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Abstract
Background We aimed to comprehensively analyze the clinical value of immune-related eRNAs-driven genes in lung 
adenocarcinoma (LUAD) and find the potential biomarkers for prognosis and therapeutic response to improve the survival 
of this malignant disease.
Materials and methods Pearson’s correlation analysis was performed to identify the immune-related eRNAs-driven genes. 
Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were used to construct this prognostic 
risk signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used 
to investigate the underlying molecular mechanism. The single sample gene set enrichment analysis (ssGSEA) algorithm 
was conducted to evaluate the immune status based on the signature. The quantitative real-time PCR (qRT-PCR) analysis 
was performed to evaluate the expression value of the signature genes between LUAD tissues and adjacent lung tissues.
Results Five immune-related eRNAs-driven genes (SHC1, GDF10, CCL14, FYN, and NOD1) were identified to construct 
a prognostic risk signature with favorable predictive capacity. The patients with high-risk scores based on the signature 
were significantly associated with the malignant clinical features compared with those with low-risk scores. Kaplan–Meier 
analysis demonstrated that the sample in the low-risk group had a prolonged survival compared with those in the high-risk 
group. This risk signature was validated to have a promising predictive capacity and reliability in diverse clinical situations 
and independent cohorts. The functional enrichment analysis demonstrated that humoral immune response and intestinal 
immune network for IgA production pathway might be the underlying molecular mechanism related to the signature. The 
proportion of the vast majority of immune infiltrating cells in the high-risk group was significantly lower than that in the 
low-risk group, and the immunotherapy response rate in the low-risk group was significantly higher than that in the high-risk 
group. Moreover, BI-2536, sepantronium bromide, and ULK1 were the potential drugs for the treatment of patients with 
higher risk scores. Finally, the experiment in vivo and database analysis indicated that CCL14, FYN, NOD1, and GDF10 
are the potential LUAD suppressor and SHC1 is a potential treatment target for LUAD.
Conclusion Above all, we constructed a prognostic risk signature with favorable predictive capacity in LUAD, which was 
significantly associated with malignant features, immunosuppressive tumor microenvironment, and immunotherapy response 
and may provide clinical benefit in clinical decisions.
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Introduction

Lung cancer is the most prevalent malignancy in males 
and the second most prevalent malignancy in females after 
breast cancer. However, it has the highest mortality both 
in males and females. As we know, non-small cell lung 
cancer (NSCLC) remains the most commonly diagnosed 
pathological type of lung cancer and comprises two main 
types—lung squamous cell carcinoma (LUSC) and lung 
adenocarcinoma (LUAD) (Herbst et al. 2008; Siegel et al. 
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2020). It is reported that there were about 1.8 million 
newly diagnosed lung cancer cases and 1.6 million deaths, 
which accounts for about 13% of all the diagnosed cancer 
cases and 20% of all the cancer-related deaths, respec-
tively. Because of the lack of clinical symptoms at the 
early stage, the patients with LUAD are often diagnosed 
at the advanced stage, which limits the treatment options 
and results in unfavorable survival outcomes (Hirsch et al. 
2017). Despite the application of surgery, chemotherapy, 
targeted drugs and other means, the 5-year overall sur-
vival rate of patients diagnosed in late periods is still less 
than 20% (Hirsch et al. 2017). Therefore, it is necessary to 
find reliable and effective molecular biomarkers for early 
diagnosis and evaluation of the curative effect in LUAD.

With the progress of the high-throughput DNA 
sequencing technologies, non-coding RNA (ncRNA) may 
regulate gene expression and play a key regulatory role in 
shaping cellular activity, which makes them a new class of 
molecular targets for drug discovery (Anastasiadou et al. 
2018; Slack and Chinnaiyan 2019; Wang et al. 2022). As a 
type of lncRNA transcribed from DNA enhancer regions, 
enhancer RNA (eRNA) acts as a biomarker for activated 
enhancers and plays essential roles in gene regulation. 
Accumulating evidence has showed that eRNAs are asso-
ciated with multiple traits, characteristics, and cancers. 
For example, NET1 eRNA regulates the expression of 
neuroepithelial cell transforming 1 (NET1) oncogene to 
promote tumorigenesis in breast cancer (Zhang et al. 2019) 
and HPSE eRNA regulates the expression of heparinase 
(HPSE) to promote the invasion and metastasis of cancer 
(Jiao et al. 2018). The eRNA disorders can affect biologi-
cal processes, including cell cycle and cancer cell growth, 
or change the expression of target genes (Hsieh et al. 2014; 
Lam et al. 2013; Melo et al. 2013), adding new insights 
into the action mechanisms of enhancers. At the same 
time, some studies have found that the expression of some 
eRNA and their targeting genes are related to the clinical 
stage and prognosis of patients with LUAD and can be 
used as reliable biomarkers to predict immune status and 
therapeutic response (Cheng et al. 2021).

The eRNAs are considered to be an important regula-
tory layer of the epigenome and play an important role in 
almost all the biological processes, including immunity. 
The tumor microenvironment (TME) comprises immune 
and stromal cells, and the interactions between them and 
cancer cells play important roles in the initiation, progres-
sion, and response to therapies in lung cancer (Xiao and Yu 
2021). The TME has been approved to be the potential tar-
get for anti-tumorigenesis treatment in cancers. The epige-
netic alterations are always targeted for the development of 
molecular targets, which allows for generating novel thera-
peutic strategies to ultimately improve the survival outcomes 
of the patients suffering from this aggressive malignancy. 

The genetic, immune, and pharmacogenomic landscapes of 
eRNAs in LUAD remain unexplored.

Here, we generated a co-expression network to identify 
the eRNAs of target immune-related genes to comprehen-
sively analyze the role in the prognosis and therapeutic 
response of LUAD patients. Moreover, we constructed a 
prognostic risk signature with five immune-related eRNAs-
driven genes by bioinformatics methods and further verified 
its reliability and sensitivity.

Materials and methods

Data acquisition and preprocessing

The gene sequence, profile, and related clinical data of 
LUAD patients were acquired from The Cancer Genome 
Atlas (TCGA) public database. The samples with missing 
clinical information and/or overall survival ≤ 30 days were 
excluded from further analysis. Finally, 492 samples were 
included in this study. The information about clinical sam-
ples, for example, age, sex, and the tumor stage are shown 
in Supplemental Table 1. The expression data of eRNAs and 
the target genes were obtained from a previous study (Zhang 
et al. 2019). The immune-related genes were acquired from 
ImmPort Portal. A total of 562 eRNAs and 1652 target genes 
were identified in LUAD (Spearman's correlation coeffi-
cients > 0.3). Of these 1,652 target genes, 114 are immune 
related. The eRNAs and target immune-related genes are 
listed in Supplementary Table 2. All eRNAs identified and 
their regulatory relationship with the target genes are shown 
in Supplementary Table 3.

Functional enrichment analysis

In this study, Gene Ontology (GO) term and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway analyses 
were conducted to investigate the potential molecular mech-
anism involved in the 114 immune-related eRNA-driven 
genes for LUAD using the “clusterProfiler” R package.

Immune‑related eRNA‑driven gene prognostic 
signature

To construct a reliable prognostic risk signature, the LUAD 
samples were randomly assigned to the training (n = 482) 
and the testing cohorts (n = 482) in a ratio of 1:1. Then, least 
absolute shrinkage and selection operator (LASSO) analy-
sis was conducted on the 114 immune-related eRNA-driven 
genes to restrict overfitting among these genes significantly 
related to each other using the “glmnet” R package in the 
training cohort. Finally, five genes were identified to con-
struct the prognostic risk signature based on the expression 
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value of each signature gene and the relevant coefficient. 
The formula is as follows. Risk score = 0.208 × SHC1 + (−
0.040) × CCL14 + (−0.061) × FYN + (−0.075) × NOD1 + (−
0.008) × GDF10.

Validation of this immune‑related eRNA‑driven 
gene signature

The risk score of each sample was calculated and the 
samples were then assigned into the high-risk group and 
the low-risk group by the median risk value. Moreover, 
Kaplan–Meier curve analysis with the log-rank test was 
implemented to evaluate the correlation between the risk 
score and the survival of LUAD patients through the “sur-
vival” and “surviminer” R packages. Receiver operating 
characteristic (ROC) curves as well as the area under the 
curve (AUC) values were performed to evaluate the perfor-
mance of the signature in predicting the survival rate of the 
LUAD patients. We also validated the predictive capacity 
in two independent GEO cohorts (GSE50081, n = 181 and 
GSE68465, n = 462).

Sample collection

We collected the samples of tumor and adjacent non-tumor 
tissue from three LUAD patients who underwent surgery 
at Zhengzhou University People’s Hospital. All patients 
included in this study gave permission for sampling by 
signing a written informed consent form. This study was 
approved by the ethical review board of Zhengzhou Univer-
sity People's Hospital.

RNA extraction and real‑time reverse transcriptase–
polymerase chain reaction

We extracted total RNA from the sample tissues using TRI-
zol based on the manufacturer’s instructions. Then, cDNA 
was synthesized using the PrimeScript TMRT kit (Takara, 
Japan). Real-time polymerase chain reaction (RT-PCR) was 
conducted using SYBR Green Master Mix (Yeasen, China). 
The expression of each mRNA was standardized to the level 
of mRNA actin, and the quantification of expression was 
executed using the 2–ΔΔCT method. The sequence of each 
primer used in this study was summarized as follows.

Actin-F, 5ʹ-TGG CAC CCA GCA CAA TGA A-3ʹ,
Actin-R, 5ʹ-CTA AGT CAT AGT CCG CCT AGA AGC A-3ʹ,
CCL14-F, 5ʹ- GCC ATT CCC TTC TTC CTC CT-3ʹ,
CCL14-R, 5ʹ- GAC GCG GGA TCT TGT AGG TA-3ʹ,
FYN-F, 5ʹ-GGT GTG AAC TCT TCG TCT CATA-3ʹ,
FYN-R, 5ʹ-TGT CCG TGC TTC ATA GTC ATAA-3ʹ,
GDF10-F, 5ʹ-CGG CTG GAA TGA ATG GAT AATC-3ʹ,
GDF10-R, 5ʹ-TTG GAT GGA CGA ACG ATC TTAG-3ʹ,
NOD1-F, 5ʹ-GTC CGA GTT CTT CCT CTA CTTG-3ʹ,

NOD1-R, 5ʹ-CCA TGA TGG TGT CCA TGT AGAT-3ʹ,
SHC1-F, 5ʹ-ACT TGG GAG CTA CAT TGC CT-3ʹ,
SHC1-R, 5ʹ-GGG TGC ACT GCC ATT GAT AG-3ʹ.

Construction and evaluation of the nomogram

To estimate the clinical application of this prognostic risk 
signature in LUAD, a nomogram was constructed with the 
risk score and classical clinical variables, including age, gen-
der, tumor stage, and TNM stage, using “rms” R package. 
Time-dependent ROCs and the AUCs were implemented to 
evaluate the performance of the nomogram in predicting the 
survival rates at 1, 2, and 3 years through “ROCsurvival” R 
package.

Immune cell infiltration and immunotherapy 
response related to the signature

Immune-infiltrating cells in TME play important roles in 
cancer progression and therapeutic response. The hub 
gene set that consists of 782 genes representing 28 types 
of immune cells is used to estimate the infiltration level of 
various immune cell types in TME. Then, the single sam-
ple gene set enrichment analysis (ssGSEA) algorithm was 
executed to evaluate the proportion of 28 types of immune 
cells based on the gene expression profiles. The immuno-
logic features between the two risk groups were evaluated 
by the ssGSEA algorithm using the “GSVA” R package. 
In addition, the immune/stromal/estimate scores and tumor 
purity in TME were calculated based on the transcriptome 
data by ESTIMATE algorithm using the “estimate” R pack-
age. Tumor immune dysfunction and rejection (TIDE) score 
was determined to evaluate the potential immune check-
point inhibitor (ICI) response. The lower the TIDE score, 
the better is the response to immunotherapy. The potential 
ICI responses between the two risk groups were evaluated 
using the “ggpubr” R package.

Drug sensitivity analysis

The clinical drug responses in LUAD patients between the 
two risk groups were evaluated based on the half-maximal 
inhibitory concentration (IC50) of different anti-cancer 
drugs. The anti-cancer drug datasets were acquired from 
Drug Sensitivity in Cancer (GDSC) website to evaluate the 
correlation between the IC50 values of different anti-cancer 
drugs and the risk scores using “oncoPredict” R package 
(Maeser et al. 2021). The clinical responses to these drugs 
between the two risk groups were also explored to provide 
novel insights into the precision treatment of LUAD patients.
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Statistical analysis

Pearson’s correlation analysis was used to identify the 
eRNAs-driven genes. Univariate and multivariate analyses 
were carried out to identify the prognostic factors in LUAD. 
The survival status was evaluated by Kaplan–Meier curve 
analysis with log-rank tests. ROCs analysis and the AUCs 
were carried out to assess the reliability and sensitivity of 
the prognostic risk signature. Student’s t test was used to 
evaluate the difference between the two groups, and P < 0.05 
was considered to be significant difference.

Results

Immune‑related eRNA‑driven gene prognostic 
signature for LUAD patients

We identified 1202 eRNAs in LUAD, which regulate 1716 
target genes from the TCGA database. Based on the criterion 
of Pearson correlation coefficient > 0.3 and p < 0.05, 562 
eRNAs and 1652 target genes were acquired, including 114 
immune-related genes in LUAD (Supplemental Table 2). 
GO and KEGG analyses showed that a number of impor-
tant immune processes were involved in these 114 genes, 
such as T cell activation, antigen processing and presentation 
of exogenous peptide antigen via MHC class II and posi-
tive regulation of cell adhesion, and Th17 cell differentia-
tion, which indicate the significant correlation between the 
immune-related eRNA-driven genes and the immune status 
(Fig. 1A and B).

To develop a reliable prognostic risk signature, the LUAD 
samples in TCGA were randomly assigned to the training 
and testing cohorts. The immune-related eRNA-driven genes 
significantly associated with survival time were identified 
with the log-rank test and subsequently analyzed by LASSO 
regression model (Fig. 1C and D). Finally, five immune-
related eRNA-driven genes (SHC1, GDF10, CCL14, FYN, 
and NOD1) were identified to construct this risk signature 
(Fig. 1E).

Predictive performance of the signature

To validate the predictive performance of the prognostic 
risk signature, the LUAD samples in the training cohort 
were then assigned to the high-risk group and the low-risk 
group according to the median risk value. The distribu-
tion plot and scatter plot revealed that the high-risk group 
had an increased mortality (Fig. 2A and B). Moreover, the 
heatmap indicated that the SHC1 expression was increased, 
whereas CCL14, FYN, NOD1 and GDF10 expressions 
were decreased in the high-risk group (Fig. 2C). Besides, 
Kaplan–Meier analysis demonstrated that the sample in 

the low-risk group had a prolonged survival compared 
with those in the high-risk group (Fig. 2D).

To further prove the predictive performance of this risk 
signature, we also calculated the risk score of each sample 
in the testing cohort based on the same formula and simi-
larly assigned to the high- and low-risk groups according 
to the median risk score. The results of the distribution 
plot, scatter plot, heatmap analyses, and Kaplan–Meier 
curve in the testing cohort were consistent with the results 
acquired from the training cohort (Fig. 2E-H). In sum-
mary, the high-risk score of the patients calculated by the 
signature formula indicated unfavorable survival outcomes 
in LUAD accurately.

Validation in two Independent GEO cohorts

In addition, we validated the capacity of this signature in 
two independent cohorts (GSE50081 and GSE68465) from 
the GEO database (Fig. 3). Kaplan–Meier survival curves 
demonstrated that the low-risk patients had significantly pro-
longed survival compared with the high-risk patients, which 
further validated the reliability of the signature.

We further evaluated the mRNA expression of five signa-
ture genes between three-paired tumor tissues and adjacent 
non-tumor tissues. As shown in Fig. 4, CCL14, FYN, NOD1, 
and GDF10 mRNA expressions were decreased in tumor tis-
sues compared with the adjacent non-tumor tissues. Besides, 
the SHC1 mRNA expression tends to be increased in tumor 
tissues compared with the adjacent non-tumor tissues. PCR 
results together with database analysis revealed that CCL14, 
FYN, NOD1, and GDF10 are the potential LUAD suppres-
sors and SHC1 is a potential treatment target for LUAD.

Correlation between clinicopathological features 
and risk score

We also evaluated the correlation between the risk score 
and clinicopathological features, such as the age (< 65 
and ≥ 65 years), gender (female and male), T stage (T1–T2 
and T3–T4), N stage (N0–N1 and N2–N3), M stage (M0 
and M1), and tumor stage (I–II and III–IV). The high risk 
scores were significantly associated with the malignant 
features, including advanced stage (III–IV), larger tumors 
(T3-T4), more lymph node metastases (N2–N3), and dis-
tant metastasis (M1) (Fig. 5). Kaplan–Meier analysis dem-
onstrated that the patients in the high-risk group had worse 
survival compared with those in the low-risk group in the 
most cohorts stratified by the clinicopathological features, 
except for advanced stage (I-II), and N2–N3 stage cohorts 
(Fig. 6). The results showed that this risk signature had the 
promising predictive capacity in diverse situations.
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Independent prognostic and clinicopathological 
correlation analyses

We further explored the independent prognostic value of 
this signature as well as the common clinicopathological 
features using univariate and multivariate analyses. The 
univariate Cox regression analysis showed that the risk 
score as well as tumor stage, and TNM stage, correlated 
significantly with poor survival (Fig. 7A). The subsequent 
multivariate Cox regression analysis indicated that the risk 
score, tumor stage, and T stage were independent prog-
nostic factors of LUAD patients (Fig. 7B). Then, a prog-
nostic nomogram was constructed with the risk score and 
these clinicopathological features to quantitatively esti-
mate the survival probability of LUAD patients (Fig. 7C). 
Moreover, calibration curves for 1-year, 2-year, and 3-year 
overall survival were performed to validate the predictive 

probability of this nomogram. The result indicated excel-
lent concordance between the predictive survival probabil-
ity and actual survival rates at 1 year, 2 years, and 3 years 
(Fig. 7D-F). Moreover, time-dependent ROCs exhibited 
that the nomogram had a promising accuracy in predicting 
the 1-, 2- and 3-year overall survival (AUC = 0.74, 0.71, 
and 0.69, respectively) (Fig. 7G). Furthermore, decision 
curve analysis was used to evaluate whether this prediction 
signature for treatment benefit would lead to better clinical 
decisions. The result showed the use of the nomogram in 
predicting the survival of LUAD patients brought more net 
benefit than treating either all or none at a range of clini-
cally reasonable risk thresholds (Fig. 7H). All the above 
results showed that this prognostic risk signature displayed 
favorable predictive performance in the survival of LUAD 
patients and had a potential value of clinical applications.

Fig. 1  The identification of the five immune-related eRNA-driven 
genes in the signature. A The Gene Ontology (GO) biological pro-
cesses associated with these immune-related eRNA-driven genes. 
B Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
associated with these immune-related eRNA-driven genes. C Adjust-

ing the parameters of overall survival (OS)-related genes to validate 
the error curve. D The minimum criteria can be determined by using 
imaginary lines that intersect perpendicularly. E The five immune-
related eRNA-driven genes and the relevant coefficients
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Functional enrichment analysis related 
to the signature

We performed t-distributed stochastic neighborhood embed-
ding (t-SNE) to make a distinction between the two risk 
groups. The t-SNE analysis based on the signature genes 
showed that the two risk groups had different distributions 
and could be easily distinguished (Fig. 8A and B).

Then, GO and KEGG analyses were performed to explore 
the potential molecular mechanisms underlying the differen-
tially expressed genes (DEGs) between the two risk groups 

defined by |log2 (fold change) > 1| and p < 0.05. The results 
showed that the humoral immune response was mainly 
enriched (Fig. 8C). For KEGG items, the intestinal immune 
network for IgA production pathway was mainly enriched 
(Fig. 8D).

Correlation between immune and risk score

To further explore the clinical value of the prognostic risk 
signature in immunotherapy, we evaluated the relation-
ship between immune cell infiltration and this signature. 

Fig. 2  The correlation between the prognostic risk signature and the 
survival. The distribution plot A, scatter plot B, and expression heat-
map of the five immune-related eRNA-driven genes C and Kaplan–
Meier curve D between the high- and low-risk groups in the training 

cohort. The distribution plot E, scatter plot F, expression heatmap of 
the five immune-related eRNA-driven genes G, and Kaplan–Meier 
curve H between the high- and low-risk groups in the testing cohort
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The results showed that the proportion of the vast major-
ity of immune-infiltrating cells in the high-risk group was 
significantly lower than that in the low-risk group, such 
as activated B cell, immature B cell, CD8 T cell, effector 
memory CD8 T cell, dendritic cell, central memory CD4 
T cell, eosinophil, immature dendritic cell, macrophage, 
myeloid-derived suppressor cells (MDSCs), natural killer 
T cell, natural killer cell, regulatory T cell, type 1 T helper 
cell, and type 17 T helper cell (Fig. 9A).

The correlation between the risk signature and immune/
stromal/ESTIMATE score was evaluated through estimate 
algorithm. The results revealed that immune/stromal/ESTI-
MATE scores in the high-risk group were significantly lower 
than those in the low-risk group (Fig. 9B-D).

Moreover, we also explored the correlation between 
the immunotherapy response rate and the risk signature 
based on the TIDE score. The analysis indicated that 
the low-risk scores were significantly related to a higher 
response rate than the high-risk scores, and the risk scores 
in the response cohort were significantly high compared 
with those in the response cohort (Fig. 9E-F). Above all, 

this risk signature in our study may be highly related to 
the immunosuppressive TME and may be a potential bio-
marker of immunotherapy response in LUAD.

Drug sensitivity prediction

We evaluated the correlation between the risk scores and 
sensitivities of common anti-cancer drugs based on the 
GDSC database using “oncoPredict” R package. The result 
showed that the IC50s of lapatinib, docetaxel, and pacli-
taxel were lower in patients with high-risk scores; how-
ever, increased risk scores were accompanied by decreased 
sensitivity to afatinib and osimertinib (Fig. 10A-E). In 
addition, we also found that the IC50s of BI-2536, sepan-
tronium bromide, and ULK1 were significantly higher in 
the low-risk group than those in the high-risk group, which 
suggests that BI-2536, sepantronium bromide, and ULK1 
were also the potential drugs for the treatment of patients 
with higher risk scores (Fig. 10F–H).

Fig. 3  Prognostic value validation of the risk signature in three independent GEO cohorts. A Survival status between the high-risk group and the 
low-risk group in the GSE50081 cohort. B Survival status between the high-risk group and the low-risk group in the GSE68465 cohort

Fig. 4  The mRNA expressions between tumor and adjacent non-tumor tissues of five signature genes, including SHC1 A, GDF10 B, CCL14 C, 
FYN (D), and NOD1 (E). *P < 0.05, **P < 0.01, and ***P < 0.001
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Discussion

TME is an integral part of LUAD and rich in inflammatory 
signaling, which attracts various immune cell populations 
(Allavena et al. 2011; Pitt et al. 2016; Spella and Statho-
poulos 2021). Among them, tumor-reactive lymphocytes, 
tumor-associated macrophages (TAMs), tumor-associated 
neutrophils, myeloid-derived suppressor cells, and mast 
cells can interact with the tumor cells to ultimately shape 
a highly immunosuppressive TME, with enhanced tumor-
promoting manifestations and diminished tumor cytotox-
icity (Bronte et al. 2006; Ostrand-Rosenberg et al. 2012; 
Zaynagetdinov et al. 2011). Meanwhile, the efficacy of 
cancer immunotherapy in NSCLC is hampered by intra-
tumor heterogeneity for neoantigens, neoantigen loss, 
immunosuppressive TME secondary to tumor aneuploidy, 
and immune checkpoints such as PD-L1 and TIM-3 (Ani-
chini et al. 2018; Anichini et al. 2020; Koyama et al. 2016; 
Rosenthal et al. 2019). The transformation of immune 
response from the anti-tumor state to the tumor tolerance 
state is conducive to the development and progress of 
LUAD. Some molecular subsets show specific mechanisms 
for promoting immunotherapy resistance due to genetic 
alterations in NSCLC (Dong et al. 2017). Immune-related 

genes and immune cells are considered as new therapeutic 
targets and prognostic biomarkers of LUAD.

The eRNAs regulate gene expression and are involved 
in cancer immunotherapy by providing additional explan-
atory power in predicting immune response (Chen and 
Liang 2020). The eRNAs regulate gene expression in two 
ways: one is that the early formed eRNAs can recruit pro-
tein complexes from their synthetic site for local activa-
tion; the other is that eRNAs can recruit remote or even 
other chromosome-related protein complexes to play a 
distal regulatory role (Chen and Liang 2020; Wang et al. 
2011). Accumulating evidence showed that the eRNAs are 
important regulators in the immune response and associ-
ated with multiple tumorigenic signaling pathways, includ-
ing immune checkpoints, p53, and PPARr (Guo et  al. 
2020; Melo et al. 2013; Zhang et al. 2019).

In our study, we identified five immune-related eRNA-
driven genes (SHC1, CCL14, FYN, NOD1, and GDF10) 
to construct a new prognostic risk signature and validated 
its predictive capacity. Of the five genes, SHC1 expres-
sion correlated positively with poor survival. In contrast, 
CCL14, FYN, NOD1, and GDF10 acted as protective fac-
tors (Fig. 1E and Supplementary Fig. 1).

Fig. 5  The correlation between 
the risk score and clinicopatho-
logical features. A The correla-
tion between the risk score and 
tumor stage (I–II and III–IV). 
B The correlation between the 
risk score and T stage (T1–T2 
and T3–T4). C The correlation 
between the risk score and N 
stage (N0–N1 and N2–N3). D 
The correlation between the 
risk score and M stage (M0 and 
M1). *P < 0.05, **P < 0.01
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Furthermore, the risk signature had promising predic-
tive capacity in diverse situations. The high-risk patients 
were significantly associated with the malignant features, 
including increased mortality, advanced stage, larger tumors, 
more lymph node metastases, distant metastasis, and poor 
survival outcome. Moreover, we also validated the capacity 
of this signature in two independent cohorts from the GEO 
database.

Among the signature genes identified in this study, SHC1 
expression was significantly increased in patients with lung 
cancer, and its expression level and methylation level were 
associated with survival (Liang et al. 2021). In addition, 
SHC1 was also significantly associated with DNA meth-
ylation, m6A RNA methylation, tumor mutational burden 
(TMB), Mismatch repair proteins (MMRs), microsatellite 
instability (MSI), TAMs, tumor-associated immune cell 
infiltration, and immune checkpoints in cancers (Chen et al. 
2022). Pan et al. showed that SHC1 was overexpressed in 
LUAD and interacted with EGFR to promote the metastasis 
of lung cancer cells. The complex of SHC1 and EGFR was 

the potential therapeutic target to restrain lung cancer metas-
tasis (Yang et al. 2022).

CCL14 was considered to be a good prognostic bio-
marker in multiple cancer types and triggers the activation 
of monocytes, macrophages, and THP-1 cells through its 
binding affinity with CCR1, CCR3, and CCR5. Multiple 
studies suggest that CCL14 contributes to the development 
and advancement of different medical conditions, such as 
allergic airway inflammation and certain types of cancer (Gu 
et al. 2020; Wong et al. 2016; Zhu et al. 2019). However, the 
roles of CCL14 have not been described in LUAD.

As a TGFβ family member, GDF10 is highly expressed 
in the lung. Overexpressing GDF10 could attenuate tumor 
formation. Conversely, GDF10 expression silence reversed 
these effects (Upadhyay et al. 2011), and GDF10 is regarded 
as a tumor growth inhibitor and a silenced gene in lung can-
cers (Chen et al. 2023; Dai et al. 2004; Tandon et al. 2012).

As a non-receptor tyrosine kinase in the Src fam-
ily of kinases, FYN plays important roles in the epithe-
lial–mesenchymal transition (EMT) through regulating 

Fig. 6  The survival status between the two risk groups in different subgroups of patients with LUAD. The survival outcomes of the LUAD 
patients stratified according to age A, B gender C, D stage E, F T stage G, H N stage I, J and M stage K, L between the two risk groups
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cell proliferation, morphology, apoptosis, and motor abil-
ity, which promotes tumorigenesis and progression, and is 
significantly associated with patients’ prognosis (Goel and 
Lukong 2016). FYN tyrosine kinase is a downstream target 
of receptor tyrosine kinases and modulates the immunother-
apy response in the glioma (Comba et al. 2020). However, 
the role of FYN in LUAD has not been described.

Zhang et al. observed that NOD1 and NOD2 overexpres-
sion promote tumorigenicity and metastasis through the 
NOD1/2-NF-κb/ERK and IL-8 axis in human squamous 
cervical cancer (Zhang et al. 2022). However, Nod1 was also 
found to be an innate immune receptor and protects the intes-
tine from inflammation-induced tumorigenesis (Chen et al. 
2008). NOD1 absence was associated with tumor growth 

and cell proliferation induced by an increased sensitivity to 
estrogen in MCF-7 cells (Silva et al. 2006). However, the 
role of NOD1 required further study in LUAD.

We utilized GO and KEGG analyses to investigate the 
underlying molecular mechanism of the prognostic risk sig-
nature. Our findings indicate that this gene signature may 
play a critical role in regulating these tumor-related immune 
pathways. Additionally, recent research has shown that many 
types of LUAD are immunogenic and sponged in cancer-
infiltrating lymph cells (Steven et al. 2016). Our team exam-
ined the relationship between the signature and immune 
infiltration in LUAD using the ssGSEA algorithm. Interest-
ingly, we found that the risk signature was significantly asso-
ciated with the Infiltration levels of various immunocytes, 

Fig. 7  Construction and validation of the nomogram based on the 
clinicopathological features and risk score. A, B The independ-
ent prognostic factors identified by univariate and multivariate Cox 
regression analyses. C Construction of the prognostic nomogram 
based on the clinicopathological features and risk score. D-F Calibra-

tion curves between the predictive survival probability and actual sur-
vival rates at 1 year, 2 years, and 3 years. G Time-dependent receiver 
operating characteristic curves of the nomogram and the area under 
the curve values at 1, 2, and 3 years. H Decision curve analysis of the 
prognostic nomogram
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such as activated B cell, immature B cell, CD8 T cell, effec-
tor memory CD8 T cell, dendritic cell, central memory CD4 
T cell, eosinophil, immature dendritic cell, macrophage, 
MDSCs, natural killer T cell, natural killer cell, regulatory 
T cell, type 1 T helper cell, and type 17 T helper cell. To 
further confirm the correlation between the risk signature 
and immune status, we used the ESTIMATE algorithm to 
obtain the immune/stromal/estimate scores and tumor purity 
in the TME and collected survival data to explore the effect 
of these scores on survival rates. The results revealed that 
high immune/stromal/estimate scores were associated with 
prolonged survival in LUAD patients, which is consistent 
with the result from the previous study (Xiang et al. 2021). 
The current immune checkpoint biomarkers have limited 

sensitivity and specificity, meaning that not all patients who 
are positive for the biomarker will respond to immunother-
apy, and some patients who are negative for the biomarker 
may still respond. Our signature exhibited higher predictive 
power for the survival status of LUAD patients and response 
outcomes for immunotherapy and is a potential immune-
oncogenic biomarker for prognosis, therapeutic drug selec-
tion, and follow-up.

In addition, through drug sensitivity prediction, we 
screened drugs with better sensitivity for patients in the 
high-risk scoring group from numerous clinical and preclini-
cal chemotherapy and targeted drugs, such as the current 
clinical drugs lapatinib (a dual tyrosine kinase inhibitor that 
inhibits both EGFR and HER2), docetaxel, and paclitaxel, 

Fig. 8  Functional enrichment analysis related to the risk signature. A 
t-SNE based on the entire gene expression. B t-SNE based on the sig-
nature gene expression. C Gene Ontology (GO) biologic processes in 

which DEGs are mainly enriched. D Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways in which DEGs are mainly enriched
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Fig. 9  The correlation between the risk signature and immune 
responses. A The relative quantity of each immune-infiltrating cell 
type between the two risk groups. B, C and D The immune/stro-
mal/ESTIMATE score between the two risk groups. E The immu-

notherapy responses between the two risk groups. F The risk scores 
between the no-response and response groups. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001
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as well as candidate anti-cancer drugs BI-2536 (a known 
potent human polo-like kinase 1 inhibitor) and sepantro-
nium bromide (a small molecule survivin inhibitor), and 
ULK1 (a ULK1 inhibitor). This result provides a basis for 
the development of new drugs and the selection of clinical 
medication and is expected to improve the poor prognosis 
of high-risk patients. Our signature suggests that high-risk 
patients may derive benefits from EGFR- tyrosine kinase 
inhibitors (TKIs) and ALK-TKIs, indicating a potential asso-
ciation between our risk scores and EGFR mutations or ALK 
fusions, which is an important. However, due to the limited 

proportion of samples with EGFR and ALK alterations in 
our study cohort, and the lack of clarity regarding the treat-
ments used, a larger sample size is needed to explore the 
relationship between EGFR/ALK mutations and our risk 
model.

Above all, we used the data from the public database to 
identify five immune-related eRNA-driven genes, estab-
lished a risk prediction model, and verified the signature 
in multiple datasets. The established signature can be used 
to predict the survival with high robustness and specificity 
and assist clinicians to make more beneficial decisions in 

Fig. 10  The correlation between the risk scores and sensitivities of anti-cancer drugs. Anti-tumor drugs, including A afatinib, B osimertinib, C 
lapatinib, D docetaxel, E paclitaxel, F BI-2536, G sepantronium bromide, and (H) ULK1. *P < 0.05, **P < 0.01, ****P < 0.0001
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LUAD. Moreover, specific eRNAs and target genes could 
be potential therapeutic targets for refractory tumors other 
than LUAD. In addition, our study provides a potential 
new predictive biomarker for the prognosis and survival of 
patients with LUAD and is expected to provide some pos-
sible options for improving immunotherapy. However, the 
effectiveness of risk score signatures needs to be further 
tested in a larger cohort of LUAD patients. More in vitro 
and in vivo experiments are needed to validate the biologi-
cal functions and mechanisms of the genes related to the 
risk model in LUAD, which will help to better understand 
the role of these genes in disease development. The interac-
tions between the genes in the risk model and other biologi-
cal pathways and regulatory factors need further study to 
reveal more potential mechanisms of LUAD development 
and prognosis and provide more therapeutic targets. Further-
more, an LUAD cohort with a large sample size is required 
to further validate and confirm the predictive ability and 
reliability of our risk model in different clinical situations 
and independent cohorts.
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