings (Axelrod et al. 
2019). Targeting this transcription factor may help mitigate 
bone degradation by osteoclasts during chemotherapy. 
Notably, in the case of BC22, a chondroblastic osteosarcoma 
that underwent chemotherapy, as previously mentioned, 
it was predominantly composed of OS_4 (Fig. 5H). This 
finding underscores the heterogeneity of osteoclasts between 

osteoblastic and chondroblastic osteosarcomas. Interestingly, 
we found that SOX9 plays a significant role as a transcription 
factor in osteoclasts in chondrosarcoma. This transcription 
factor is also important in chondroblastic osteosarcoma cells. 
Regardless of the proportion of each cluster, we observed 
that pro-osteoclast signatures were consistently elevated 
in all clusters following chemotherapy, as evidenced by 
differentially expressed genes (DEGs), such as CTSK and 
ACP5, when comparing osteosarcomas post-chemotherapy 
with those before treatment (Fig.  5I). These findings 
were further validated by calculating the signature score 

Fig. 5   A UMAP plot displaying the distribution of each osteoclast 
subgroup. B Pie charts showing the percentages of patients in dif-
ferent OC subgroups. C Dot plot revealing marker genes in each OC 
subgroup. D Heatmap illustrating the top 10 marker genes among the 
OC subgroups. E AUCell scores indicating the signature of each OC 
subgroup. F Histogram showing the different compositions of OC 
subgroups between post- and pre-chemotherapy groups. G The pro-

portion of OC_1 increased in post-chemotherapy OS patients. H His-
togram displaying the different compositions of OC subgroups among 
patients. I DEGs identified between post- and pre-chemotherapy sam-
ples with upregulated ACP5 and CTSK expression. J GSVA scores 
indicating the enhanced activity of osteoclasts post-chemotherapy 
osteosarcoma
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of osteoclasts using AUCell (Fig. 5J). Collectively, these 
data suggest that chemotherapy enhances the activity of 
osteoclasts, potentially contributing to local tumor invasion.

Changes in tumor‑infiltrating lymphocyte subsets 
before and after chemotherapy in osteosarcoma

To gain a more comprehensive understanding of TILs, we 
conducted an in-depth analysis of the T/NK cell population. 
Using unsupervised clustering of 25,588 T cells, which rep-
resented the dominant lymphocyte population, we identified 
nine distinct T-cell populations, comprising five CD4 + sub-
types, three CD8 + subtypes, and one proliferating T-cell 
population (Fig. 6A; Fig. S6A, B). Within the CD8 + T-cell 
clusters, two cytotoxic subpopulations characterized by 
GZMK and GZMH expression were identified (Fig. 6B). 
Notably, both cytotoxic clusters exhibited downregulation 
in OS following chemotherapy (Fig. 6C). Notably, the com-
position of the T-cell subgroups varied among the individual 
patients (Fig. S6C).

Furthermore, the two CD8 + cytotoxic clusters 
demonstrated upregulation of NKG7, GZMB, GZMH, 
GZMK, CCL3, CCL4, and CCL5 (Fig. S6D), suggesting that 
chemotherapy amplified the cytotoxic function of CD8 + T 
cells, potentially enhancing their antitumor activity within 
the osteosarcoma tumor microenvironment. However, it is 
important to acknowledge that a reduction in CD8 + T cells 
was noted in post-chemotherapy osteosarcomas (Fig. S6E), 
which could imply a diminished antitumor capability. This 
finding reflects the intricate and multifaceted impact of 
chemotherapy on the immune response.

Our ongoing research is primarily focused on 
unraveling the dynamic alterations occurring within NK 
cell subpopulations before and after chemotherapy in the 
context of osteosarcoma. In various cancer types, NK cells 
are typically categorized into two main subsets, including 
CD56bright CD16low and CD56dim CD16high, which are 
characterized by their distinctive expression patterns of the 
canonical cell markers NCAM1 and FCGR3A (Fig. 6D, 
E, F) (Tang et al. 2023). In our investigation, we further 
stratified NK cells into eight subgroups, with six clusters 
(NK_1, NK_2, NK_4, NK_5, NK_7, and NK_8) falling 
within the CD16high category (as indicated by FCGR3A 
expression), whereas subgroup NK_6 pertains to the 
CD56high category (distinguished by NCAM1 expression). 
The CD16high subgroups exhibited specific gene signatures, 
including CREM (NK_1), RGS1 (NK_7), DNAJB1 (NK_4), 
CXCR4 (NK_5), IL32 (NK_7), and CCL4 (NK_8).

Our findings revealed a consistent prevalence of 
CD16high subgroups, characterized by FCGR3A 
expression, within the osteosarcoma microenvironment 
both before and after chemotherapy (Fig.  6D). As 
previously mentioned, there was an overall reduction in 

NK cells following chemotherapy, as evidenced by CD16 
immunohistochemistry (Fig. 6G, Fig. S6F; n = 5 pairs from 
the National Cancer Center). Following chemotherapy, 
we observed an increased proportion of the NK_2 and 
NK_6 subpopulations, accompanied by a reduction in 
the proportion of the NK_1, NK_3, and NK_5 subgroups 
(Fig. S6G). Importantly, the remaining subgroups displayed 
marginal alterations. Additionally, using Pearson correlation 
analysis of the proportions of NK cell subpopulations in 
each patient, we identified correlations among subgroups 
(Fig.  6H). Specifically, the NK-1, NK_5, and NK_7 
subgroups exhibited positive correlations, whereas the 
NK_2 and NK_6 subgroups displayed positive correlations. 
Intriguingly, subgroups NK_1, NK_5, and NK_7 showed 
negative correlations with subgroups NK_2 and NK_6, 
suggesting potential dynamic shifts in response to 
chemotherapy. This prompted us to explore the functional 
attributes of these subgroups. Using gene set enrichment 
analysis (GSEA), we conducted an in-depth analysis of the 
functional characteristics of these subgroups (Fig. 6I). We 
found that NK_2 cells were primarily enriched in pathways 
associated with oxidative phosphorylation and adipogenesis, 
whereas NK_6 cells were enriched in signaling pathways, 
such as angiogenesis, TNFA signaling via NFKB, and 
epithelial–mesenchymal transition. Among the subgroups 
with reduced expression post-chemotherapy, NK_1 was 
enriched in pathways related to heme metabolism and 
peroxisomes, whereas NK_3 was enriched in signaling 
pathways such as the interferon alpha response and 
interferon gamma response. NK_5 was enriched in pathways 
such as hedgehog signaling and bile acid metabolism.

In summary, our research suggested that chemotherapy 
may induce the transformation of relatively immune-
enriched NK cells with tumor-inhibitory potential into 
NK cells that promote tumor progression. As mentioned 
earlier, this finding implies that chemotherapy leads 
to the development of an immune-suppressive tumor 
microenvironment.

Modulation of myeloid cell populations 
in osteosarcoma following chemotherapy

Given that the fraction of macrophages/monocytes in 
OS tissues decreased after chemotherapy (Fig. 1E), we 
investigated the composition and gene expression of sub-
clusters within the myeloid cell population. Reclustering 
of all 15,340 myeloid cells revealed 12 distinct myeloid 
cell populations with varying frequencies in different tis-
sues (Fig. 7A, B; Fig. S7A, B). The monocyte popula-
tion exhibited high VCAN, S100A9, EREG, and LYZ 
expression. Additionally, we identified two clusters of 
classical dendritic cells (DCs) expressing CD1C, CST3, 
and HLA-DBP1 (Fig. 7B). Furthermore, we identified 
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9 macrophages expressing C1QA, APOE, and TREM2 
(Fig.  7B). Notably, Mac5 expressed proinflammatory 
genes, such as IFIT1 and CXCL10, which may play a 
role in promoting antitumor immunity. To validate this 
finding, we utilized AUCell to assess its gene set sig-
nature (Fig. 7C). As demonstrated, Mac5 displayed the 

highest signature score for M1 macrophages, indicating its 
involvement in antitumor activities. Conversely, Mac2, a 
marker associated with protumor functions, exhibited the 
highest M2 signature score. These findings collectively 
suggest that the myeloid cell population comprises both 
protumor and antitumor subtypes.

Fig. 6   A UMAP plot showing the distribution of major T-cell sub-
groups between post- and pre-chemotherapy osteosarcoma samples. 
B Dot plot displaying marker genes in each T-cell subgroup. C Box 
plot indicating the decreased proportion of CD8 + T-cell cytotoxic 
subgroups in post-chemotherapy osteosarcoma samples. D UMAP 
plot illustrating the distribution of major NK cell subgroups between 
post- and pre-chemotherapy osteosarcoma samples. E, F Dot plot 

and violin plot visualizing markers in each NK subgroup. G Immu-
nohistochemical analysis of CD16 in pre- and post-chemotherapy 
osteosarcoma samples (n = 5 pairs from the National Cancer Center). 
H Pearson correlation analysis showing the correlation between each 
NK subgroup. I GSEA scores of each NK subgroup indicating the 
hallmark gene sets from the MSigDB
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The composition of myeloid cell subgroups varied among 
patients (Fig. S7C). Furthermore, a notable decrease in the 
proportion of monocytes (Mono) and an increase in the 
proportions of DC1, DC2, Mac3, and Mac9 cells were 
observed (Fig. 7B). We noted an increase in dendritic cells 
(DCs) in osteosarcoma post-chemotherapy (Fig. 7F), and 
this subgroup was characterized by cytotoxicity genes 
and HLA-dependent activating receptors. In contrast, 
the monocyte population decreased and exhibited a high 
signature of HLA-independent activating receptors. 
This underscores the complex impact of chemotherapy, 
resulting in a generally decreased immune response within 
the tumor microenvironment. The DEGs of monocytes 
between the chemotherapy and treatment-naive groups 

included stress-related genes such as FOS, JUN, HSP, and 
DNAJB1 (Fig. 7C). In summary, chemotherapy appears 
to promote a reduced immune response within the tumor 
microenvironment.

Discussion

Bulk RNA-sequencing studies on OS patients post-
chemotherapy, have revealed gene signature modifications 
and immune cell population shifts (Sun et  al. 2023; Li 
et al. 2022). However, these analyses lacked the resolution 
to detail gene expression within specific cell subclusters. 
Our research, which focused on single-cell-level gene 

Fig. 7   A UMAP plot depicting the distribution of major myeloid 
cell subgroups between post- and pre-chemotherapy osteosarcoma 
samples. B Violin plot illustrating marker genes in each myeloid cell 
subgroup. C AUCell scores indicating the M1 and M2 macrophage 
signatures among myeloid subgroups. D AUCell scores displaying 

the immune response signature among myeloid subgroups. E GSVA 
of specific signatures for each myeloid subgroup. F Box plot demon-
strating the variation in myeloid subgroups between the post- and pre-
chemotherapy groups
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expression in osteosarcoma, suggested that chemotherapy 
could promote angiogenesis and stromal cell infiltration in 
the tumor microenvironment. Additionally, it may enhance 
osteoclast activity, aiding in local invasion of osteosarcoma 
cells. Given the documented chemotherapy resistance in 
osteosarcoma, our findings suggested that chemotherapy 
could intensify its malignancy.One of our most compelling 
findings revolves around the increased expression of 
SPP1 in post-chemotherapy osteosarcoma cells. SPP1 is 
associated with cancer stemness and is capable of driving 
cancer progression and metastasis (Sun et al. 2021). This 
observation suggested that chemotherapy may contribute to 
the survival of OS stem cells and promote their stemness. 
Furthermore, our data indicate that osteosarcoma cells may 
undergo epithelial–mesenchymal–transition, leading to 
chemotherapy resistance, particularly through the increased 
presence of Osteoblastic-1. EMT is widely acknowledged 
for its role in chemotherapy resistance and metastasis 
(Huang et al. 2022). This finding implies that osteosarcoma 
cells activate EMT as a defense mechanism against the 
detrimental effects of chemotherapy. Previous reports have 
highlighted that radiotherapy and chemotherapy can enhance 
the expression of MHC-II genes in cancer cells (Liu et al. 
2023). Increased MHC-II expression in tumor cells has been 
associated with the efficacy of immune checkpoint inhibitors 
and a more favorable disease prognosis (Axelrod et al. 2019). 
This suggests that chemotherapy might enhance the potential 
of immune therapy. However, we did not observe significant 
variations in the expression of MHC-II genes, indicating that 
chemotherapy might not be conducive to promoting immune 
therapy in patients with osteosarcoma. This finding aligns 
with the clinical observation that osteosarcoma is considered 
an immunologically "cold" tumor that is often unresponsive 
to immune therapy (Chen et al. 2021). In parallel, we did not 
detect an accumulation of CD4 + or CD8 + T cells, further 
suggesting that immune therapy might not synergize with 
chemotherapy. Hence, future studies should prioritize 
exploring strategies to enhance MHC-II expression or 
increase the presence of CD4 + and CD8 + T cells in the 
context of osteosarcoma.

Cancer-associated fibroblasts (CAFs) constitute 
the predominant cellular component of the tumor 
microenvironment, and their prominence is underscored 
by their abundance and extensive crosstalk with cancer 
cells (Chen et al. 2023). This study revealed an increase in 
mesenchymal stromal cells. Considering their known role 
in bolstering tumor survival and progression (Fiori et al. 
2019), we hypothesize that osteosarcomas that survive 
chemotherapy may engage in crosstalk with CAFs to further 
enhance their survival and progression. Consistent with the 
observed changes in cancer cells, alterations in the stromal 
components of the tumor microenvironment also indicate 
that chemotherapy could potentiate the malignant activity 

of osteosarcoma cells. These findings provide supporting 
evidence that if OS displays resistance to neoadjuvant 
chemotherapy, a transition to surgical intervention may be a 
reasonable alternative.

We also noted changes in the relative proportions and 
transcriptional characteristics of T and NK cell subclusters 
subsequent to chemotherapy. CD56dim CD16 + NK cells 
are typically considered more cytotoxic than CD56bright 
NK cells, given the ability of CD16 to mediate antibody-
dependent cell-mediated cytotoxicity (Freud et al. 2017). 
Interestingly, in conjunction with the decrease in TNK cells, 
there appears to be a decrease in CD56dim CD16 + NK 
cells following chemotherapy, while CD56bright NK cells 
exhibit a contrasting trend. Furthermore, the percentage of 
cytotoxic CD8 + T cells tended to decrease. In summary, 
it is apparent that chemotherapy exerts an influence on 
the tumor microenvironment of osteosarcoma, potentially 
by regulating the composition of immune cells. Notably, 
a marked decrease in the frequency of CD16 + NK cells 
and CD8 + T cytotoxic cells was noted, which may have 
contributed to an augmented antitumor response.

Research supports the pivotal role of osteoclast-
mediated bone resorption in bone remodeling within 
primary osteosarcoma (Yin et al. 2016). Zhou's study also 
confirmed that osteoclasts are necessary and beneficial 
for the growth and metastasis of osteosarcoma (Zhou 
et al. 2020). These findings indicate the significant role 
of osteoclasts in promoting the malignant biological 
behaviors of osteosarcoma cells. Our results further 
suggest that chemotherapy may enhance the infiltration 
and maturation of osteoclasts, potentially affecting the 
tumor microenvironment of osteosarcoma through bone 
remodeling. Previous research has shown that chemotherapy 
can suppress ovarian function in breast cancer patients, 
leading to a rapid decrease in estrogen levels, disrupting 
the balance of bone resorption and formation, and 
resulting in osteoporosis (Vehmanen et al. 2001). However, 
chemotherapy-induced bone loss is not exclusively related 
to ovarian dysfunction in patients. Postmenopausal estrogen 
production occurs in peripheral fat, not in the ovaries, but 
chemotherapy can also lead to a decrease in bone density. 
Therefore, the enhanced activity of osteoclasts may result 
from multiple factors, including endocrine factors and 
chemotherapy.

Nonetheless, this study has limitations, particularly 
due to the rarity of osteosarcoma and the specificity of 
clinical treatments. First, due to the high costs associated 
with single-cell sequencing technology and the uncommon 
nature of osteosarcoma, the sample size analyzed in this 
study was limited, potentially introducing selection bias 
due to the small sample size. Future research in this area 
will require multicenter collaboration and data sharing to 
overcome these challenges. Second, the post-chemotherapy 
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osteosarcoma samples included in this study were collected 
within one to two months after chemotherapy, reflecting 
only the short-term effects of chemotherapy on the 
tumor microenvironment, not its long-term impacts. This 
limitation is dictated by the clinical treatment protocol of 
surgical resection following neoadjuvant chemotherapy 
for osteosarcoma. Moreover, the unique characteristics 
of osteosarcoma samples make spatial transcriptomics 
sequencing exceedingly difficult, with no related data 
currently available. Single-cell transcriptomics lacks the 
spatial context of the cells, potentially leading to false-
positive findings, particularly in the analysis of intercellular 
signaling networks. Subsequent research should investigate 
the potential changes in the spatial niche of OS caused by 
chemotherapy, with a focus on spatial aspects.

Materials and methods

Patients and sample collection

This study received approval from the Ethics Committee of 
Cancer Hospital, Chinese.

Academy of Medical Sciences, and Peking Union 
Medical College (NCC2021C-232).

Single-cell RNA sequencing data (GSE162454 (Liu et al. 
2021) and GSE152048 (Zhou et al. 2020)) were obtained 
from GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). 
Osteosarcoma tissue used for IHC (n = 10), and IF (n = 3) 
were obtained from National Cancer Center.

Preprocessing of scRNA‑seq data

ScRNA-seq data analyses were conducted using the Seurat 
package (Hao et al. 2021) (version 4.4.0) in R (version 4.1.2, 
The R Foundation). Quality controls were implemented by 
retaining non ribosomal genes detected in at least 0.1% of all 
cells, cells with a minimum of 200 features, and cells with 
mitochondrial fraction below 10%. Doublets were identified 
using the DoubletFinder (McGinnis et al. 2019) package 
(version 2.0.3) and subsequently removed. Normalization 
of raw unique molecular identifier (UMI) counts was carried 
out using the SCTransform function, with the number of 
cells set to 3,000. Harmony package (Korsunsky et al. 2019) 
(version 1.1.0) was employed to adjust for possible batch 
effects arising from patient-specific expression patterns. 
Dimension reduction was performed through principal-
component analysis (PCA) using the RunPCA function, 
and the optimal number of principal components (PCs) was 
determined using the ElbowPlot function. The same PCs 
were applied in cell clustering with modularity optimization 
using the kNN graph algorithm as input. Visualization of 
cell clusters was achieved using the UMAP algorithm.

Cell type annotation

Cell types were annotated by assessing the expression of 
known marker genes. Specifically, cells expressing marker 
genes from at least two types of major cell types were 
considered undefined cells and were consequently excluded 
from further analysis. Cell subtypes were annotated through 
unsupervised clustering and examination of marker gene 
expression levels, as depicted in corresponding figures. 
Differential expression genes (DEGs) within each cell 
subcluster were identified using the "FindAllMarker" 
function with default parameters provided by Seurat. These 
DEGs played a crucial role in cell type annotations, where 
cell subclusters exhibiting similar gene expression patterns 
were annotated as the same cell type.

Trajectory analysis by Monocle 2 analysis

For trajectory analysis using Monocle 2 (Cao et  al. 
2019). First, the DEGs of different cell subclusters were 
identified and subjected to Monocle analysis. Then, 
dimensionality reduction and visualization were performed 
using “DDRTree” and “plot_cell_trajectory” functions 
in the Monocle 2 package. To visualize the expression of 
individual genes along pseudotime, a heatmap was generated 
using the "plot_pseudotime_heatmap" function.

Pathway analysis

Differentially expressed genes (DEGs) meeting the criteria 
of |logFC|> 0.5 and an adjusted P value < 0.05 were 
utilized for Gene Ontology (GO) enrichment analysis. The 
"compareCluster" function from the clusterProfiler package 
(Wu et  al. 2021) was applied to identify significantly 
enriched GO terms that exhibited differences between 
distinct fibroblast subclusters. To evaluate the differences 
in pathways across distinct subsets, Gene Set Variation 
Analysis (GSVA) and Gene Set Enrichment Analysis 
(GSEA) were performed. These analyses were conducted 
and computed using a linear model provided by the limma 
package.

Single‑cell regulatory network analysis

In accordance with a standardized analysis pipeline, we 
employed PySCENIC (Sande et al. 2020) (https://​github.​
com/​aerts​lab/​SCENIC) to examine differentially expressed 
transcription factors (TFs) and delve into the single-cell gene 
regulatory network (GRN) within distinct cell subclusters. 
To outline the process, we generated gene expression 
matrices for the cell subclusters using GENIE3, establishing 
initial coexpression GRNs. Subsequently, the RcisTarget 
package was employed to identify TF motifs within the 

https://www.ncbi.nlm.nih.gov/geo/
https://github.com/aertslab/SCENIC
https://github.com/aertslab/SCENIC
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regulon data. The AUCell package was utilized to calculate 
the regulon activity score for each cell. Lastly, we filtered 
regulons with a correlation coefficient exceeding 0.3 with 
at least one other regulon, opting for those activated in a 
minimum of 30% of the cell subclusters for subsequent 
visualization.

Differentiation of tumor cells and nonmalignant 
cells based on inferCNV

To distinguish tumor cells from nonmalignant cells, we 
employed the inferCNV R package (https://​github.​com/​
broad​insti​tute/​infer​CNV) to estimate the initial copy number 
variation (CNV) signal for each of the 60 regions using 
default parameters. The CNV signal was computed as the 
quadratic sum of the CNV region, and cells with a CNV 
signal surpassing 0.04 were designated as potential tumor 
cells in the context of OS (osteosarcoma).

Gene set variation analysis

Pathway analyses were predominantly carried out on specific 
GO/Hallmark pathways obtained from the Molecular 
Signature Database (MSigDB version 6.2). To gauge 
pathway activity at the individual cell level, we utilized 
gene set variation analysis (GSVA) with default settings, 
implemented through the GSVA package (version 1.34.0).

Gene set signature scoring

To quantitatively represent each cell subtype, we determined 
a subtype signature score, defined as the arithmetic mean of 
the expression levels of signature genes sourced from the 
specified data slot (e.g., SCT data slot). This methodology 
facilitates a standardized and comparative analysis of cell 
subtypes across various conditions and studies. Signature 
scores were computed using AUCell with default parameters 
(Aibar et  al. 2017). The genes employed for gene set 
signature scoring are detailed in Supplementary Table 2.

Western blot

All cell lines used for western blot were provided by the 
national cancer center. To perform a Western blot assay, total 
protein was extracted from cell lysate of cell lines, MCF7, 
MB-231, hFOB1.19, 143B, U2OS, HOS, MG63, and Saos2. 
All cell lines were authenticated by DNA fingerprinting 
analysis and tested free of mycoplasma infection. The 
proteinlevel was determined using a BCA kit. The proteins 
were then subjected to SDS-PAGE, transferred to a PVDF 
membrane, and probed with various antibodies from Abcam 
or for Proteintech specific proteins like OPN, Vinculin, 
SOX9, HIF1A, CD16, etc. After incubation with primary 

and secondary antibodies, the membrane was visualized 
using a chemiluminescent substrate in an imager.

Immunofluorescence analysis

For immunohistochemistry and immunofluorescence, we 
collect tissue from areas of the tumor without obvious 
necrosis, approximately 1 × 1 × 1 cm in size. Tissue sections 
(n = 3) were deparaffinized, rehydrated, and subjected to 
antigen retrieval. After blocking non-specific binding with 
a suitable blocking agent, sections were incubated with 
primary antibodies overnight at 4 °C. Following washing, 
fluorescentlylabeled secondary antibodies were applied. 
Nuclei were stained with DAPI. Slides were mounted and 
images captured using a fluorescence microscope. Controls 
included sections incubated without primary antibodies to 
assess non-specific binding of secondary antibodies.

Immunohistochemistry analysis

Tissue sections (n = 5 per group) were deparaffinized and 
rehydrated through graded alcohols to water. Antigen 
retrieval was performed using citrate buffer in a microwave. 
Endogenous peroxidase activity was quenched with 
hydrogen peroxide. After blocking with normal serum, 
sections were incubated with primary antibodies overnight 
at 4 °C. Biotinylated secondary antibodies were applied, 
followed by amplification with an avidinbiotin complex. 
Color development was achieved with DAB substrate. 
Sections were counterstained with hematoxylin, dehydrated, 
and mounted. Controls omitted the primary antibody. 
Wilcoxon test was utilized to compare the IF cores between 
pre- and post-chemotherapy samples.

Statistical analysis

The in the study were conducted using R 4.3.0 and Python 
3.9.0. Specific statistical details and methods are described 
in the figure legends, main text, or methods section. P-values 
were calculated using a two-sided, unpaired Wilcoxon rank-
sum test. For error representation, either standard error of 
the mean (S.E.M.) or standard deviation (S.D.) was used, 
based on a minimum of three independent experiments.

Conclusion

In summary, our study presents the comprehensive 
transcriptional landscape of tumor ecosystem remodeling 
induced by chemotherapy in osteosarcoma. We offer a 
detailed depiction of the shift from antitumor to protumor 
programs, characterized by an increase in cancer-
associated fibroblasts (CAFs) and a reduction in immune 

https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
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cell populations, such as T/NK and myeloid cells. Within 
this altered landscape, we identified novel key players post-
chemotherapy. Specifically, we observed that chemotherapy 
resulted in a subpopulation of osteosarcoma (OS) cells with 
upregulated expression of genes encoding secreted factors, 
such as SPP1 and LUM, as well as a distinct population 
of malignant OS cells. Furthermore, we demonstrated that 
chemotherapy diminishes antitumor immune responses, 
hindering the recruitment of CD16 + NK cells and cytotoxic 
CD8 + T cells. Moreover, chemotherapy enhances the 
infiltration of CAFs and their capacity to remodel the 
extracellular matrix (ECM), which may play a pivotal role 
in the therapeutic response. We acknowledge the need for 
studies with larger sample sizes to validate our findings and 
further explore cell subclusters associated with treatment 
responses. In conclusion, our work offers unprecedented 
insights into the remodeling of the tumor ecosystem induced 
by chemotherapy, which could inform and enhance treatment 
strategies for osteosarcoma.
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