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Abstract
Background  Clear cell renal cell carcinoma (ccRCC) is the main type of renal cell carcinoma. Cyclin B2 (CCNB2) is a 
subtype of B-type cyclin that is associated with the prognosis of several cancers. This study aimed to identify the relationship 
between CCNB2 and progression of ccRCC and construct a novel lncRNAs-related model to predict prognosis of ccRCC 
patients.
Methods  The data were obtained from public databases. We identified CCNB2 in ccRCC using Kaplan–Meier survival 
analysis, univariate and multivariate Cox regression, and Gene Ontology analysis. External validation was then performed. 
The risk model was constructed based on prognostic lncRNAs by the LASSO algorithm and multivariate Cox regression. 
Receiver operating characteristics (ROC) curves were used to evaluate the model. Consensus clustering analysis was per-
formed to re-stratify the patients. Finally, we analyzed the tumor-immune microenvironment and performed screening of 
potential drugs.
Results  CCNB2 associated with late clinicopathological parameters and poor prognosis in ccRCC and was an independent 
predictor for disease-free survival. In addition, CCNB2 shared the same expression pattern with known suppressive immune 
checkpoints. A risk model dependent on the expression of three prognostic CCNB2-related lncRNAs (SNHG17, VPS9D1-
AS1, and ZMIZ1-AS1) was constructed. The risk signature was an independent predictor of ccRCC. The area under the 
ROC (AUC) curve for overall survival at 1-, 3-, 5-, and 8-year was 0.704, 0.702, 0.741, and 0.763. The high-risk group and 
cluster 2 had stronger immunogenicity and were more sensitive to immunotherapy.
Conclusion  CCNB2 could be an important biomarker for predicting prognosis in ccRCC patients. Furthermore, we developed 
a novel lncRNAs-related risk model and identified two CCNB2-related molecular clusters. The risk model performed well 
in predicting overall survival and immunological microenvironment of ccRCC.
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Introduction

Renal cell carcinoma (RCC) is a cancer caused by renal 
epithelial cells and is one of the most common malignant 
urological tumors worldwide. There were more than 400,000 
new cases of renal cell carcinoma worldwide and more than 

170,000 deaths as a result in 2020 (Sung et al. 2021). RCC 
is divided into three main histologic subgroups: clear cell 
renal cell carcinoma (ccRCC), papillary renal cell carcinoma 
(pRCC), and chromophobe renal cell carcinoma (chRCC) 
(Kovacs et al. 1997). Approximately 70% of RCC patients 
are diagnosed with ccRCC, the most common and most 
aggressive RCC subgroup (Motzer et al. 2020). If detected 
early enough, ccRCC can be treated with surgery or ablation, 
but one third of patients develop tumor metastasis, which 
can be fatal (Jonasch et al. 2014). In most cases ccRCC is 
insensitive to radiotherapy and chemotherapy, and with fur-
ther research, immunotherapies targeting cytokines or char-
acteristic immune checkpoints have been shown to promote 
the body’s active immune response through different mecha-
nisms. PD-1/PD-L1 antibodies have been clinically approved 
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for the treatment of metastatic ccRCC (Motzer et al. 2015). 
However, patients did not respond consistently to immu-
notherapy (Atkins et al. 2018). Therefore, given the high 
morbidity and mortality of ccRCC, it is crucial to explore 
targets with therapeutic as well as prognostic value for the 
targeted treatment of ccRCC patients.

The cell cycle is a fundamental process of cellular life 
activity and is tightly regulated by a series of regulatory 
factors. In the cell cycle, cyclin regulates the activity of 
cyclin-dependent kinases (CDKs) by binding to CDKs, 
which allows cells to enter the G2/M phase (Malumbres 
and Barbacid 2009). Cyclin B2 (CCNB2) belongs to the 
B-type cyclin family and is an important cell cycle regu-
lator. Abnormal expression of CCNB2 can lead to G2/M 
checkpoint failure, subsequently resulting in gene mutations, 
changes in chromosome structure, and even stimulation of 
tumorigenesis (Yoshitome et al. 2012). CCNB2 has been 
shown to be highly expressed in a range of human cancers, 
such as lung cancer, bladder cancer, nasopharyngeal cancer, 
and liver cancer (Stav et al. 2007; Lei et al. 2016; Gao et al. 
2018; Qian et al. 2020). Therefore, CCNB2 may become a 
promising target for humans in the fight against cancer.

Although the role of CCNB2 in the progression of many 
cancers is widely investigated, little is known about the 
effect of CCNB2 on ccRCC. Therefore, we analyzed the 
expression of CCNB2 in ccRCC and its relationship with 
clinicopathological factors, and also explored the signal-
ing pathways enriched by CCNB2. The prognostic value of 
CCNB2 for ccRCC was evaluated.

In addition, it has been shown that the long non-coding 
RNA (lncRNA)–microRNA (miRNA) axis has an impor-
tant role in tumor progression and therapeutic resistance. 
LncRNA has the ability to regulate miRNA function acting 
as a competitive endogenous RNA (ceRNA) that mediates 
miRNA sponging and alters expression levels and function 
(Su et al. 2021). MiRNA reduces gene expression at the 
post-transcriptional level by binding to the 3′-untranslated 
region (3′-UTR) of mRNA (Ashrafizadeh et al. 2021). It 
has been found that in papillary thyroid cancer, MIAT, as 
the ceRNA of miRNA-150-5p, was significantly and posi-
tively correlated with EZH2, the downstream target of miR-
150-5p. MIAT may promote invasion of thyroid cancer cells 
through the miR-150/EZH2 pathway (Guo et al. 2021). 
According to the available studies, however, CCNB2-related 
miRNAs or lncRNAs have not been mentioned widely. We 
then further mined lncRNAs and miRNAs that interact with 
CCNB2 and constructed a risk model using only three sur-
vival-related lncRNAs to reconstitute patients and explore 
the tumor microenvironment to improve precise treatment.

Materials and methods

Patient information acquisition and processing

Gene transcriptomic and clinical data were obtained from 
The Cancer Genome Atlas (TCGA) (https://​tcgad​ata.​nci.​nih.​
gov/​tcga/​tcgaD​ownlo​ad.​jsp) database (Tomczak et al. 2015), 
including 539 ccRCC samples and 72 normal kidney tissue 
samples. In addition, both gene expression and clinical data 
for validation were downloaded from the Gene Expression 
Omnibus (GEO) (http://​www.​ncbi.​nlm.​nih.​gov/​geo/) data-
base. The construction of risk model was based on TCGA 
database.

Association of CCNB2 with various clinical factors 
and survival

Tumor Immune Estimation Resource 2.0 (TIMER2.0, http://​
timer.​cistr​ome.​org/) was used to explore the differential 
expression of CCNB2 between tumor tissue and normal 
tissue (Li et al. 2020). After integrating gene expression 
data with clinical data, heatmap based on the pheatmap R 
package was utilized to explore the qualitative relationship 
between CCNB2 expression and clinical factors. CCNB2 
expression between the ccRCC and normal tissues were 
first compared by t test. Subsequently we identified CCNB2 
expression of patients in different AJCC stages and ISUP 
grades by one-way ANOVA test. Considering that gene 
expression data in GSE53757 were not normalized and 
were independent of other datasets, we transformed them to 
log10 (Exp) for ease of processing. Finally, we depicted the 
relationship between survival status of patients and CCNB2 
by the scatter plot using the ggplot2 R package, followed by 
survival curves using the Kaplan–Meier method on Graph-
Pad Prism 8.0 software with log-rank test. The median value 
of CCNB2 expression was chosen as the cut-off. p < 0.05 
was considered statistically significant.

The Human Protein Atlas

The Human Protein Atlas (https://​www.​prote​inatl​as.​org) is 
a program with the aim to map all the human proteins in 
cells, tissues, and organs using various omics technologies 
(Asplund et al. 2012). Based on this database, we observed 
the distribution of CCNB2 protein in ccRCC tissue versus 
pericancerous tissue by immunohistochemical images.

Univariate and multivariate Cox regression analysis

CcRCC patients were divided into high and low expression 
groups according to the mean value of CCNB2 expression. 

https://tcgadata.nci.nih.gov/tcga/tcgaDownload.jsp
https://tcgadata.nci.nih.gov/tcga/tcgaDownload.jsp
http://www.ncbi.nlm.nih.gov/geo/
http://timer.cistrome.org/
http://timer.cistrome.org/
https://www.proteinatlas.org
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Univariate and multivariate analysis was performed using 
Cox regression model to find independent prognostic fac-
tors, which involved parameters including age, gender (ref. 
Male), pT stage (ref. T1–T2), pN stage (ref. N0), pM stage 
(ref. M0), AJCC stage (ref. I–II), ISUP grade (ref. 1–2), 
and CCNB2 expression (ref. Low expression). The clinical 
endpoint for patients was set as disease-free survival (DFS). 
Analysis was performed on IBM SPSS Statistics (version 
25.0) and p < 0.05 was considered statistically significant.

Functional enrichment analysis

The set of genes most associated with CCNB2, relying on 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID, v2021) (Huang et al. 2007), was sub-
jected to Gene Ontology (GO) analysis and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis. 
The results of the analyses satisfying p < 0.05 were arranged 
in ascending order of p value, and the first six results were 
visualized. The presentation of the results of the GO analysis 
was based on ggplot2 R package, while the KEGG analy-
sis was presented through Excel (version 2021). To further 
explore the biological signaling pathways associated with 
CCNB2, gene set enrichment analysis was performed using 
GSEA (version 4.3.2) software based on gene expression 
data from ccRCC patients in the TCGA database, and the 
results of HALLMARK and KEGG were shown (Subra-
manian et al. 2005). Significantly enriched gene sets were 
required to meet Normalized Enrichment Score (NES) > 1, 
nominal p value < 0.05, false discovery rate (FDR) q 
value < 0.05.

Protein–protein interaction (PPI) network 
construction

Search Tool for the Retrieval of Interacting Genes (STRING; 
http://​string-​db.​org) (version 11.5) is a database of known 
and predicted protein–protein interactions (Franceschini 
et al. 2013). In this study, an interaction with a combined 
score > 0.9 was considered statistically significant.

Correlation analysis of CCNB2 with inhibitory 
immune checkpoints and immune infiltration

The following analyses were performed on R (version 4.2.1). 
First, the circlize package was used to visualize the results of 
the Pearson correlation analysis of CCNB2 with inhibitory 
immune checkpoints. Subsequently, referring to the leuko-
cyte signature matrix (LM22) file (Newman et al. 2015), 
we applied CIBERSORT algorithm to obtain the fraction 
share of immune cells in all ccRCC patient samples. R pack-
ages including limma, e1071, parallel and preprocessCore 
were utilized. Finally, the correlation coefficients between 

CCNB2 expression and various immune cell infiltrations 
were obtained with the help of Spearman correlation analy-
sis. An integrated repository portal for tumor-immune sys-
tem interactions (TISIDB; http://​cis.​hku.​hk/​TISIDB/​index.​
php) can be used to demonstrate the relative abundance of 28 
tumor-infiltrating lymphocytes (TILs) in a variety of human 
tumors (Ru et al. 2019).

The establishment of the predictive nomogram

Patients’ data for constructing nomograms were derived 
from the TCGA database. With the help of rms R package, 
the first nomogram was constructed relying on the seven 
clinicopathological characteristics (gender, age, grade, stage, 
T, N, and M) and CCNB2 expression to predict disease-free 
survival (DFS) of ccRCC patients. The second nomogram 
was constructed based on the age, grade, stage, and risk, 
predicting overall survival (OS) of patients. Samples lack-
ing related clinicopathological characteristics (gender, age, 
grade, stage, T, N, and M) were excluded.

Selection and identification of CCNB2‑related 
miRNAs and lncRNAs

Through RNA Interactome Database (RNAInter; http://​
www.​rna-​socie​ty.​org/​rnain​ter3/) (Lin et  al. 2020) and 
TargetScanHuman (https://​www.​targe​tscan.​org/​vert_​80/) 
(McGeary et al. 2019) databases, we obtained the predicted 
70 miRNAs that interacted with CCNB2 (Supplementary 
Appendix T1). Based on the TCGA database, four miRNAs 
with a correlation coefficient less than − 0.2 with CCNB2 
(p < 0.001) were screened by Spearman test. Subsequently 
359 predicted lncRNAs binding to these 4 miRNAs were 
found in the the  Encyclopedia  of  RNA  Interactomes 
(ENCORI; https://​starb​ase.​sysu.​edu.​cn/​index.​php) (Li et al. 
2014), RNAInter, and TargetScanHuman databases (Sup-
plementary Appendix T2). Among them we screened six 
lncRNAs whose correlation coefficients with CCNB2 were 
larger than 0.2 (p < 0.001).

Construction and validation of a novel risk model

We randomly divided the patients in TCGA database into 
train (n = 242) and test (n = 242) cohorts equally for internal 
validation. CcRCC patients with an overall survival of less 
than 30 days were excluded to reduce statistical bias. First, 
in the train cohort, univariate Cox analysis was performed 
on six CCNB2-associated lncRNAs to screen for prognostic 
lncRNAs. To avoid overfitting, least absolute shrinkage and 
selection operator (LASSO) was performed to further screen 
prognostic lncRNAs in the train cohort. We then calculated 
the risk score for each ccRCC patient using the following 
formula: risk score = gene (A) expression × coef (A) + gene 

http://string-db.org
http://cis.hku.hk/TISIDB/index.php
http://cis.hku.hk/TISIDB/index.php
http://www.rna-society.org/rnainter3/
http://www.rna-society.org/rnainter3/
https://www.targetscan.org/vert_80/
https://starbase.sysu.edu.cn/index.php
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(B) expression × coef (B) + … + gene (i) expression × coef 
(i) (Shen et al. 2022). Based on the median risk score of 
train cohort, all patients (n = 484) were divided into a high-
risk group and a low-risk group. Based on the timeROC R 
package, we validated the performance of the risk model 
using receiver operating characteristics (ROC) curves. Sub-
sequently univariate and multivariate Cox analyses of risk 
scores with clinical factors including age, gender, grade, and 
stage were performed. Independent prognostic factors were 
used in the construction of the second nomogram.

Clusters based on risk signatures

Relying on the expression of lncRNAs in the risk formula, 
patients were divided into two clusters to further explore 
the immune microenvironment of patients using the Con-
sensusClusterPlus R package. Principal component analy-
sis (PCA) and t-distributed stochastic neighbor embedding 
(t-SNE) were utilized to evaluate the clustering ability of 
risk signatures.

Immune infiltration analysis of different risk groups 
and clusters

Using the “infiltration estimation for tcga” file from the 
TIMER2.0 database, relying on limma, scales, ggplot2, 

and ggtext R packages, we performed immune infiltration 
analyses of patients in risk groups and visualized the results 
obtained by different methods in a bubble chart. We cal-
culated the immune score for each ccRCC tissue using the 
estimate R package and compared the differences across risk 
groups and clusters using the ggpubr R package. The activa-
tion of immune checkpoints was also demonstrated by the 
ggpubr package.

Pharmacotherapy based on the risk model 
and clusters

Half-maximal inhibitory concentration (IC50) is the indica-
tor to identify drug sensitivity. R package pRRophetic was 
used to evaluate therapy response on Genomics of Drug Sen-
sitivity in Cancer (GDSC) (https://​www.​cance​rrxge​ne.​org/) 
(Yang et al. 2013).

Statistical analysis

The data were processed using R 4.2.1 software, IBM SPSS 
Statistics (version 25.0), and GraphPad Prism 8.0. Differ-
ential expression levels of CCNB2 between paired stages 
or grades were compared using Student’s t tests. One-way 
ANOVA test was utilized to measure the overall statistical 
difference of stages or grades. KM survival analysis was 

Fig. 1   Flow chart of this research

https://www.cancerrxgene.org/
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Fig. 2   Differential expression of CCNB2 in ccRCC tissues and nor-
mal tissues. A Differential expression of CCNB2 in a series of tumor 
tissues and paracancerous tissues based on The Cancer Genome Atlas 
(TCGA) cohort. B, C CCNB2 expression was significantly higher 
in ccRCC tissues than in normal tissues, based on the The Cancer 

Genome Atlas (TCGA) cohort (****p < 0.0001) and the GSE40435 
cohort (****p < 0.0001). D, E CCNB2 expression was detected in 
ccRCC tissues but not in normal tissues according to the Human Pro-
tein Atlas (HPA) database
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performed by log-rank test. Pearson correlation analysis was 
used to detect the correlation between CCNB2 and immune 
checkpoints. The correlation between immune cell infiltra-
tion and CCNB2 or risk score was investigated by Spear-
man’s correlation analysis. We used univariate and multi-
variate Cox analyses to screen for independent prognostic 

factors. Unless otherwise stated, p < 0.05 was considered 
statistically significant.

Our study does not contain data from any individual per-
son or any animals.

Fig. 3   CCNB2 associated significantly with advanced clinicopatho-
logical factors and poor survival in ccRCC patients. A The heat-
map of CCNB2-related clinicopathological factors of ccRCC in the 
TCGA cohort. B, C CCNB2 expression was significantly increased in 
ccRCC with advanced stage in the TCGA and GSE53757 cohorts. D, 
E CCNB2 expression was significantly correlated with ISUP grade 
in the TCGA and GSE40435 cohorts, with more advanced patients 

tending to have higher CCNB2 expression. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001. F, G Kaplan–Meier analysis showed 
that CCNB2 was significantly associated with shorter overall sur-
vival in the TCGA (p < 0.001) and GSE22541 cohorts (p < 0.05). H, 
I CCNB2 was associated with shorter disease-free survival (DFS) in 
the TCGA (p < 0.001) and GSE22541 cohorts (p = 0.069)
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Results

Differential expression of CCNB2 in ccRCC patients

The workflow of this study is shown in Fig.  1. Rely-
ing on the TIMER 2.0 database, we found that CCNB2 
was overexpressed in most tumor tissues, such as blad-
der cancer (BLCA), breast cancer (BRCA), cervical can-
cer (CESC), esophageal cancer (ESCA), prostate cancer 
(PRAD) (p < 0.05), and clear cell renal cell carcinoma 
(ccRCC) (p < 0.001) (Fig. 2A). Based on the TCGA data-
base, we found that CCNB2 mRNA was significantly 
highly expressed in ccRCC tissues relative to normal tis-
sues (p < 0.001), which was well validated in the GSE40435 
dataset (p < 0.001) (Fig. 2B, C).

In addition, IHC staining showed that CCNB2 was unde-
tectably stained in normal kidney tissues (Fig. 2D), while 
medium levels of expression were observed in ccRCC tis-
sues (Fig. 2E). These results suggested that CCNB2 was 
highly expressed at transcriptional and proteomic levels in 
ccRCC tissues.

High CCNB2 expression is associated with late 
clinicopathological parameters and poor survival 
in ccRCC patients

Patients with different CCNB2 expression presented with 
different clinicopathological features. With the increase of 
CCNB2 expression, AJCC stage, IUSP grade, pT stage, 
pM stage, and OS showed asymmetric distribution in the 
TCGA dataset (Fig. 3A). Based on the clinicopathological 
data from the TCGA dataset, we found that CCNB2 mRNA 
expression in ccRCC samples increased with increasing 
stage level (p < 0.001) (Fig. 3B). Similarly, CCNB2 expres-
sion was also correlated with pathological grade (p < 0.001) 
(Fig. 3D). The above results were validated, respectively, in 
the GSE53757 dataset (p < 0.05) and the GSE40435 dataset 
(p < 0.001) (Fig. 3C, E). Overall, these results suggested that 
ccRCC with higher malignancy was enriched with CCNB2.

To investigate the effect of CCNB2 on the prognosis 
of ccRCC patients, we performed Kaplan–Meier survival 
analysis and Cox regression analysis. In the TCGA data-
set, patients with high CCNB2 expression had significantly 
shorter OS (p < 0.001) and DFS (p < 0.001) (Fig. 3F, H). 
Meanwhile, we validated the relationship between CCNB2 
expression and OS in the GSE22541 dataset (p < 0.05) 
(Fig. 3G). Although the association of CCNB2 expression 

Table 1   Univariate and 
multivariate Cox regression 
analysis of disease-free survival 
(DFS) in The Cancer Genome 
Atlas (TCGA) cohort

p-values lower than 0.05 are displayed in italics

Variable Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

CCNB2 (ref. low expression) 3.011 (2.192–4.137) 1.03e−11 2.114 (1.282–3.486) 0.003
Age 1.007 (0.994–1.020) 0.294 – –
Gender (ref. female) 1.481 (1.041–2.107) 0.029 1.25 (0.795–1.964) 0.334
pT stage (ref. T1–T2) 4.539 (3.263–6.314) 2.65e−19 1.121 (0.534–2.35) 0.763
pN stage (ref. N0) 3.860 (1.979–7.530) 7.40e−05 0.971 (0.47–2.005) 0.936
pM stage (ref. M0) 8.655 (6.211–12.060) 3.16e−37 3.995 (2.318–6.884) 6.09e−07
AJCC stage (ref. I–II) 6.730 (4.685–9.668) 5.96e−25 2.824 (1.121–7.117) 0.028
ISUP grade (ref. 1–2) 3.370 (2.309–4.918) 2.97e−10 1.414 (0.829–2.411) 0.204

Table 2   Univariate and 
multivariate Cox regression 
analysis of disease-free survival 
(DFS) in GSE22541 cohort

p-values lower than 0.05 are displayed in italics

Variable Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

CCNB2 (ref. low expression) 3.607 (1.294–10.057) 0.014 3.357 (1.087–10.364) 0.035
Age – – – –
Gender (ref. female) 1.234 (0.469–3.250) 0.670 – –
pT stage (ref. T1–T2) 1.281 (0.416–3.944) 0.666 – –
pN stage (ref. N0) – – – –
pM stage (ref. M0) 9.740 (1.797–52.788) 0.008 4.522 (0.719–28.433) 0.108
AJCC stage (ref. I–II) 2.784 (1.042–7.440) 0.041 2.21 (0.646–7.56) 0.206
ISUP grade (ref. 1–2) – – – –
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Fig. 4   Functional enrichment and signaling pathways. A, B, E Bio-
logical processes (BP), cellular components (CC), and molecular 
functions (MF) mostly related to CCNB2 in the TCGA database. 
(F) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis of CCNB2 in the TCGA database. C, D, G Biological pro-
cesses (BP), cellular components (CC), and molecular functions 
(MF) mostly related to CCNB2 in the GSE40435 data set. H Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis of 
CCNB2 in the GSE40435 cohort. I The protein–protein interaction 
(PPI) network of CCNB2 and the co-expressed proteins was con-
structed visually. J–Q Gene set enrichment analysis (GSEA) showed 
CCNB2 was enriched in signaling pathways, including E2F targets, 
G2M checkpoint, mitotic spindle, spermatogenesis, cell cycle, oocyte 
meiosis, p53 signaling pathway and progesterone-mediated oocyte 
maturation

◂

with shorter DFS was not statistically significant in the 
GSE22541 dataset (p = 0.069), it showed the same trend 
(Fig. 3I).

CCNB2 is an independent prognostic factor 
for disease‑free survival (DFS) in ccRCC patients

AJCC stage, pTNM stage, ISUP grade, and gender were 
associated with DFS in the univariate Cox regression 
analysis model (p < 0.05), and high CCNB2 expression 
(HR = 3.011, p < 0.001) was significantly associated with 
lower DFS (Table 1). More importantly, in the multivari-
ate Cox regression analysis model, high CCNB2 expression 
(HR = 2.114, p < 0.001), pM stage (HR = 3.995, p < 0.001), 
and AJCC stage (HR = 2.824, p < 0.05) remained markedly 
associated with poor DFS (Table 1). Except for age, pN 
stage, and ISUP grade, all other variables were validated 
in the GSE22541 dataset, especially CCNB2 expression 
(univariate: HR = 3.607, p < 0.05; multivariate: HR = 3.357, 
p < 0.05) (Table 2). These results suggested that CCNB2 
could serve as an independent predictor of prognosis in 
ccRCC, and high CCNB2 expression indicated a poor prog-
nosis for patients.

Functional annotations and signaling pathways

To explore the biological functions of CCNB2, we did 
functional enrichment analyses. Genes associated with 
CCNB2 were screened by Pearson correlation analysis 
(|Cor|> 0.5, p < 0.05) for GO (BP: biological process, CC: 
cellular component, MF: molecular function) and KEGG 
analysis. The biological processes most relevant to CCNB2 
in the TCGA database were cell division, mitotic spindle 
assembly checkpoint, mitotic spindle organization, and 
DNA replication (Fig. 4A). CCNB2 was mainly distributed 
in nucleoplasm, kinetochore, and nucleus (Fig. 4B). In 
addition, the molecular functions of CCNB2 were signifi-
cantly correlated with protein binding, DNA binding, and 
microtubule binding (Fig. 4E). According to the results of 

KEGG analysis, the most relevant signaling pathway was 
cell cycle, in addition to oocyte meiosis and progester-
one-mediated oocyte maturation (Fig. 4F). GO and KEGG 
analyses demonstrated similar results in the GSE40435 
dataset (Fig. 4C, D, G, H). These findings suggested that 
CCNB2 might play an important role in the progression 
of ccRCC by affecting the cell cycle, interfering with the 
normal cell division process and causing cells to develop a 
pro-cancer phenotype. Furthermore, we constructed a PPI 
network for CCNB2 in which ten genes (CCNB1, CDC20, 
PLK1, BUB1, AURKA, NCAPG, CKS1B, CKS2, CDK1, 
CDK2) were meaningfully associated with the expres-
sion of CCNB2 (Fig. 4I). To further validate and explore 
the signal pathways associated with CCNB2, GSEA was 
performed and eight signaling pathways were identified, 
including E2F targets, G2M checkpoint, mitotic spindle, 
spermatogenesis, cell cycle, oocyte meiosis, p53 signaling 
pathway, and progesterone-mediated oocyte maturation. 
The expression of CCNB2 was significantly enriched in 
these signaling pathways (p value < 0.001, FDR < 0.25) 
(Fig. 4J–Q).

High CCNB2 expression positively correlates 
with activation of inhibitory immune checkpoints 
and affects immune infiltration

To explore the association between CCNB2 and immuno-
suppression of ccRCC, we selected seven known inhibi-
tory immune checkpoints including LAG-3, TIGIT, PD-1, 
PD-L1, CTLA-4, CD47, and PTP-1B. Pearson correlation 
analysis demonstrated a significant positive correlation 
between CCNB2 and the activation of these inhibitory 
immune checkpoints in the TCGA and GSE40435 datasets 
(p < 0.05), leading to suppression of the immune response in 
ccRCC (Fig. 5A). After clarifying the relationship between 
CCNB2 and inhibitory immune checkpoints, we proceeded 
to analyze the effect of CCNB2 on tumor-immune infiltra-
tion. As Fig. 5D demonstrates, CCNB2 was significantly 
associated with 28 TILs in a variety of human cancers. 
In renal clear cell carcinoma and thyroid cancer, elevated 
CCNB2 led to a general increase in immune infiltration. 
Moreover, CCNB2 increased the infiltration of activated 
CD4 T cells (Act CD4 cells) and type 2T helper cells (Th2 
cells) in most tumors (Fig. 5D). CCNB2 was significantly 
correlated with important TILs in ccRCC, including acti-
vated CD4 T cells (Act CD4 cells; ρ = 0.667, p < 0.001), 
activated CD8 T cells (Act CD8 cells; ρ = 0.416, p < 0.001), 
gamma delta T cells (Tgd cells; ρ = 0.384, p < 0.001), type 
2T helper cells (Th2 cells; ρ = 0.377, p < 0.001), T follicular 
helper cells (Tfh cells; ρ = 0.349, p < 0.001), and myeloid-
derived suppressor cells (MDSC; ρ = 0.348, p < 0.001) 
(Fig. 5E–J).
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Subsequently, we did further CIBERSORT analysis. It is 
known from Fig. 5B that infiltration of several immune cells 
in ccRCC samples was significantly and positively associ-
ated with high CCNB2 expression, including T regulatory 
cells (Tregs), activated memory CD4 T cells, T follicular 

helper cells, M0 macrophages, and CD8 T cells (p < 0.05), 
which was verified in the GSE40435 dataset (Fig. 5C). Con-
versely, CCNB2 also showed a negative correlation with 
the infiltration of some immune cells in ccRCC samples, 
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including resting mast cells, monocytes, and resting memory 
CD4 T cells (p < 0.05) (Fig. 5B, C).

A nomogram model was established to assess 
the prognosis of ccRCC patients

To assess the prognosis of ccRCC, a nomogram was con-
structed to predict the DFS of patients based on seven clin-
icopathological characteristics (gender, age, grade, stage, 
T, N, and M) and CCNB2 expression. The different clin-
icopathological factors of ccRCC patients were converted 
into scores according to the scale in the nomogram, and the 
scores of the different factors were summed to obtain a total 
score. We were also able to predict 1-, 3-, and 5-year DFS 
based on the total score (Fig. 5K). In addition, we made the 
calibration chart (Fig. 5L), and the results showed that the 
nomogram could predict the DFS of ccRCC patients well, 
which allowed for more accurate prediction of prognosis for 
ccRCC patients.

CCNB2‑related miRNAs and lncRNAs 
and the establishment and validation of the model

Four miRNAs that were significantly negatively corre-
lated with CCNB2 expression were all reduced in tumors 
(Fig. 6A), and their low expression was significantly associ-
ated with poor prognosis in ccRCC patients (Fig. 6B), sug-
gesting that these miRNAs may have a diminished regulatory 
effect on CCNB2 expression in tumors resulting in a poor 
prognosis. Subsequently, six predicted lncRNAs that inter-
acted with the above four miRNAs were mined out and sub-
jected to univariate Cox analysis, all of which were prognos-
tic risk factors for ccRCC patients, including LINC00265, 
PVT1, SNHG17, VPS9D1-AS1, ZMIZ1-AS1, and C3orf35 
(Fig.  6C) and were enriched in ccRCC (Fig.  6D). The 

regulation relationship between CCNB2-related miRNAs 
and lncRNAs was demonstrated in the Sankey diagram 
(Fig. 6E). To avoid overfitting, lasso regression analysis 
was performed on these six lncRNAs, and the four most 
significant lncRNAs were extracted when the likelihood 
deviance was minimal, including SNHG17, VPS9D1-AS1, 
ZMIZ1-AS1, and C3orf35 (Fig. 7A, B). They were used to 
construct multivariate Cox model and obtain the equation for 
the risk score: risk score = SNHG17 × (0.6518) + VPS9D1-
AS1 × (0.4443) + ZMIZ1-AS1 × (0.8056). Risk score, 
survival status, and distribution of risk genes were com-
pared between the high- and low-risk groups based on 
the risk score formula in the train, test, and entire cohorts 
(Fig. 7C–E). Kaplan–Meier survival curves showed that 
the high-risk group had lower overall survival (p < 0.001) 
(Fig. 7F), which was verified in cohorts of different age, 
sex, grade, and stage (Fig. 7G). Time-dependent receiver 
operating characteristic (ROC) curves were used to vali-
date the ability of the risk model to predict the prognosis 
of ccRCC patients (Fig. 8C). The area under curve (AUC) 
for 1-, 3-, 5-, and 8-year was 0.687, 0.721, 0.824, and 0.806 
for the train cohort, 0.722, 0.685, 0.659, and 0.729 for the 
test cohort, and 0.704, 0.702 0.741, and 0.763 for the entire 
cohort, respectively.

Establishment of a risk‑related nomogram

In the univariate regression model, risk score (HR = 1.153, 
p < 0.001), stage (HR = 1.87, p < 0.001), grade (HR = 2.259, 
p < 0.001), and age (HR = 1.029, p < 0.001) were sig-
nificantly associated with overall survival of patients 
(Fig. 8A). More importantly, the risk score (HR = 1.087, 
p < 0.001) remained significantly associated with overall 
survival in the multivariate regression model. Besides, we 
also found three other independent prognostic factors, age 
(HR = 1.028, p < 0.001), grade (HR = 1.453, p = 0.002), and 
stage (HR = 1.664, p < 0.001) (Fig. 8B). Based on these four 
independent prognostic factors, we constructed a nomogram 
predicting overall survival at 1-, 3-, 5-, and 8-year for ccRCC 
patients (Fig. 8D). The calibration plot demonstrated that the 
nomogram could well predict the overall survival of patients 
at 1-, 3-, 5-, and 8-year (Fig. 8E).

Immune infiltration and immunotherapy in the risk 
group

As demonstrated in Fig. 9A, high-risk ccRCC had more 
immune cell infiltration, such as T cell CD4 + central mem-
ory, T cell CD4+ Th1, myeloid dendritic cell activated and 
immune score at XCELL, macrophage M1 and monocyte at 

Fig. 5   Correlation of CCNB2 expression with ccRCC immune infil-
tration and establishment of a nomogram model. A Pearson correla-
tion analysis between CCNB2 and known suppressive immune check-
points. The width of the strip represented the correlation coefficient 
(R). p value was indicated by the color of the strip. B, C Correlation 
of CCNB2 expression with immune infiltration in ccRCC patients 
in the TCGA and GSE40435 datasets based on the CIBERSORT 
algorithm. The size of the sphere represents the correlation coeffi-
cient. The color of the sphere represents the p value. D Association 
between the expression of CCNB2 and a series of tumor-infiltrating 
lymphocytes (TILs) in tumors. E–J CCNB2 was significantly rele-
vant to abundance of activated CD4 T cells (Act CD4 cells), activated 
CD8 T cells (Act CD8 cells), gamma delta T cells (Tgd cells), type 
2 T helper cells (Th2 cells), T follicular helper cells (Tfh cells), and 
myeloid-derived suppressor cells (MDSC). K Nomogram was used to 
predict 1-, 3-, 5-year disease-free survival (DFS) of ccRCC patients 
in the TCGA database. L The calibration curve of nomogram

◂
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Fig. 6   CCNB2-related prognostic miRNAs and lncRNAs in ccRCC. 
A, B The four miRNAs screened were lowly expressed in ccRCC and 
correlated with prognosis. C The prognostic lncRNAs screened by 

univariate Cox regression analysis. D The prognostic lncRNAs were 
enriched in ccRCC tissues. E Regulatory network of CCNB2-related 
miRNAs and lncRNAs
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QUANTISEQ, cytotoxicity score at MCPCOUNTER, and T 
cell regulatory (Tregs) at CIBERSORT, some of which were 
visualized (Fig. 9B). Consistently, the high-risk group had a 
higher immune score (Fig. 9C). In the high-risk group, most 
of the immune checkpoints had a greater degree of activation 
(Fig. 9D). We then performed sensitivity analysis of immu-
notherapeutic agents and found that more than 40 immune 
agents had a lower IC50 in the high-risk cohort. Some of 
them were visualized, such as ABT.888 (Veliparib), a PARP 
inhibitor (Rimar et al. 2017) (Fig. 9E).

Further differentiation of the immune 
microenvironment between ccRCC patients 
in clusters

It has been shown that different subtypes of tumors, also 
called clusters, can have very different immune microen-
vironments (Xu et al. 2021). We, therefore, reclassified 
ccRCC patients into two clusters based on the expres-
sion of the three lncRNAs in the risk formula by con-
sensus clustering (Fig. 10A). Principal component anal-
yses (PCA) showed that the prognostic signature has a 
good ability to distinguish clusters and risk groups, and 
additionally t-distributed stochastic neighbor embedding 
(t-SNE) also demonstrated that clusters as well as risk 
groups could be clearly distinguished (Fig. 10B). The 
relationship between risk groups and clusters is shown 
in the Sankey diagram (Fig. 10C). Cluster 2 had a poor 
overall survival (p < 0.001) as shown by the Kaplan–Meier 
curve (Fig. 10D). We performed immune infiltration analy-
sis and made a heatmap for both clusters based on dif-
ferent platforms, and the heatmap visualized that cluster 
2 patients had more immune cell infiltration (Fig. 10E). 
The immune score was higher in cluster 2 than cluster 1 
(p < 0.05) (Fig. 10F). Finally, we found that most of the 
immune checkpoints of cluster 2 were overactivated, such 
as CD27, CD40, CTLA-4, LAG-3, TIGIT, and TNFRSF4 
(Fig. 10G). Therefore, we considered cluster 2 more likely 
to benefit in immunotherapy. In drug sensitivity analysis, 
we found that 52 immune agents had a lower IC50 in clus-
ter 2, 9 of which had no significant differences in IC50 in 
risk groups (Fig. 10H).

Discussion

Altered cyclin-dependent kinases (CDK) activity usually 
results in tumor-associated cell cycle defects, and although 
CDK-targeted therapeutic strategies have been considered to 
be therapeutically beneficial for some tumors, they are not 

the best therapeutic option considering that CDK is essential 
to drive every cell cycle phase in mammals (Malumbres and 
Barbacid 2009). CCNB2 regulates CDK activity by bind-
ing to CDK, thus affecting the normal division process of 
the cell cycle. In addition to this, CCNB2 transgenic mice 
are highly susceptible to tumorigenesis and CCNB2 is often 
overexpressed in human cancers (Nam and Deursen 2014). 
To date, there have been a number of studies on the role of 
CCNB2 in tumor progression. Liu et al. (2020) concluded 
that high CCNB2 expression was significantly associated 
with poor overall survival in hepatocellular carcinoma by 
analyzing data from multiple datasets. Gong et al. (2021) 
found that CCNB2 was associated with shorter overall sur-
vival in patients of non-small cell lung cancer (NSCLC) 
by bioinformatic analysis and confirmed the upregulation 
of CCNB2 in NSCLC tissues in cell experiments. To our 
knowledge, few studies have focused on exploring the effects 
of CCNB2 on prognostic indicators of ccRCC patients, such 
as DFS or OS. Therefore, in this study, we first analyzed 
the RNA sequences of ccRCC samples in TCGA and GEO 
databases by bioinformatics and evaluated the expression 
level and prognostic value of CCNB2 in ccRCC samples, 
and found that the expression of CCNB2 was significantly 
higher in ccRCC tissues than in normal tissues, and the high 
expression of CCNB2 was associated with a higher degree 
of malignancy of ccRCC. More importantly, the results of 
Kaplan–Meier curves and Cox regression analysis showed 
that high expression of CCNB2 was associated with poor 
survival in ccRCC patients and was an independent prog-
nostic factor in ccRCC patients. These findings revealed that 
CCNB2 overexpression might affect ccRCC progression by 
disrupting the normal cell division process of the cell cycle.

The results of functional enrichment analysis and GSEA 
suggested that CCNB2 might play a role in ccRCC through 
cell division, mitochondrial spindle assembly checkpoint, 
E2F targets, G2M checkpoints, cell cycle, oocyte meiosis, 
and p53 signal pathway. Aneuploidy is one of the promi-
nent phenotypes of cancer. When CCNB2 is overexpressed, 
CCNB2-CDK1 triggers aurora kinase A (AURKA) phos-
phorylation, which overactivates polo-like kinase 1 (PLK1) 
and subsequently accelerates centromere segregation, caus-
ing chromosomal lag and ultimately inducing the produc-
tion of aneuploidy (Nam and Deursen 2014). Furthermore, 
p53 and CCNB2 are antagonistic for regulating centrosome 
segregation, suggesting that p53-deficient tumors are driven 
to develop through mechanisms involving abnormal centro-
some segregation (Nam and Deursen 2014). In the cell cycle, 
mitosis is the stage most prone to aneuploidy errors, and 
mutations in the spindle assembly checkpoint (SAC) gene 
can lead to spontaneous tumors (Fang and Zhang 2011). 
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Fig. 8   Evaluation of the risk model and construction of the nomo-
gram. A, B Univariate and multivariate Cox regression analyses 
for overall survival of ccRCC patients. C The 1-, 3-, 5-, and 8-year 
receiver operating characteristic (ROC) curves of the risk model in 

the train, test, and entire cohorts. D The nomogram based on the 
independent prognostic factors including age, grade, stage, and risk 
predicted the 1-, 3-, 5-, and 8-year overall survival. E Time-depend-
ent calibration curves for 1-, 3-, 5-, and 8-year overall survival

Fig. 7   Construction of the risk signature relying on three CCNB2-
related lncRNAs. A LASSO coefficient profiles of six prognostic 
CCNB2-related lncRNAs. B Profiles of LASSO deviance. C Risk 
score plots in the train, test, and entire cohorts. D Survival status 
plots between low-risk and high-risk groups in the train, test, and 
entire cohorts. E The heatmap of three CCNB2-related lncRNAs 

expression in the train, test, and entire cohorts. F Kaplan–Meier 
survival curves of overall survival between low-risk and high-risk 
groups in the train, test, and entire cohorts. G Kaplan–Meier survival 
curves of overall survival were validated in different stratifications 
including age, gender, grade and stage between low-risk and high-risk 
groups in the entire cohort

◂
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Fig. 9   Association between risk signature and immune cell infil-
tration. A Immune cell infiltration levels in different platforms in 
ccRCC patients. B Relationship between risk score and immune cells. 
C Immune score between low-risk and high-risk groups. D Activa-

tion of immune checkpoints between low-risk and high-risk groups, 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. E Immunother-
apy sensitivity analysis of risk groups

Fig. 10   Clustering analysis and prediction for immunotherapy. A 
CcRCC patients in the TCGA database were reclassified into two 
clusters by consensus clustering analysis. B The principal compo-
nent analysis (PCA) and t-distributed stochastic neighbor embed-
ding (t-SNE) of risk groups and clusters. C The Sankey diagram 
demonstrated the relationship between risk groups and clusters. D 

Kaplan–Meier curves of overall survival between cluster 1 and clus-
ter 2. Patients in cluster 2 have a worse prognosis. E The heatmap 
of immune infiltration levels in different platforms in two clusters. 
F Immune score in clusters. G Activation of immune checkpoints 
between cluster 1 and cluster 2, *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001. H Immunotherapy sensitivity analysis of clusters

▸
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Disruption of SAC contribute to cellular aneuploidy (Fang 
and Zhang 2011). P53 can be activated by aneuploidy or 
SAC defects, and highly aneuploid cells can overactivate 
p53 and thus die by apoptosis (Li et al. 2010; Thompson 
and Compton 2010). Retinoblastoma (RB) protein is a cen-
tral regulator of the cell cycle, and RB binds to the E2F 
family of transcription factors to downregulate cell cycle 
gene transcription and suppress tumorigenesis by targeting 
cyclin, CDK, and others (Helin et al. 1993; Chicas et al. 
2010; Fischer and Muller 2017).The RB pathway is usually 
inactivated in tumors, leading to dysregulation of E2F activ-
ity and promoting cell proliferation or death (Polager and 
Ginsberg 2008). In addition, it has been found that CCNB2 
binds to CDK1 to produce the M phase-promoting factor 
(MPF), which is essential for the progression of meiosis in 
oocytes (Daldello et al. 2019). Sufficient pre-MPF needs 
to be prepared by CCNB2 to enable meiotic re-entry, and 
CCNB2 depletion leads to ovulation of immature oocytes 
and premature ovarian failure (Daldello et al. 2019). There-
fore, although overexpression of cyclins is closely associated 
with tumor progression, it rescues the meiotic phenotype. 
Above studies were consistent with our results of pathway 
enrichment.

To enhance the objectivity of the study, we explored the 
immune cell infiltration of ccRCC using multiple modalities. 
Incredibly, we found that CCNB2 had the same expression 
pattern as a series of inhibitory immune checkpoints, such 
as PD-1, CTLA-4, and TIGIT. In addition to this, it was 
interesting to note that the expression of CCNB2 had a sig-
nificant positive correlation with the level of infiltration of 
T regulatory cells (Tregs), myeloid-derived suppressor cells 
(MDSC). As we know, Tregs are the main contributors to 
the creation of suppressive tumor-immune microenviron-
ment (Sharabi et al. 2018; Vuong et al. 2019). Also, recent 
research has suggested that IL-1beta may drive innate and 
adaptive immune resistance in ccRCC by promoting MDSC 
infiltration (Aggen et al. 2021). In addition, we found a sig-
nificant positive correlation between CCNB2 expression and 
the infiltration of activated CD4 T cells, activated CD8 T 
cells, gamma delta T cells, Th2 cells, Tfh cells, and MDSCs 
in ccRCC. CD4+ T cells can differentiate into Tregs and 
multiple T helper (Th) cells, such as Th2 cells and Tfh cells. 
Th2 cells are associated with pro-tumor activity, enhancing 
angiogenesis, suppressing cellular immunity, and killing 
tumor cells. Some studies have shown evidence of the pro-
tumor activity of Th2 cells in breast (Aspord et al. 2007) and 
colon cancer (Chen et al. 2018). Tfh cells are often thought 
to be involved in long-term humoral immunity by assisting 
B cells (Hetta et al. 2020). However, Tfh cells are associated 
with poor survival in an inflammation-induced mouse model 
of hepatocellular carcinoma (Crotty 2019). In addition, there 
are multiple subpopulations of CD8+ T cells, including Tc1, 
Tc2, Tc9, Tc17, and Tc22, not all of which are cytotoxic (St 

Paul and Ohashi 2020). Tc22 can exert pro-tumor activity 
by producing IL-22 in patients with transplantation-associ-
ated squamous carcinoma (Zhang et al. 2013). High Tc17 
is implicated in poor prognosis in a variety of human can-
cers and may be related to its production of IL-17 (Zhuang 
et al. 2012; Wang et al. 2017). Gamma delta T cells, one 
of the unconventional subpopulations of T cells, have been 
reported to potentially exert immunosuppressive effects by 
hindering the proliferation of naïve T cells and the matura-
tion of dendritic cells (Peng et al. 2007). It has also been 
shown that gamma delta T cells are the main source of IL-17 
in colorectal cancer (Wu et al. 2014). IL-17 can promote 
angiogenesis and recruit MDSCs (St Paul and Ohashi 2020).

We then also mined the CCNB2-related miRNAs, lncR-
NAs regulatory network. First, we found four miRNAs 
(miR-23b-3p, miR-30a-5p, let-7c-3p, let-7c-5p) that were 
significantly and negatively correlated with CCNB2 expres-
sion and their low expression was associated with poor prog-
nosis. We then explored the lncRNAs that interacted with 
these four miRNAs and found six lncRNAs (LINC00265, 
PVT1, SNHG17, VPS9D1-AS1, ZMIZ1-AS1, C3orf35) 
associated with poor prognosis, all of which were enriched 
in ccRCC tissue. We placed these survival-related lncR-
NAs into lasso regression analysis, and finally screened 
three lncRNAs (SNHG17, VPS9D1-AS1, ZMIZ1-AS1) to 
construct the risk formula. Patients were divided into high- 
and low-risk groups and underwent Kaplan–Meier analy-
sis, immune cell infiltration analysis, and drug sensitivity 
analysis. We found that risk groups can provide guidance for 
predicting prognosis and immunotherapy. Considering that 
different molecular subtypes, also called clusters, can have 
very different immune microenvironments (DeBerardinis 
2020), we subsequently divided all patients into two clus-
ters by consensus clustering based on these lncRNAs. There 
were higher abundance of immune cell infiltration, higher 
immune score, and higher immune checkpoint activity in 
Cluster 2. In addition, we found that nine drugs showed dif-
ferential IC50 in clusters, but not in risk groups. Overall, 
our inclusion of three genes provided a simpler prognostic 
formula capable of identifying the heat of tumor immunity, 
which might contribute to personalized treatment of ccRCC.

As we know, miRNA binds to the 3′-UTR of mRNA and 
thus negatively regulates mRNA expression, lncRNA can 
mediate miRNA sponging and thus change its function to 
produce pro-cancer effects (Su et al. 2021). MiR-30a-5p can 
inhibit breast tumor growth and metastasis by suppressing 
the Warburg effect (Li et al. 2017). Based on the results of 
functional enrichment and quantitative real-time polymerase 
chain reaction (qRT-PCR), Wu et al. (2020) proposed that 
the let-7c-5p/CCNB2 axis may be involved in the progres-
sion of cervical squamous carcinoma. Furthermore, there are 
also experimental results implying that the VPS9D1-AS1/
miRNA-30a-5p axis promotes tumor malignant progression 
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(Liu et al. 2021). SNHG17 has been reported to act as an 
oncogene that promotes tumor cell proliferation and migra-
tion while inhibiting apoptosis (Qin et al. 2020). Ma et al. 
published the first study involving SNHG17 and showed that 
SNHG17 contributed to tumor proliferation by epigeneti-
cally silencing P57 in colorectal cancer (Ma et al. 2017). In 
addition, Wu et al. found that SNHG17 may be involved in 
ccRCC progression by regulating H2AX signaling through 
miR-328-3p (Wu et al. 2021). Similarly, VPS9D1-AS1 has 
been shown to be overexpressed in several cancers, acts as 
a target of Wnt/c-Myc signaling and has pro-carcinogenic 
properties (Kawasaki et al. 2016). It was reported that the 
VPS9D1-AS1/hsa-miR-532-3p/BMP1 axis may be a poten-
tial regulatory pathway in ccRCC (Gong et al. 2023). In 
contrast, there are fewer reports on ZMIZ1-AS1. A study 
discovered that ZMIZ1-AS1 stabilized ZMIZ1 by recruiting 
the RNA-binding protein PTBP1. This promotes the pro-
liferation and invasion of osteosarcoma (Zhou et al. 2022). 
Overall, the regulatory roles of lncRNAs and miRNAs on 
tumors are complex and multifaceted. Building models with 
survival-related lncRNAs can help us to cluster patients 
more accurately and bring breakthroughs for prognosis pre-
diction and clinical treatment.

However, this study has some limitations. First, this study 
mainly focused on the analysis and validation at the level of 
big data, and despite a series of functional enrichment and 
signaling pathway analyses, basic research on the potential 
mechanisms of ccRCC signaling pathway was lacking. Sec-
ond, although evaluated using many methods, our model still 
needs to be validated in real-world cohorts of ccRCC in the 
future. In the immune cell infiltration analysis, we showed 
the results of as many platforms as possible in the bubble 
plot and heatmap to try to achieve multifaceted validation.

Conclusion

CCNB2 holds promise as a new target and prognostic marker 
in ccRCC treatment strategies, whose impact on prognosis 
may be related to tumorigenesis induced by abnormal cell 
division. In addition, a novel risk model was developed 
based on three CCNB2-related lncRNAs and two CCNB2-
related molecular clusters were identified to improve person-
alized treatment in ccRCC patients.
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