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Abstract
Purpose  Skeletal metastases are increasingly reported in metastatic triple-negative breast cancer (BC) patients. We previously 
reported that TGF-β1 sustains activating transcription factor 3(ATF3) expression and is required for cell proliferation, 
invasion, and bone metastasis genes. Increasing studies suggest the critical regulatory function of microRNAs (miRNAs) 
in governing BC pathogenesis. TGF-β1 downregulated the expression of miR-4638-3p, which targets ATF3 in human BC 
cells (MDA-MB-231). In the present study, we aimed to identify the functional role of miR-4638-3p in BC bone metastasis 
by the caudal artery injection of the MDA-MB-231 cells overexpressing mir-4638 in the mice.
Methods  MDA-MB-231 cells overexpressing miR-4638 were prepared by stable transfections. Reverse transcriptase 
quantitative PCR was carried out to determine the expression of endogenous miR-4638-3p and bone resorption marker 
genes. X-ray, micro-CT, and Hematoxylin & Eosin studies were used to determine osteolytic lesions, trabecular structure, 
bone mineral density, and micrometastasis of cells.
Results  The mice injected with MDA-MB-231 cells overexpressing miR-4638-3p decreased the expression of bone 
resorption marker genes, compared to MDA-MB-231 cells injection. Reduced osteolytic lesions and restored bone density 
by MDA-MB-231 cells overexpressing miR-4638-3p were observed. Similarly, the mice injected with MDA-MB-231 cells 
overexpressing miR-4638-3p showed a better microarchitecture of the trabecular network. A few abnormal cells seen in the 
femur of MDA-MB-231 cells-injected mice were not found in MDA-MB-231 cells overexpressing miR-4638.
Conclusion  The identified functional role of ATF3 targeting miR-4638-3p in BC bone metastasis in vivo suggests its 
candidature as BC therapeutics in the future.
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Abbreviation
BC	� Breast cancer
ATF3	� Activating transcription factor 3
pre-mir	� Precursor microRNA
EMT	� Epithelial–mesenchymal transition
CPCSEA	� Committee for the purpose of control and 

supervision of experiments on animals
µ-CT	� Microcomputed tomography
H&E	� Hematoxylin & Eosin
TIMM17A	� Translocase of inner mitochondrial 

membrane 17 homolog A
BMD	� Bone mineral density
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Introduction

Breast cancer (BC) accounts for one-third of cancer 
diagnoses in women and remains the cardinal cause of 
mortality globally among adults and middle-aged females. 
Since the mid-2000s, there has been a steady surge in the 
BC incidence rates (about 0.5% every year), primarily 
attributed to decreasing fertility rates and an increase in 
obesity (Seigel et al. 2022). Specifically, in the case of 
solid tumors, secondary metastasis remains to be the causal 
factor for mortality (Dillekås et al. 2019). Oligometastasis 
to bone or combined with other organs remains to be most 
frequently diagnosed (~ 70%) in metastatic BC patients 
(Liu et al. 2020). The tumor-secreted factors are critical 
in forming and priming the premetastatic niche that favors 
the survival and growth of metastasized tumor cells in 
the bone (Chiou et al. 2021). Intrinsic factors, including 
cytokines, microvesicles, nucleic acids, etc., secreted by 
tumors or in response to the cancer were identified to 
modulate the bone microenvironment and govern tumor 
progression (Ubellacker and McAllister 2016; Li et al. 
2023).

The bone matrix serves as an enriched reserve of latent 
TGF-β1, and tumor-induced osteoclastic resorption of 
bone results in an acidic environment ideal for activating 
TGF-β1 (Hering et al. 2001). TGF-β1 is a stimulatory 
cytokine extensively studied for its role in BC invasion 
and bone metastasis (Macroni et al. 2019). Activating 
transcription factor 3 (ATF3), an adaptive and stress 
response gene, is reported to be dysregulated in human 
cancers. An increased expression of ATF3 in human BC 
was found to be due to its localization within the most 
frequently amplified region, chromosome 1q amplicon 
in BC (Yin et al. 2008). A study suggested that TGF-β1 
could induce the expression of ATF3, and the induced 
ATF3 upregulated the expression of TGF-β1 in MCF-
1OCA1a cells, thus forming a positive feedback loop 
for TGF-β signaling. Further, upregulated ATF3 was 
observed to be vital for TGF-β1 to increase the expression 
of its Epithelial–Mesenchymal Transition (EMT)-related 
genes, including snail, slug, and twist, hence increasing 
BC cell motility (Yin et al. 2010; Ku et al. 2020; Yan 
et  al. 2021). Cell proliferation (cyclin A1), invasion 
(matrix metalloproteinase 13; MMP13), and metastasis 
(Runx2) genes were found to be ATF3 target genes (Kwok 
et al. 2009; Gokulnath et al. 2017; Rohini et al. 2019, 
2021). Thus, targeting ATF3 might aid in controlling 
BC progression and subsequent metastasis (Huang et al. 
2021).

In recent years, there are reports suggesting the 
potential of non-coding RNAs (miRNAs and circRNAs) 
as cancer biomarkers (Shenglong Li 2021; Bevacqua 

et al. 2022; Guo et al. 2023). Increasing studies suggest 
the critical regulatory function of microRNAs (miRNAs) 
in governing BC pathogenesis (Bertoli et al. 2015; Bhat 
et  al. 2019; Akshaya et  al. 2023). miRNAs are post-
transcriptional regulators that regulate gene expression 
under physiological and pathological conditions (O'Brien 
et  al. 2018). miRNAs such as miR-155, miR-125b, 
miR-21, and miR-222 were clinically associated with 
tumor resistance to standard treatments, thus serving as 
predictors of response to BC therapeutics (Campos-Parra 
et  al. 2017). Overexpression of miR-183-5p and miR-
492 promoted proliferation and invasion and induced 
pre-neoplastic phenotypes in the 3D culture of BC cells, 
recapitulating the phenotypes observed upon the loss of 
connexin 43 (Cx43), a tumor suppressor gene. Although 
both miRNAs did not directly target Cx43, they disrupted 
the epithelial polarity in BC cells via downregulating gap 
junctional and various other cell junction gene targets 
(Chasampalioti et al. 2019; Naser Al Deen et al. 2022).

Previously, we reported on the tumor suppressive role 
of miR-4638-3p in controlling TGF-β1 stimulated BC 
progression and bone metastasis in vitro. Overexpression 
of this miRNA reduced proliferation, invasion, and 
migration, promoted apoptosis, and arrested human BC cells 
(MDA-MB-231) at G0/G1 phase (Akshaya et al. 2022). One 
of the primary concerns associated with the cell culture-
based study is the reproducibility of the results in vivo. The 
inability of the in vitro models to provide information on the 
heterogeneity of cancer, its microenvironment, and associated 
stromal cells has impeded the understanding of tumor 
pathogenesis, treatment response, and systemic response to 
the drug (Sajjad et al. 2021). Nude mice models are prevalently 
used to decipher the molecular mechanism behind tumor 
progression and metastasis (Park et al. 2018). Traditionally, the 
intracardiac injection was the best approach for studying the 
bone metastasis of BC cells. However, alternative models were 
suggested due to the increased mortality and other vital organ 
metastases (Campbell et al. 2021). Caudal artery injection 
of cells to study bone metastases is recently developed and 
proven to be the more appropriate model for investigating bone 
metastasis that has reduced mortality, decreased rates of vital 
organ metastases, and preferential delivery of cells to the bones 
of hind limbs (Farhoodi et al. 2020). In this study, we aimed 
to validate the functional role of miR-4638-3p in influencing 
the bone metastasis of human BC cells in vivo using a caudal 
artery injection model system. Our results suggested that 
the stable overexpression of miR-4638-3p could reduce the 
bone metastatic potential of human BC cells, highlighting the 
candidature of this miRNA as a therapeutic agent for treating 
BC bone metastasis.
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Materials and methods

Transformation and restriction digestion

The pCMV-MIR (empty vector; pCMV-EV; Cat 
#PCMVMIR, Origene, USA) and pCMV-MIR4638 (mir-
4638 overexpressing vector; pCMV-miR; Cat # SC401776, 
Origene, USA) were transformed into JM-109 cells by 
CaCl2-mediated transformation as mentioned in (Asif et al. 
2017). The transformed cells were then selected in an LB 
agar plate using kanamycin (25 μg/ml) to obtain individual 
colonies, which were then cultured overnight in LB broth. 
Respective plasmids were then isolated using Qiagen 
Miniprep (Qiagen, Valencia, CA) and subjected to XhoI 
digestion to verify their size.

Stable cells generation and selection

MDA-MB-231 cells were transfected with pCMV-EV 
or pCMV-miR using lipofectamine 2000. Post 48  h of 
transfection, stably transfected cells were selected using 
increasing concentrations of neomycin sulfate, starting 
from 50 μg/ml to 200 μg/ml (till ~ 90% of cells died). The 
survived cells were then selected using clonal rings and 
were propagated individually to form clones. Six clones 
were chosen for MDA-EV (MDA-MB-231 cells transfected 
with empty vector) and MDA-miR (MDA-MB-231 
cells transfected with pCMV-MIR4638) (C1 to C6) and 
propagated individually. The propagated cells were then 
harvested, and the most appropriate clone was selected by 
determining the expression of miR-4638-3p using reverse 
transcriptase quantitative polymerase chain reaction 
(RT-qPCR) analysis (Akshaya et al. 2022).

Bone metastasis model system

The Centre for Cellular and Molecular Biology, Hyderabad, 
India, provided the female nude mice utilized in the studies. 
The mice were 4 to 5 weeks old and weighed about 20–25 g. 
According to the Institutional Guidelines and Regulations 
for the Care and Use of Laboratory Animals established by 
the Committee for the Purpose of Control and Supervision 
of Experiments on Animals (CPCSEA) in accordance 
with the Prevention of Cruelty to Animals Act 1960, 
Government of India, all experimental procedures were 
carried out under these guidelines. The Institutional Animal 
Ethical Committee of SRM IST, located in Kattankulathur, 
India, granted permission for the study (IAEC No. SAF/
IAEC/280622/024). Three groups of animals (n = 8) 
were used: control (1 × PBS), MDA-EV-, and MDA-miR-
injected groups. Following anesthesia (IP administration 

of ketamine (100 mg/kg) and xylazine (10 mg/kg), 1 × PBS 
(100 μl) or respective cells resuspended in 1 × PBS (~ 60,000 
cells/100  μl) were injected into the caudal artery as 
mentioned previously (Han et al. 2020; Zhong et al. 2020). 
After being observed for 30 days post-injection, the animals 
were sacrificed by anesthetic overdose. For further studies, 
the femur and tibiae were dissected and fixed for 48 h at 
room temperature in 10% neutral buffered formalin.

Reverse transcriptase quantitative polymerase 
chain reaction (RT‑qPCR)

Total RNA was isolated from the cells, quantified, and 
subjected to complementary DNA (cDNA) synthesis using 
miScript PCR assay (Qiagen, CA). Further, quantitative 
PCR was performed using miScript primer assay (Qiagen, 
CA) in Quant Studio 3 applied biosystem. The fold change in 
the expression of miR-4638-3p was calculated using ∆∆CT 
method. RPL13A/B was an endogenous control (Akshaya 
et al. 2022).

Fresh bones collected from respective groups were 
grounded into powder using liquid nitrogen, and total RNA 
was isolated. The cDNA was then synthesized using an 
iScript cDNA synthesis kit (Biorad, USA), and the qPCR 
analysis was performed with TB green premix Ex Taq II 
(Takara, USA) using the primers for Trap5 and Cathepsin 
K (Table 1). The relative expression of bone resorption 
marker genes (Trap5 and Cathepsin K) was estimated using 
the ∆∆CT method and normalized with RPL13A/B (Rohini 
et al. 2018; Malavika et al. 2020).

X‑ray and µ‑CT analyses

A set of collected and formalin-fixed bones was subjected to 
X-ray analysis (X-ray tube voltage: 58 kV and exposure time: 
1.2 to 1.6 s), and bone density was calculated using ImageJ 
software. Further, these bones were subjected to µ-CT 
imaging using SKYSCAN, Bruker, USA. The dissected 
femur and tibia bones were imaged using the following 
parameters: 9 μm pixel size, 55 kV of X-ray tube voltage, 
197–198 μA of X-ray tube current, 360º rotation with 0.5 
degrees per scan, and a partial width of 100% (Kim et al. 
2021; Shim et al. 2022). A total area of 10 mm (5 mm above 

Table 1   List of primers used for bone resorption gens in qPCR 
analysis

SI. NO Name Primer (5′-3′)

1 m-TRAP5 F: CCA​ACC​TGG​CTT​CTC​TGA​CTTA​
R: AAG​AGA​GAA​AGT​CAA​GGG​AGT​GGC​

2 m-Cathepsin 
K

F:GCA​GAT​GGG​CAG​ATG​TTT​GTG​
R:ATA​CCT​GGG​AAT​GAA​CTG​GTCG​
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and below the femur and tibia joint) was fixed for scanning. 
Reconstruction, analysis, and modeling were performed 
using NRecon, CTAn, and CTVox software, respectively.

Histological staining

Post-fixation, the samples were decalcified using 20% 
EDTA solution (pH adjusted to 7.4) at 4º C for 14 days. 
The decalcification solution was changed every 72 h. The 
decalcified bones were washed with 1 × PBS twice and 
stored at 4ºC until further analyses. The decalcified samples 
were then paraffin embedded, longitudinally sectioned 
(4  µm), and subjected to hematoxylin & eosin (H&E) 
staining, as described previously (Sun et al. 2018).

Statistical analysis

All the quantitative data were generated using biological 
triplicates (n = 3 samples). One-way ANOVA analysis 
was used to determine the significance of the data, and 
mean ± standard deviations were used to depict the values; 
p-value < 0.05 was deemed statistically significant. Eight 
nude mice per group were utilized in animal experiments, 
which were determined using Cochran’s sample size 
determination formula (Z = 1.96; p = 0.1 (10% mortality); 
d = 0.12 (12% precision)).

Results

Generation of MDA‑MB‑231 cells stably 
overexpressing miR‑4638‑3p

To validate the function of miR-4638-3p in vivo, six clones 
from MDA-MB-231 cells stably transfected with pCMV or 

pCMV-miR were picked up for each of these stable cells. 
The most appropriate clone was selected by determining 
the expression profile of miR-4638-3p using RT-qPCR 
analysis. Results indicated a significant upregulation in the 
expression of miR-4638-3p in clone 4 (C4) of MDA-miR 
when compared to parental MDA-MB-231 cells (MDA), 
suggesting successful stable transfection and processing 
of overexpressed precursor mir-4638 into miR-4638-3p 
in these cells (Fig. 1). In case of MDA-EV cells, clone 2 
(C2) was selected as the relative expression of miR-4638-3p 
in these cells was not significantly different, compared to 
parental MDA cells (Fig. 1). Together, this result indicated 
the successful generation of MDA-EV and MDA-miR stable 
cells.

Determination of the functional role of miR‑4638‑3p 
in vivo by RT‑qPCR analysis

The stable cells (MDA-EV and MDA-miR) generated 
were injected into nude mice via caudal artery injection 
in the tail, as described in the methodology. Thirty days 
post-injection, the animals were sacrificed, and femur 
and tibia bones were collected. A set of fresh bones from 
each group were ground into powder using liquid nitrogen 
and mixed with RNAiso plus reagent. Total RNA was 
extracted and subjected to RT-qPCR analysis to determine 
the expression of bone resorption marker genes such as 
Trap5 and Cathepsin K. The results showed a significant 
reduction in the mRNA expression of Trap5 and Cathepsin 
K in the bones of MDA-miR-injected mice when compared 
to MDA-EV-injected mice (Fig. 2). These results suggest 
that the stable overexpression of miR-4638-3p could 
impair the bone resorption potential of MDA-MB-231 
cells in vivo.

Fig. 1   Generation of 
MDA-MB-231 cells stably 
overexpressing miR-4638-3p. 
Total RNA was isolated 
from MDA-MB-231 cells 
(MDA), stable MDA-MB-231 
cells overexpressing empty 
vector (MDA-EV C2), 
and MDA-MB-231 cells 
overexpressing miR-4638 
(MDA-miR C4) cells. The 
isolated RNA was subjected to 
cDNA synthesis, followed by 
qPCR analysis with primers for 
miR-4638-3p. * a substantial 
increase compared to parental 
MDA and stable MDA-EV C2 
cells
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X‑ray analysis of bone metastasis in vivo

The femur and tibia bones obtained were fixed using 10% 
buffered formalin for 48 h and stored at 4º C until further 
analysis. The fixed bones were then subjected to X-ray 
analysis, as mentioned in the methodology. The results 
showed a presence of a mild osteolytic lesion in the femurs of 

the mice injected with MDA-EV cells (Fig. 3B). In contrast, 
there was a decreased osteolytic lesion when the mice were 
injected with MDA-miR cells (Fig. 3C). The mice injected 
with 1 × PBS alone as control group showed no osteolytic 
lesions in the femurs (Fig. 3A). The obtained X-rays were 
quantified (marked as circle in red) using ImageJ software, 
and bone density was calculated. A significant reduction 

Fig. 2   Expression of bone resorption marker genes in MDA-EV- 
and MDA-miR-injected mice. Thirty days after the injection of the 
MDA-EV or MDA-miR cells into mice, they were sacrificed, and a 
set of fresh bones was used for total RNA isolation, cDNA synthesis, 
and followed qPCR analysis using the primers for Trap5, Cathepsin 

K, and RPL13AB. The relative expression of bone resorption marker 
genes. A Trap5 and B Cathepsin K was determined. RPL13AB was 
used for the normalization. # depicts a substantial decrease relative 
to the MDA-EV group (p < 0.01). ## depicts a substantial reduction 
relative to the MDA-EV group (p < 0.005)

Fig. 3   X-ray analyses of bone 
metastases after injection of 
MDA-EV and MDA-miR 
cells into mice. The mice 
were injected with 1 × PBS 
(control- 100 µl), MDA-EV 
cells, or MDA-miR cells 
(60,000 cells/100 µl) via caudal 
artery injection. Thirty days 
after injection, mice were 
sacrificed, and femur and tibia 
bones were collected. The 
collected bones were subjected 
to X-ray analyses. A Control, 
B MDA-EV cells injected, and 
C MDA-miR cells injected. D 
The region with an osteolytic 
lesion (marked as a circle in 
red) was selected, and bone 
density was calculated using 
ImageJ software. # indicates a 
substantial decrease compared 
to the control (p < 0.001); * 
indicates a substantial increase 
compared to MDA-EV-injected 
group (p < 0.005)
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in bone density was observed in the mice injected with 
MDA-EV cells compared to control. When the mice were 
injected with MDA-miR, the reduction of bone density 
found in MDA-EV cells was rescued (Fig. 3D), suggesting 
the role of miR-4638-3p in controlling bone metastasis 
in vivo.

µ‑CT analysis of bone metastasis in vivo

The µ-CT analysis was performed to verify bone metastasis, 
and the quantitative data were used to determine the porosity, 
bone volume, and BMD. The representative images of a 
pixel of the analyzed bones are shown in Fig. 4A. Compared 
to control mice, there was notable damage and a decrease in 
the microarchitecture of the trabecular bones of MDA-EV-
injected mice, whsereas the mice injected with MDA-miR 
cells showed a better microarchitecture of the trabecular 

Fig. 4   µ-CT analysis of femur and tibia bones after injection of 
MDA-EV and MDA-miR cells into mice. Thirty days post-injection 
with 1 × PBS (control), MDA-EV, or MDA-miR cells, mice were 
sacrificed, and femur and tibia bones were collected. They were 
subjected to µ-CT analysis. A Representative µ-CT images of femur 

and tibia bones (5  mm above and below the femur and tibia joint). 
Bar graphs depicting B the % of closed pores present, C bone 
volume, and D BMD. # a substantial decrease compared to control 
(p < 0.05); ## a substantial decrease compared to MDA-miR-injected 
group (p < 0.005)
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network compared to the mice injected with MDA-EV cells 
(Fig. 4A). The percentage of closed pores has an inverse 
correlation with the porosity of the bone. A significant 
reduction in the % of closed pores in MDA-EV-injected 
mice was observed, compared to both control and MDA-
miR-injected groups, indicating increased bone porosity 
(Fig. 4B). In terms of bone volume and BMD, there was a 
significant reduction in the bone volume and BMD in the 
femur and tibia of MDA-EV-injected mice compared to the 
control. In MDA-miR-injected mice, the bone volume and 
BMD were closely restored compared to the control (Fig. 4C 
and D). Together, these results suggested that overexpression 
of miR-4638-3p could reduce bone metastasis in vivo.

Histological staining

H&E staining was conducted with the femur bones. The 
results indicated the presence of abnormal foreign cells 
in the bone marrow environment of MDA-EV mice, 
which might be due to the micrometastasis of injected 
MDA-MB-231 cells (highlighted in black dotted circles) 
(Fig. 5B). In contrast, these cells were completely absent 
in the bone marrow environment of control and MDA-
miR-injected mice (Fig. 5A and C). These results indicated 
that overexpression of miR-4638-3p could curb the bone 
metastasis of MDA-MB-231 cells in vivo.

Discussion

BC is a primary concern that critically affects women's 
health and quality of health. Due to the tumor heterogeneity 
and resistance acquired to the administered therapies, there 
is an increasing demand for novel and effective molecules for 
BC treatment (Shinde et al. 2023). Recent development in 
bioinformatics and experimental approaches has shed light 
on the regulatory role of miRNAs and their candidature as 
next-generation therapeutic regimens. Various sophisticated 
pre-clinical and clinical trials are required to understand 
the molecular function of miRNAs and their candidature 
as therapeutics in vivo (Ding et  al. 2020; Haider et  al. 
2022). Previously, we reported the role of miR-4638-3p in 
reducing BC proliferation, invasion, and bone metastasis by 
directly targeting ATF3 in vitro (Akshaya et al. 2022). In this 
study, we investigated the functional role of miR-4638-3p 
in regulating BC progression and bone metastasis in vivo. 
First, MDA-MB-231 cells stably overexpressing empty 
vector (MDA-EV) or mir-4638 (MDA-miR) were generated 
by stable transfection. Researchers utilize stable cell lines for 
various applications, such as studying differentiation, gene 
expression, and cellular toxicity (Tandon et al. 2018). The 
stable cells generated were selected, and six clones, each 
for MDA-EV and MDA-miR cells, were selected. The most 
appropriate clone of the generated stable cells was selected 
based on the expression of miR-4638-3p using RT-qPCR 
(Fig. 1).

Fig. 5   H&E staining of femur bones. Thirty days after the injection 
of mice with 1 × PBS (control), MDA-EV, or MDA-miR cells, they 
were sacrificed, and femur bones were collected. The collected femur 
bones were fixed with 10% formalin and decalcified for 14  days 
with 20% EDTA. The decalcified bones were paraffin embedded, 
sectioned into 4  µm slices longitudinally, and subjected to H&E 

staining. Representative images of H&E staining of femur bones of 
A Control, B MDA-EV cells-injected mice, and C MDA-miR cells-
injected mice. Regions highlighted in dotted black circles indicate the 
abnormal cells detected. Black and yellow arrows indicate the bone 
and bone marrow, respectively
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Stable cell-mediated delivery of miRNAs into in vivo 
models has become increasingly significant in recent years 
(Wang et al. 2019; Zhou et al. 2022; Yu et al. 2023). The 
transient transfection generates temporary effects making it 
suitable for studying short-term effects of gene expression, 
and stable transfection is useful to develop and understand 
the permanent impact of genetic modifications. For 
instance, stable overexpression of miR-10b enhanced the 
expression of EMT and stemness markers in MCF-7 cells 
via negative regulation of PTEN and continued activation 
of Akt signaling (Bahena-Ocampo et al. 2016). Likewise, 
another study reported on the tumor suppressive role of miR-
1287-5p in reducing cell growth in vitro and in vivo upon 
stable overexpression in BC cell lines (Schwarzenbacher 
et al. 2019). The stable overexpression of miR-133b reduced 
the BC metastasis in vivo via targeting Translocase of Inner 
Mitochondrial Membrane 17 homolog A (TIMM17A), a 
mitochondrial protein (Li et al. 2019). Overexpression of 
miR-3613-3p suppressed the growth and lung metastases of 
hBC cells in vivo (Chen et al. 2021). In a recent study, stable 
overexpression of miR-4521 inhibited cell proliferation, 
invasion, migration and EMT, and reduced DNA damage 
response in BC via targeting FOXM1 (Kuthethur et  al. 
2023).

Nude mice models are prevalently used to decipher 
the molecular mechanism behind tumor progression and 
metastasis (Park et al. 2018; Li et al. 2021). Traditionally, 
the intracardiac injection was the best approach for studying 
the bone metastasis of BC cells. However, alternative 
models are suggested due to the increased mortality and 
other vital organ metastases by cardiac injection (Campbell 
et al. 2021). Caudal artery injection of cells to study bone 
metastases is recently developed and proven to be the more 
appropriate model for investigating bone metastasis that has 
reduced mortality, decreased rates of vital organ metastases, 
and preferential delivery of cells to the bones of hind limbs 
(Farhoodi et  al. 2020). Studies suggested caudal artery 
injection as a model for bone metastasis (Han et al. 2020; 
Zhong et al. 2020; Kuchimaru et al. 2021).

Our results indicated a significant reduction in the expres-
sion of Trap5 and Cathepsin K in MDA-miR-injected mice 
when compared to MDA-EV-injected mice (Fig. 2), sug-
gesting that overexpression of miR-4638-3p could reduce 
BC-induced osteoclastogenesis in vivo. Similar to our find-
ings, a study reported that the knockdown of miR-214-3p in 
nude mice reduced osteoclast activity and prevented bone 
metastasis of inoculated BC cells (Liu et al. 2017). Further, 
X-ray and µ-CT analyses were conducted to assess the bone 
metastasis of injected cells. Results from X-ray analysis sug-
gested the presence of a mild osteolytic lesion in the femur 
of MDA-EV-injected mice (Fig. 3B) and a significantly 
reduced bone density in MDA-EV-injected mice when 
compared to control and MDA-miR-injected mice (Fig. 3D). 

While X-ray analysis offers details regarding the presence 
or absence of osteolytic lesions, it has limited resolution. It 
cannot generate three-dimensional, quantifiable images to 
measure tumor-induced bone loss (Geffre et al. 2015). At 
present, µ-CT analysis is extensively utilized to accurately 
and efficiently study bone structure and microarchitecture 
(Kim et al. 2021). It can provide intricate details regard-
ing micrometastasis and the process of tumor progression, 
specifically highlighting the tumor-induced bone changes 
(Young et al. 2023). In our study, the µ-CT analysis indi-
cated notable damage in the microarchitecture in the femur 
of MDA-EV-injected mice, compared to control or MDA-
miR-injected mice (Fig. 4A). In contrast, the mice injected 
with MDA-miR cells stably overexpressing miR-4638-3p 
were observed to have significantly reduced BC-induced 
bone porosity (Fig. 4B), restored bone volume (Fig. 4C) and 
BMD (Fig. 4D), compared to MDA-EV-injected and control 
mice. Together, these results suggested that overexpression 
of miR-4638-3p could reduce bone metastasis in vivo.

H&E staining remains the gold standard technique used 
to primarily diagnose BC, followed by special staining for 
molecular markers is required for further subtyping (Li et al. 
2018). This staining offers details about the architecture of 
the tissue components and aids in investigating cellular 
morphology, which is essential for cancer diagnosis (Shovon 
et al. 2022). Our results from H&E staining suggested the 
presence of abnormal foreign cells in the bone marrow 
microenvironment of the femur of MDA-EV-injected mice 
(Fig. 5). In contrast, no such cells were seen in control or 
MDA-miR-injected mice. However, these abnormal cells 
were observed only in one of six femur samples of MDA-
EV-injected mice randomly analyzed. 

Conclusion

In the present study, we analyzed the functional role of 
ATF3 targeting miR-4638-3p in BC progression and bone 
metastasis in vivo. Stable overexpression of miR-4638-3p 
in BC cells decreased the bone resorption potential, reduced 
osteolytic lesions, maintained the porous microarchitecture 
of the trabecular bones, and restored bone volume and 
BMD. In addition, stable overexpression of this miRNA 
reduced the micrometastasis of BC cells to bones. Thus, 
miR-4638-3p could aid in curbing the bone metastasis of 
BC cells, emphasizing the candidature of this miRNA as BC 
therapeutics in the future. However, a limiting factor of this 
study is the minimal effectiveness of miR-4638-3p observed 
in vivo, emphasizing the need for an extended and better-
optimized animal study to determine the functional role of 
this miRNA in controlling BC bone metastasis.
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