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Abstract
Background Cancer-associated fibroblasts (CAF) play a critical role in promoting tumor growth, metastasis, and immune 
evasion. While numerous studies have investigated CAF, there remains a paucity of research on their clinical application in 
colorectal cancer (CRC).
Methods In this study, we collected differentially expressed genes between CAF and normal fibroblasts (NF) from previ-
ous CRC studies, and utilized machine learning analysis to differentiate two distinct subtypes of CAF in CRC. To enable 
practical application, a CAF-related genes (CAFGs) scoring system was developed based on multivariate Cox regression. 
We then conducted functional enrichment analysis, Kaplan–Meier plot, consensus molecular subtypes (CMS) classification, 
and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to investigate the relationship between the CAFGs scoring 
system and various biological mechanisms, prognostic value, tumor microenvironment, and response to immune checkpoint 
blockade (ICB) therapy. Moreover, single-cell transcriptomics and proteomics analyses have been employed to validate the 
significance of scoring system-related molecules in the identity and function of CAF.
Results We unveiled significant distinctions in tumor immune status and prognosis not only between the CAF clusters, but 
also across high and low CAFGs groups. Specifically, patients in CAF cluster 2 or with high CAFGs scores exhibited higher 
CAF markers and were enriched for CAF-related biological pathways such as epithelial–mesenchymal transition (EMT) 
and angiogenesis. In addition, CAFGs score was identified as a risk index and correlated with poor overall survival (OS), 
progression-free survival (PFS), disease-free survival (DFS), and recurrence-free survival (RFS). High CAFGs scores were 
observed in patients with advanced stages, CMS4, as well as lymphatic invasion. Furthermore, elevated CAFG scores in 
patients signified a suppressive tumor microenvironment characterized by the upregulation of programmed death-ligand 
1 (PD-L1), T-cell dysfunction, exclusion, and TIDE score. And high CAFGs scores can differentiate patients with lower 
response rates and poor prognosis under ICB therapy. Notably, single-cell transcriptomics and proteomics analyses identified 
several molecules related to CAF identity and function, such as FSTL1, IGFBP7, and FBN1.
Conclusion We constructed a robust CAFGs score system with clinical significance using multiple CRC cohorts. In addi-
tion, we identified several molecules related to CAF identity and function that could be potential intervention targets for 
CRC patients.
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Introduction

According to the 2020 global cancer statistics, colorec-
tal cancer (CRC) is one of the most common malignant 
tumors in the world, ranking third and second in incidence 
and mortality, respectively (Sung et al. 2021). At present, 
there are many treatments for CRC, including radiotherapy 
and chemotherapy, immunotherapy, surgical treatment, 
which greatly improve the survival of patients. However, 
the response of patients to treatment is different, result-
ing in different outcomes. In view of this phenomenon, 
CRC consensus molecular subtypes (CMS) (Guinney et al. 
2015), a recently established classification based on the 
transcriptome data may provide an explanation, in which 
the CMS4 (mesenchymal), characterized by prominent 
transforming growth factor β (TGF-β) activation, stromal 
invasion, and angiogenesis, are associated with poor prog-
nosis, and suggest the importance of cancer-associated 
fibroblasts (CAF), the major component of the stroma, to 
the prognosis of CRC patients.

Cancer-associated fibroblasts (CAF), one of the plastic 
cells types in TME, has different origins, including resi-
dent fibroblasts, pericytes, endothelial cells, adipocytes, 
and so on. For the origin of CAF in CRC, most of CAF 
have been proved to be produced by the proliferation of 
intestinal pericryptal leptin receptor (Lepr) + cells (Kob-
ayashi et al. 2022). In the progression of CRC, CAF may 
promote or inhibit tumor, but the prevailing idea is con-
sidered to promote tumor. CAF contribute significantly to 
tumorigenesis (Kasashima et al. 2021; Zhu et al. 2019), 
angiogenesis (Unterleuthner et al. 2020; Pape et al. 2020), 
immunosuppression (Li et al. 2019), metastasis, and drug 
resistance (Hu et al. 2019) in CRC. CAF has several sub-
types, among which inflammatory CAF (iCAF) and myofi-
broblast CAF (myCAF) have been studied. In pancreatic 
cancer, iCAF can secrete high levels of inflammatory 
cytokines far away from tumor cells, while myCAF can 
produce matrix contractile phenotype, and are adjacent 
to tumor cells (Öhlund et al. 2017). In CRC, myCAF and 
iCAF are induced by high and low levels of Wnt activ-
ity, respectively. And iCAF promote EMT phenotype, 
while myCAF reverse the phenotype (Mosa et al. 2020). 
In preoperative radiotherapy and chemotherapy for rec-
tal cancer, the inflammatory polarization of CAF leads 
to the resistance of radiotherapy and chemotherapy, and 
promotes tumor progression (Nicolas et al. 2022). After 
cetuximab treatment, CAF can make neighboring cancer 
cells resistant to cetuximab in CRC (Garvey et al. 2020). 
In addition, it has been reported that some molecules 
expressing on CAF, including WNT2 (Huang et al. 2022), 
WNT5a (Hirashima et  al. 2021), CLEC3B (Zhu et  al. 
2019), IFNAR1 (Cho et al. 2020), IL-34 (Franzè et al. 

2020), miR-1246 (Si et al. 2021), and FAP (Yuan et al. 
2021), play an important role in the development of CRC, 
and are expected to become a target for anticancer therapy. 
And many models have been established to study CAF in 
CRC, such as 3D model of tumor tissue in vitro to simu-
late the physiological function of cells in vivo (Chen et al. 
2020), in vitro co-culture model of patient-derived organ-
like organ (PDO) and patient-derived CAF (Luo et al. 
2021; Naruse et al. 2021), and mouse xenotransplantation 
model co-injected with CAF and CRC cell line (Fernando-
Macías et al. 2020). These models are helpful to investi-
gate the functions of various subtypes of CAF, and find the 
therapy strategies targeting CAF in CRC. Although there 
have been many in vitro and in vivo experiments focus-
ing on the functional characteristics of CAF, applying the 
research findings in clinical practice is still an urgent issue.

Previous studies have shown that the heterogeneity of CAF 
significantly correlates with the efficacy of ICB therapy. For 
example, Wang et al. have used single-cell RNA-seq to ana-
lyze the heterogeneity of CAF, and identified a novel fibroblast 
subtype, independent of iCAF and myCAF, which was termed 
meCAF characterized by highly active glycolysis, and associ-
ated with better response to anti-PD-1 therapy in pancreatic 
ductal adenocarcinoma (Wang et al. 2021). In addition, Kal-
luri's laboratory identified tumor-restraining cancer-associated 
fibroblasts (rCAFs) that enhance the effectiveness of immune 
checkpoint inhibitors (Chen et al. 2021). Researchers from Jør-
gensen's team clearly demonstrated some specific CAF lineage 
supports anti-tumor immunity (Hutton et al. 2021). Also, an 
interesting rCAFs subset has been reported from a Japanese 
group (Miyai et al. 2022; Ando et al. 2022), that clearly associ-
ates with favorable response to immune checkpoint inhibitors. 
However, compared with bulk RNA-seq, single-cell RNA-seq 
is dramatically expensive, and not suitable for wide clinical 
application.

In this study, we performed unsupervised clustering in a 
large-scale CRC cohort based on CAF-related genes, and iden-
tified two groups of patients with distinct biological functions 
related to CAF (named CAF cluster 1 and 2). Furthermore, 
we constructed a novel CAF scoring system composed of 
15 genes, which were associated with poor overall, disease-
free, recurrence-free, and disease-specific survival (OS, DFS, 
RFS and DSS), and had the potential to guide ICB treatment. 
Moreover, single-cell sequencing and proteomics data suggest 
that these 15 genes might be linked to CAF identity and func-
tion, thus rendering them potential therapeutic targets for CAF 
intervention in CRC.
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Results

Construction of CAF clusters with different 
prognosis and immune states

The study flow diagram is presented in Fig. 1. First, we 
collected 596 differentially expressed genes (named CAF 
genes) between CAF and normal fibroblasts (NF) in CRC 
from a previous study (Herrera et al. 2021) (Supplemen-
tary Data 1). To find prognostic genes, we then performed 
univariate Cox regression analysis in GEO combined 
cohort, and recognized 115 potential prognostic genes 
among above genes (Supplementary Data 2). Furthermore, 
we conducted unsupervised clustering in GEO combined 
cohort based on 115 prognostic CAF genes using the 
ConsesusClusterPlus R package. As shown in Supplemen-
tary Fig. 1, the clustering results were most stable when 
patients were divided into two groups (defined as CAF 
cluster 1 and 2). The PCA plot shows significant differ-
ences in gene expression profiles between the two clusters 
(Fig. 2A). Remarkably, we found several previously identi-
fied CAF-related markers (Han et al. 2020; Gascard and 
Tlsty 2016), including ACTA2, FAP, FOXL1, MCAM, and 

PDGFRA, were substantially upregulated in CAF cluster 
2 relative to CAF cluster 1 (Fig. 2B), suggesting that the 
distinct status of CAF is correlated to group classification. 
In addition, MCPcounter analysis showed that fibroblast 
scores of patients in CAF cluster 2 were markedly higher 
than patients in CAF cluster 1 (Fig. 2C), while KM sur-
vival analysis illustrated that the OS was notably better 
for patients in CAF cluster 1 than those in CAF cluster 2 
(Fig. 2D, log-rank test, p = 0.0024). These results imply 
that the varied CAF status significantly impacts the sur-
vival of patients with CRC.

To dissect the underlying biological functions between 
the CAF clusters, we collected 11 tumorigenesis-related 
pathways from prior research. Our findings showed that 
the angiogenesis, TGF β, and F-TBRS signature scores 
were dramatically elevated in CAF cluster 2 compared to 
CAF cluster 1 (Fig. 2E). In addition, the gene expression 
of APM, CD8 + Teff, and ICI pathways is dramatically 
increased in CAF cluster 2 (Fig. 2E, F), suggesting poten-
tially distinct biological functions between the two groups. 
To further understand the immune status between the two 
groups, we analyzed the expression patterns of 122 immu-
nomodulators (including MHC, receptors, chemokines, and 
immunostimulants) between CAF cluster 1 and 2, most of 

Fig. 1  Flow diagram of this study
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which were highly expressed in CAF cluster 2 (Supple-
mentary Fig. 2A). The abundance of most tumor infiltrat-
ing lymphocytes inferred by MCPcounter analysis was also 
significantly higher in CAF cluster 2 than in CAF cluster 
1, such as T cells, cytotoxic lymphocytes, and neutrophils 
(Fig. 2C). Besides, ssGSEA-inferred adaptive and innate 
immunity scores were also significantly increased in CAF 
cluster 2 (Supplementary Fig. 2B), whereas the expres-
sion of immune checkpoint molecules was significantly 
higher in CAF cluster 2 than in CAF cluster 1. These results 
demonstrate that the CAF clusters exhibit distinct immune 

microenvironments, with CAF cluster 2 exhibiting an inhibi-
tory immune microenvironment.

Identification of the key genes affecting 
the prognosis of patients in different CAF clusters

To identify the key genes affecting the survival of patients in 
CAF clusters, WGCNA analysis was carried out, and CAF 
clusters 1 and 2 were used as the traits. As shown in Fig. 3A, 
B, the soft threshold power of β was set as 4 when scale-free 
topology model-fit R = 0.9. Then we identified 16 modules, 

Fig. 2  Clinical outcomes and biological functions between ERS clus-
ters. A The different gene expression patterns between CAF clusters 1 
and 2 showed by PCA plot. Each point represents one sample. B The 
boxplot reveals the expression levels of CAF markers between CAF 
clusters. C The fraction of immune cells infiltrating in TME between 
CAF clusters inferred by MCPcounter. D KM plot shows the overall 
survival between CAF clusters 1 and 2 in the GEO combined cohort. 
The log-rank test was used in the survival analysis. E The heatmap 

reveals the relationships between CAF clusters and 11 critical bio-
logical pathways. Rows of the heat map represent gene expression 
grouped by pathway. Red and blue colors represent high and low 
expression, respectively. F The mRNA expression levels of several 
common inhibitory immune checkpoints between the CAF clusters. 
*, **, ***, and **** represent a p value less than 0.05, 0.01, 0.001, 
and 0.0001, respectively. The difference between the two groups was 
tested using the Wilcox test
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Fig. 3  WGCNA analysis identifies the key CAF-related genes. A, 
B The plots show scale-free fit index and the mean connectivity in 
various soft-thresholding power values, identifying soft-thresholding 
power value = 4 in the next analysis. C Hierarchical clustering den-
drogram of co-expressed genes in modules. D, E The heatmaps dis-
play the correlations between different modules. F Module trait rela-
tionships show the correlation between module eigengenes and CAF 
clusters. Each row contains the corresponding correlation value and 

p value. Red and blue colors represent the positive and negative cor-
relations, respectively. G The scatter plot reveals the significant cor-
relation between module eigengenes and CAF cluster 1 in blue mod-
ules (cor = 0.87, p < 1e-200). H, I The barplots show the top ten GO 
and KEGG enrichment terms in blue module. The enriched pathways 
mentioned in our paper are highlighted as red words. An adjusted p 
value < 0.05 is considered as statistically significant
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except the grey module (Fig. 3C–E). Module-trait heatmap 
shows that the blue module was the most closely related 
to CAF clusters (Fig. 3F, G). And the biological functions 
of genes in the blue modules were explored using GO and 
KEGG analysis. When the adjusted p value was less than 
0.05, 27 and 12 items were identified by GO and KEGG 
analyses, respectively (Supplementary Data 3, 4). The top 
ten enrichment items in GO and KEGG analyses included 
extracellular matrix structural constituent, collagen binding, 
ECM–receptor interaction, PI3K-Akt, and TGF-beta signal-
ing pathway (Fig. 3H, I), which were in consistent with the 
functions of CAF. Therefore, the blue module containing 
1089 genes was identified as the key module, among which 
100 genes meeting GS > 0.2 and MM > 0.8 were considered 
as the critical genes related to CAF clusters (CAFGs). In 
addition, univariate cox regression analysis identified 43 of 
the 100 CAFGs was prognostic genes with a p value less 
than 0.01. Then these genes were again used for unsuper-
vised clustering in GEO combined cohort (Supplementary 
Data 5). The detail processes of unsupervised clustering 
are shown in the Supplementary Fig. 3. Surprisingly, when 
the patients were again divided into two groups, defined 
as CAFGs clusters 1 and 2, the clustering results were the 
most stable. The PCA plot shows that there were significant 
differences in gene expression profiles between the CAFGs 
clusters (Fig. 4A). The markers associated with CAF and the 
fibroblast score inferred by MCPcounter analysis were sig-
nificantly higher in CAFGs cluster 1 than in CAFGs cluster 
2 (Fig. 4B, F). Consistently, the OS of CAFGs cluster 1 was 
significantly worse than that of CAFGs cluster 2 (Fig. 4C, 
log-rank test, p 0.04). In addition, the heatmap of 11 tum-
origenesis-related pathways shows that the angiogenesis, 
TGF β, and F-TBRS signature score of CAFGs cluster 1 
were higher than that of CAFGs cluster 2, and the levels of 
APM, CD8 + Teff, and ICI signatures were also increased in 
CAFGs cluster 1 (Supplementary Fig. 4A, B). Besides, the 
expression of 122 immunomodulators (Fig. 4D), adaptive 
and innate immunity (Fig. 4E), and most tumor infiltrating 
lymphocytes (Fig. 4F, Supplementary Fig. 4C) were higher 
in CAFGs cluster 1 than in CAFGs cluster 2. Furthermore, 
we observed most of the patients consisting of CAFGs clus-
ter 1 were from CAF cluster 2 (Fig. 4G). Therefore, these 
findings demonstrated the crucial roles of CAFGs, which 
can reproduce the biological category of CAF clusters.

Colorectal cancer patients with high CAFGs score 
have poor outcomes in multiple colorectal cohorts

Gene model plays an important role in clinical application. 
To construct a scoring model for clinical application, the 
CAFGs meeting a p value < 0.2 in univariate analysis were 
included in multivariate unicox regression analysis. Finally, 
15 genes with a p value < 0.05 were obtained, including 

FNDC1, FRMD6, FBN1, RAB31, GLT8D2, COL1A2, 
GLIS2, COL8A1, GPC6, COL3A1, PRICKLE1, FSTL1, 
HLX, IGFBP7, and EFS. These genes were considered as 
the important prognostic factors, and again incorporated in 
the cox model. Next, using the expression values of these 
15 genes and their corresponding regression coefficients, 
a scoring model, named CAFGs scoring system, was con-
structed (Supplementary Data 6). We then included TCGA 
COAD and GSE39582 cohorts as external and internal vali-
dation sets. According to the best cutoff value determined 
by survminer R package, patients in these cohort were 
divided into high and low CAFGs score groups (Supple-
mentary Data 7). We found that the expression levels of CAF 
markers were significantly higher in the high CAFGs score 
group than in the low CAFGs score group (Fig. 5A: GEO 
combined; Fig. 6A: TCGA COAD; Supplementary Fig. 5A: 
GSE39582). Then we observed that patients with high 
CAFGs scores showed worse OS in GEO combined cohort, 
which were also verified in the internal and external cohorts 
(Fig. 5B: GEO-combined; Fig. 6B: TCGA COAD cohort; 
Supplementary Fig. 5B: GSE39582). In additional, we ana-
lyzed the DFS, RFS, and DSS in GSE39582, GSE17536, 
and GSE17537 cohorts. The results show that the RFS, DFS, 
and DSS of patients with high CAFGs scores were also sig-
nificantly worse than that of patients with low CAFGs scores 
(Fig. 5C–F, GSE39582 RFS, GSE17537 DFS, GSE17536 
DFS, GSE17536 DSS). Further analysis demonstrated that 
high CAFGs scores also represented poor OS in both early 
(stage I and II) and advanced (stage III and IV) patients 
(Figs. 5G, H; 6C, D; Supplementary Fig. 5C, D). And the 
CAFGs scores of patients in stage III and IV were signifi-
cantly higher than that of patients in stage I and II (Figs. 5I; 
6E; Supplementary Fig. 5E). CMS classification, a widely 
used classification system in CRC, has strong prognostic 
implications, and includes four subtypes, such as CMS1 
(MSI immune), CMS2 (canonical), CMS3 (metabolic), and 
CMS4 (mesenchymal). To our surprise, CAFGs scores of 
patients in CMS subtype 4 were significantly higher than 
those of patients in CMS subtypes 1–3 in the combined GEO 
cohort, as well as TCGA COAD and GSE39582 cohorts 
(Figs. 5J; 6F; Supplementary Fig. 5F; Supplementary Data 
8). CMS subtype 4 is mesenchymal subtype characterized by 
prominent transforming growth factor β (TGF-β) activation, 
stromal invasion, and angiogenesis; and has been reported 
to be associated with poor prognosis.

Next, we conducted a comprehensive investigation of 
the CAFGs scoring system in the TCGA COAD cohort 
and examined its association with various clinicopatho-
logic features, such as T, N, and M stages, as well as 
venous and lymphatic invasion. Our observations revealed 
that patients in the T3 and 4 stage, N + stage, and those 
with lymphatic invasion had significantly higher CAFGs 
scores than patients in the T1and 2 stage, N0 stage, and 
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without lymphatic invasion (Fig. 6G–I; Supplementary 
Fig. 6). This may underscore the importance of early 
detection and monitoring of lymphatic invasion and 
metastasis in patient with high CAFGs score. Moreover, 
we also performed GSVA using hallmark gene sets from 
the MSigDB website, and revealed that several signaling 

pathways, including EMT, were significantly upregu-
lated in patients with high CAFG scores (Supplementary 
Fig. 7A).

Fig. 4  Clinical outcomes and biological functions between CAFGs 
clusters. A The PCA plot shows the different gene expression patterns 
between CAFGs clusters. B The expression levels of CAF markers 
between CAFGs clusters. C KM plot shows the OS of CAFGs clus-
ters in the GEO combined cohort. The log-rank test was used for KM 
survival analysis. D The mRNA expressions of 122 immunomodula-
tors between the CAFGs clusters. E The enrichment scores of adap-

tive and innate immunity inferred by ssGSEA analysis between 
CAFGs clusters. F The distribution of immune cells infiltrating in 
the TME inferred by MCP-counter algorithm between CAFGs clus-
ters. G The Sankey plot revels the relationships between the CAF and 
CAFGs clusters. *, **, ***, and **** represent a p value less than 
0.05, 0.01, 0.001, and 0.0001, respectively. The difference between 
the two groups was assessed using the Wilcox test
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Patients with a high CAF score develop resistance 
to immunotherapy

It is well known that the therapeutic effect of ICB treat-
ment is closely related to the tumor immune microenviron-
ment, including the abundance of CAF. Therefore, we used 
TIDE analysis to explore the relationship between CAFGs 
score and therapeutic response to ICB, which focused on 
two mechanisms of tumor immune evasion, namely, T-cell 
dysfunction and exclusion. Through TIDE analysis, we 
found a significant correlation between CAFGs score and 
T-cell disfunction score, T-cell exclusion score, and TIDE 
score (Fig. 7A). In addition, the expression levels of ICI 

genes were markedly higher in the high CAFG score group 
compared to the low CAFG score group (Supplementary 
Fig. 7B). These findings indicated that patients with high 
CAFGs score may suffer from immune evasion and resist-
ance to immunotherapy. Furthermore, we collected two 
patient cohorts receiving anti-PD-1 or anti-PD-L1 therapy 
(GSE78220, and IMvigor210) to analyze the relation-
ship between CAFGs score and ICB efficacy. Indeed, in 
the high CAFGs score group, we found a higher propor-
tion of no responders (Fig. 7B, C). Consistently, patients 
with high CAFGs score had significantly worse overall 
survival (OS) after receiving ICB therapy (Fig. 7D, E). 

Fig. 5  Clinical significance of CAFGs scoring system in GEO com-
bined cohort. A The boxplot reveals the expression levels of CAF 
markers between patients with high and low CAFGs scores. B The 
OS analysis of CAFGs scores in the GEO combined cohort. C–F KM 
plots show the influence of CAFGs scores on RFS, DFS, and DSS in 
GSE39583, GSE17537, and GSE17536 cohorts. G–H The OS anal-
ysis of CAFGs scores in early (stage I and II) and advanced stages 
(stage III and IV) in the GEO combined cohort. The log-rank test was 

used in the survival analysis. I The distribution of CAFGs scores in 
different TNM stages. The statistic differences are assessed by the 
Kruskal test. The log-rank test was used for KM survival analysis. 
J The distribution of CAFGs scores between CMS1-3 and CMS4. 
The statistic differences are assessed by the Wilcox test. *, **, ***, 
and **** represent a p value less than 0.05, 0.01, 0.001, and 0.0001, 
respectively
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These findings indicated that CAFGs score may have the 
potential to identify CRC patients who were sensitive to 
ICB therapy.

Fig. 6  Validation of the clinical significance of CAFGs scoring sys-
tem in TCGA COAD cohort. A The expression levels of CAF mark-
ers between patients with high and low CAFGs scores in TCGA 
COAD cohort. B The OS analysis of CAFGs scores in the TCGA 
COAD cohort. C–D The OS analysis of CAFGs scores in early and 
advanced stages in the TCGA COAD cohort. The log-rank test was 
used in the survival analysis. E The distribution of CAFGs scores in 

different TNM stages. The statistic differences are assessed by the 
Kruskal test. F–I The boxplot shows the CAFGs scores in different 
groups of CMS classification, T stage, N stage, and lymphatic inva-
sion. The statistic differences are assessed by the Wilcox test. *, **, 
***, and **** represent a p value less than 0.05, 0.01, 0.001, and 
0.0001, respectively
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Exploring potential molecules associated 
with the identity and function of CAF

Several of these 15 genes belonging to CAFGs scoring sys-
tem were previously reported to be specifically associated with 
the identity and functionality of CAF, including COL1A2, 
COL3A1, COL8A1, and FBN1, implying the remaining genes 
may also correlate with CAF. Further analysis of the relation-
ship between these 15 genes and CAF levels in TIDE web-
site revealed that almost all of the genes were significantly 
correlated with CAF levels (Fig. 8A). Single-cell transcrip-
tomic data from patients with CRC also indicated that nearly 
all of the genes were significantly expressed in stromal cell 
types, such as IGFBP7, GLT8D2, FSTL1, GPC6, and FRMD6 
(Fig. 8B–D, Supplementary Fig.  8). The proteomic data 
obtained from CAF derived from AOM/DSS-induced CRC 

mice and normal mice-derived NF indicate that in addition 
to commonly known CAF-related proteins (such as COL3A1, 
COL1A2, and FBN1), IGFBP7 and FSTL1 were significantly 
upregulated in the CAF conditioned medium (Fig. 8E). And 
transcriptional data reveal that compared to the adjacent non-
tumorous samples, expression of COL3A1, COL1A2, FBN1, 
IGFBP7, and FSTL1 was significantly elevated in the tumor 
tissue (Fig. 8F). These results suggest that the 15 marker mod-
els we identified might play crucial roles in CAF-mediated 
CRC progression.

Fig. 7  Relationships between CAFGs score and response to ICB 
therapy. A The Pearson correlation analysis between CAFGs scores 
and T-cell dysfunction (dysfunction), T-cell exclusion (exclusion), 
and TIDE score. B, C The stacked histogram shows the distribution 
of ICB therapy responders and non-responders in the low and high 

CAFG score groups. C, D KM plot presents the OS differences of 
patients with high and low CAFGs scores after receiving ICB ther-
apy. The log-rank test was used for KM survival analysis. *, **, ***, 
and **** represent a p value less than 0.05, 0.01, 0.001, and 0.0001, 
respectively
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Discussion

Cancer-associated fibroblasts (CAF), an important compo-
nent of the tumor microenvironment, are involved in tumor 
initiation, progression, and metastasis (Kalluri 2016; Öhlund 
et al. 2014; Sahai et al. 2020). Although many promising 
achievements have been made in the basic research of CAF, 
applying the research findings in clinical practice is an 
urgent issue.

In our study, we have established two types of classi-
fication based on gene expression related to CAF, named 
CAF clusters and CAFGs scoring system. Of note, the levels 
of CAF-related biological terms, such as TGF-b, F-TBRS, 
angiogenesis, were highly expressed in CAF cluster 2 
and high CAFGs score group. Among these groups, CAF 
markers collected from previous researches significantly 
increased, including ACTA2, FAP, MCAM, and PDGFRA 
(Han et al. 2020; Togo et al. 2013). These results indicated 

Fig. 8  Exploring potential molecules associated with the identity 
and function of CAF. A The correlation between the 15 model genes 
and the levels of 3 immunosuppressive cell types that drive T-cell 
exclusion on TIDE website. B UMAP plots of cells from 23 primary 
colorectal cancer samples and 10 matched normal mucosa samples, 
showing 7 clusters in each plot (data from GSE132465). Each cluster 
was shown in different colors, including epithelial cells (Epi), T or 
innate lymphoid cells (T_ILCs), B cells (B), myeloid cells (Myeloid), 
endothelial cells (Endo), mesenchymal stromal cells (MSCs). MSCs 
can be further categorized into the normal fibroblasts, myofibroblasts, 

and various other cell types within the stroma. C Dot plots showing 
average expression of known markers in indicated cell clusters. The 
dot size represents percent of cells expressing the genes in each clus-
ter. D Expression levels of selected model genes across different cell 
clusters illustrated in UMAP plots. E The differentially expressed 
proteins between CAF derived from AOM/DSS-induced CRC mice 
and normal mice-derived NF. F The transcriptional expression levels 
of 15 model genes between normal and tumor tissues in CRC (data 
from GSE21510). *, **, ***, and **** represent a p value less than 
0.05, 0.01, 0.001, and 0.0001, respectively
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that there were more CAF infiltrating in CAF cluster 2 and 
high CAFGs score group. And the high CAF scoring not 
only correlated with poor OS, but also with poor DFS, PFS, 
and DSS. In addition, patients in the CMS4 group had the 
highest CAFGs scores. CMS is a widely used CRC classifi-
cation, among which CMS4 is characterized by prominent 
TGF-β activation, stromal invasion, and angiogenesis, and 
associated with prognosis, indicating that the CAFGs scor-
ing system may have important application potential.

It encourages us to explore the association between CAF 
scoring and ICB therapy efficacy. Notably, in our study, 
patients in CAF cluster 2 and high CAFGs score group also 
had higher expression of inhibitory immune checkpoints 
(such as, CD274 [PD-L1], CTLA4, and TIGIT), suggest-
ing that the immune system is in a suppressed state. Also, 
we found a positive correlation between CAFGs score and 
T-cell dysfunction, T-cell exclusion, and TIDE scores. 
Strikingly, there was a higher proportion of non-responders 
within the high CAFGs score group, and patients exhibit-
ing high CAFGs score had a significantly reduced overall 
survival (OS) rate following their receipt of ICB therapy.

Moreover, single-cell transcriptomics and proteomics 
analyses have been employed to validate the significance of 
scoring-system-related molecules in the identity and func-
tion of CAF, including FNDC1, FRMD6, FBN1, RAB31, 
GLT8D2, COL1A2, GLIS2, COL8A1, GPC6, COL3A1, 
PRICKLE1, FSTL1, HLX, IGFBP7, and EFS. Consistent 
with the proteomic data, a previous study established that 
FSTL1, secreted by activated fibroblasts, promotes hepa-
tocellular carcinoma metastasis and stemness (Loh et al. 
2021). CAF expressing IGFBP7 induce colony forma-
tion when co-culturing with CRC cells through paracrine 
tumor–stromal interaction (Rupp et al. 2015). These results 
suggest that the 15 marker models we identified might play 
crucial roles in CAF-mediated CRC progression.

Overall, these findings signify the critical role that CAFs 
play in tumor immune phenotypes and response to ICB 
therapy, thereby evidencing the potential value of assessing 
CAFGs as a prognostic tool for those undergoing cancer 
immunotherapy.

Materials and methods

Data source and process

The combined GEO cohort (1175 samples) used in this 
study was integrated by GSE39582, GSE14333, GSE17536, 
GSE17537, and GSE72968 cohorts. The transcriptome 
data of above five cohorts were the microarray data from 
GPL570 platform. The method of merging multiple data sets 
and the procedure of removing batch effects were carried 
out as reported in our previous study (Wang et al. 2022a).

The transcriptome data (FPKM) and clinical information of 
the TCGA COAD cohort were downloaded from the UCSC 
website (Navarro Gonzalez et al. 2021). Then FPKM was 
converted to transcripts per kilobase million (TPM) and fur-
ther log-2 transformed in next analysis.

Machine learning

The R package ConsensusClusterPlus was applied for clus-
tering the combined GEO cohort based on the input genes 
(Wilkerson and Hayes 2010). To make the clustering result 
robust, we set the following parameters: 80% item resam-
pling (pItem), 100% gene resampling (pFeature), a maxi-
mum evaluated k of 9 (maxK), 1000 resamplings (reps), 
and pam clustering algorithm (clusterAlg) upon spearman 
distances (distance).

Evaluation of immunological characteristics

R package MCPcounter (Becht et al. 2016) was applied 
to infer the abundance of immune cells infiltrating in the 
TME using the transcriptome data. In addition, the adaptive 
and innate immune scores of patients were also calculated 
though ssGSEA algorithm in GSVA package, and the param-
eters were set as follows: method = 'ssgsea', KCDF = 'Gauss-
ian'. And 122 immunomodulators (Supplementary Data 9), 
including major histocompatibility complex (MHC), recep-
tors, chemokines, and immunostimulants, and several com-
mon immune checkpoints with therapeutic potential were 
collected from previous studies (Charoentong et al. 2017; 
Auslander et al. 2018; Wang et al. 2022b).

Weighted correlation network analysis (WGCNA)

Weighted correlation network analysis (WGCNA) enables 
to identify gene modules most associated with traits (Lang-
felder and Horvath 2008). In this study, the CAF clusters 1 
and 2 were used as the traits. An appropriate soft threshold 
β (β = 4 in this study) was used to meet the criteria for the 
scale-free network. In next steps, WGCNA analysis was per-
formed with default parameters.

Functional enrichment analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (Kanehisa and Goto 2000) analyses were 
applied to explore the biological functions of the blue mod-
ules in WGCNA using the R package “clusterprofiler” (Yu 
et al. 2012). In addition, GSEA and GSVA analyses were 
performed using the Hallmark gene sets from MSigDB web-
site with default parameters. An adjusted p value of less than 
0.05 was regarded as a statistically significant difference.
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Construction and validation of CAFGs scoring 
system

First, 100 CAFGs meeting GS > 0.2 and MM > 0.8 in 
WGCNA analysis were applied to univariate Cox regres-
sion. Then the genes with p value less than 0.2 in univariate 
Cox regression were considered as candidates, and inputted 
to multivariate Cox regression, which finally identified 15 
genes (FNDC1, FRMD6, FBN1, RAB31, GLT8D2, COL1A2, 
GLIS2, COL8A1, GPC6, COL3A1, PRICKLE1, FSTL1, 
HLX, IGFBP7, and EFS) with a p value less than 0.05 in 
multivariate Cox regression. Next, the CAFGs scoring sys-
tem was constructed based on the 15 genes and correspond-
ing regression coefficients in multivariate Cox regression, 
as follows:

The regression coefficient of the gene was designated (i) 
in the multivariate Cox proportional hazards regression.

Survival analysis

A total of 864 samples in the combined GEO cohort, 435 
samples in the TCGA COAD cohort, have overall survival 
(OS) data (Supplementary Data 11). In addition, the recur-
rence-free survival (RFS) data in GSE39582; disease-free 
survival (DFS) data in GSE17536 and GSE17537; and 
disease-specific survival (DSS) data in GSE17536 are sum-
marized in Supplementary Data 11, which were used to vali-
date prognostic power of the CAFGs scoring system. The 
survival time was converted to months format, and patients 
with survival time less than 1 month were removed during 
survival analysis. Based on the optimal cutoff value identi-
fied by the survminer package, the patients were divided into 
high and low CAFGs score groups. Log-rank test was used 
to evaluate statistical differences. Kaplan–Meier (KM) plots 
were visualized using the survminer package.

Inferring the consensus molecular subtypes (CMS) 
classification

The consensus molecular subtypes (CMS), a widely used 
classification system currently available for CRC, has strong 
prognostic implications in clinical application (Guinney 
et al. 2015). There are four subtypes of CMS, including 
CMS1 (MSI immune), CMS2 (canonical), CMS3 (meta-
bolic), and CMS4 (mesenchymal). Among them, CMS4 
is characterized by prominent transforming growth factor 
β (TGF-β) activation, stromal invasion, angiogenesis, poor 

CAFGsscore =
∑

i

Coeff icientof(i) × Expressionofgene(i)

OS, and RFS. In this study, we inferred CMS classification 
based on transcriptome data using R package CMScaller 
with the default parameter (Eide et al. 2017).

ICB response prediction

A predictive algorithm known as the Tumor Immune Dys-
function and Exclusion (TIDE) algorithm was utilized 
to forecast the response to immune checkpoint blockade 
(ICB) by analyzing the gene expression profiles related to 
T-cell dysfunction (dysfunction) and exclusion (exclusion). 
A lower TIDE score indicates a more favorable immuno-
therapy response. The scores of T-cell dysfunction, T-cell 
exclusion, and TIDE were obtained from the TIDE website. 
The IMvigor210 cohort, a vast population of patients with 
metastatic urothelial cancer receiving anti-PD-L1 therapy 
(atezolizumab), was downloaded from the Creative Com-
mons 3.0 license. GSE78220 is a cohort of pre-treatment 
melanomas receiving anti-PD-1 therapy.

Statistical analysis

All analyses were performed in R 4.0.3. The Wilcox test was 
used to test the difference between two groups. The log-rank 
and Pearson test were used in KM survival and correlation 
analyses, respectively. In present study, heatmaps were visu-
alized with the ComplexHeatmap package (Gu et al. 2016). 
The ggplot2 package was used to visualize boxplots, scatter 
plots, and Sankey plots. *, **, ***, and **** represent a p 
value less than 0.05, 0.01, 0.001, and 0.0001, respectively.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00432- 023- 05548-7.

Acknowledgements We would like to thank Prof. Xiaohui Wang, 
Department of General Surgery, Xuanwu Hospital, Capital Medical 
University, Beijing, China, who helped us complete this study.

Author contributions FW and ZLL conceived, designed, and guided 
the study, and provided financial support. XHW TLX designed the 
study, analyzed the bioinformatic data, and wrote the manuscript draft. 
ZLL and FW assisted in generating the figures and tables and article 
structure design. QZ, SJL, and TYM assisted in bioinformatics analysis 
and article structure design. FW, ZLL, and XHW assisted in revising 
the manuscript and figures. QZ and SJL assisted in collecting and col-
lating data of public CRC cohorts.

Funding This work was supported by the Beijing Medical Administra-
tion Bureau Cultivation Program Project [No. PX2022041].

Data availability The original data presented in the study can be down-
loaded from GEO and TCGA websites.

Declarations 

Conflict of interest The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that 
could be construed as a conflict of interest.

https://doi.org/10.1007/s00432-023-05548-7


 Journal of Cancer Research and Clinical Oncology (2024) 150:124124 Page 14 of 15

Consent to participate All authors have read and approved the final 
manuscript for publication. We confirm that the work described has 
not been published previously, it is not under consideration for publica-
tion elsewhere, and publication has been approved by all authors and 
relevant authorities at the institution(s) where the work was carried out. 
All authors agree to participate as co-authors and are accountable for 
the authorship, accuracy, and integrity of the work.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ando R, Sakai A, Iida T, Kataoka K, Mizutani Y, Enomoto A (2022) 
Good and bad stroma in pancreatic cancer: relevance of func-
tional states of cancer-associated fibroblasts. Cancers (Basel) 
14(14):3315

Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, Tian 
T, Wei Z, Madan S, Sullivan RJ et al (2018) Robust prediction of 
response to immune checkpoint blockade therapy in metastatic 
melanoma. Nat Med 24:1545–1549

Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, 
Selves J, Laurent-Puig P, Sautès-Fridman C, Fridman WH, de 
Reyniès A (2016) Estimating the population abundance of tis-
sue-infiltrating immune and stromal cell populations using gene 
expression. Genome Biol 17:218

Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, 
Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer immunog-
enomic analyses reveal genotype-immunophenotype relation-
ships and predictors of response to checkpoint blockade. Cell 
Rep 18:248–262

Chen H, Cheng Y, Wang X, Wang J, Shi X, Li X, Tan W, Tan Z (2020) 
3D printed in vitro tumor tissue model of colorectal cancer. Thera-
nostics 10:12127–12143

Chen Y, McAndrews KM, Kalluri R (2021) Clinical and therapeutic 
relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 
18:792–804

Cho C, Mukherjee R, Peck AR, Sun Y, McBrearty N, Katlinski KV, 
Gui J, Govindaraju PK, Puré E, Rui H, Fuchs SY (2020) Cancer-
associated fibroblasts downregulate type I interferon receptor to 
stimulate intratumoral stromagenesis. Oncogene 39:6129–6137

Eide PW, Bruun J, Lothe RA, Sveen A (2017) CMScaller: an R pack-
age for consensus molecular subtyping of colorectal cancer pre-
clinical models. Sci Rep 7:16618

Fernando-Macías E, Fernández-García MT, García-Pérez E, Porrero 
Guerrero B, López-Arévalo C, Rodríguez-Uría R, Sanz-Navarro S, 
Vázquez-Villa JF, Muñíz-Salgueiro MC, Suárez-Fernández L et al 
(2020) A new aggressive xenograft model of human colon cancer 
using cancer-associated fibroblasts. PeerJ 8:e9045

Franzè E, Di Grazia A, Sica GS, Biancone L, Laudisi F, Monteleone 
G (2020) Interleukin-34 enhances the tumor promoting function 

of colorectal cancer-associated fibroblasts. Cancers (Basel) 
12(12):3537

Garvey CM, Lau R, Sanchez A, Sun RX, Fong EJ, Doche ME, Chen O, 
Jusuf A, Lenz HJ, Larson B, Mumenthaler SM (2020) Anti-EGFR 
therapy induces EGF secretion by cancer-associated fibroblasts 
to confer colorectal cancer chemoresistance. Cancers (Basel) 
12(6):1393

Gascard P, Tlsty TD (2016) Carcinoma-associated fibroblasts: orches-
trating the composition of malignancy. Genes Dev 30:1002–1019

Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns 
and correlations in multidimensional genomic data. Bioinformat-
ics 32:2847–2849

Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, 
Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino 
P et al (2015) The consensus molecular subtypes of colorectal 
cancer. Nat Med 21:1350–1356

Han C, Liu T, Yin R (2020) Biomarkers for cancer-associated fibro-
blasts. Biomark Res 8:64

Herrera M, Berral-González A, López-Cade I, Galindo-Pumariño 
C, Bueno-Fortes S, Martín-Merino M, Carrato A, Ocaña A, De 
La Pinta C, López-Alfonso A et al (2021) Cancer-associated 
fibroblast-derived gene signatures determine prognosis in colon 
cancer patients. Mol Cancer 20:73

Hirashima T, Karasawa H, Aizawa T, Suzuki T, Yamamura A, Suzuki 
H, Kajiwara T, Musha H, Funayama R, Shirota M et al (2021) 
Wnt5a in cancer-associated fibroblasts promotes colorectal 
cancer progression. Biochem Biophys Res Commun 568:37–42

Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song 
FY, Wang FF, Zhu XH, Liao WJ et al (2019) CAFs secreted 
exosomes promote metastasis and chemotherapy resistance by 
enhancing cell stemness and epithelial-mesenchymal transition 
in colorectal cancer. Mol Cancer 18:91

Huang TX, Tan XY, Huang HS, Li YT, Liu BL, Liu KS, Chen X, 
Chen Z, Guan XY, Zou C, Fu L (2022) Targeting cancer-associ-
ated fibroblast-secreted WNT2 restores dendritic cell-mediated 
antitumour immunity. Gut 71:333–344

Hutton C, Heider F, Blanco-Gomez A, Banyard A, Kononov A, 
Zhang X, Karim S, Paulus-Hock V, Watt D, Steele N et  al 
(2021) Single-cell analysis defines a pancreatic fibroblast line-
age that supports anti-tumor immunity. Cancer Cell 39:1227-
1244.e1220

Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat 
Rev Cancer 16:582–598

Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and 
genomes. Nucleic Acids Res 28:27–30

Kasashima H, Duran A, Martinez-Ordoñez A, Nakanishi Y, Kinoshita 
H, Linares JF, Reina-Campos M, Kudo Y, L’Hermitte A, Yashiro 
M et al (2021) Stromal SOX2 upregulation promotes tumorigen-
esis through the generation of a SFRP1/2-expressing cancer-asso-
ciated fibroblast population. Dev Cell 56:95-110.e110

Kobayashi H, Gieniec KA, Lannagan TRM, Wang T, Asai N, Mizutani 
Y, Iida T, Ando R, Thomas EM, Sakai A et al (2022) The origin 
and contribution of cancer-associated fibroblasts in colorectal car-
cinogenesis. Gastroenterology 162:890–906

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted 
correlation network analysis. BMC Bioinformatics 9:559

Li Z, Zhou J, Zhang J, Li S, Wang H, Du J (2019) Cancer-associated 
fibroblasts promote PD-L1 expression in mice cancer cells via 
secreting CXCL5. Int J Cancer 145:1946–1957

Loh JJ, Li TW, Zhou L, Wong TL, Liu X, Ma VWS, Lo CM, Man 
K, Lee TK, Ning W et al (2021) FSTL1 Secreted by activated 
fibroblasts promotes hepatocellular carcinoma metastasis and 
stemness. Cancer Res 81:5692–5705

Luo X, Fong ELS, Zhu C, Lin QXX, Xiong M, Li A, Li T, Benoukraf 
T, Yu H, Liu S (2021) Hydrogel-based colorectal cancer organoid 
co-culture models. Acta Biomater 132:461–472

http://creativecommons.org/licenses/by/4.0/


Journal of Cancer Research and Clinical Oncology (2024) 150:124 Page 15 of 15 124

Miyai Y, Sugiyama D, Hase T, Asai N, Taki T, Nishida K, Fukui T, 
Chen-Yoshikawa TF, Kobayashi H, Mii S et al (2022) Meflin-
positive cancer-associated fibroblasts enhance tumor response to 
immune checkpoint blockade. Life Sci Alliance 5(6):e202101230

Mosa MH, Michels BE, Menche C, Nicolas AM, Darvishi T, Greten 
FR, Farin HF (2020) A Wnt-induced phenotypic switch in cancer-
associated fibroblasts inhibits EMT in colorectal cancer. Cancer 
Res 80:5569–5582

Naruse M, Ochiai M, Sekine S, Taniguchi H, Yoshida T, Ichikawa H, 
Sakamoto H, Kubo T, Matsumoto K, Ochiai A, Imai T (2021) Re-
expression of REG family and DUOXs genes in CRC organoids 
by co-culturing with CAFs. Sci Rep 11:2077

Navarro Gonzalez J, Zweig AS, Speir ML, Schmelter D, Rosenbloom 
KR, Raney BJ, Powell CC, Nassar LR, Maulding ND, Lee CM 
et al (2021) The UCSC genome browser database: 2021 update. 
Nucleic Acids Res 49:D1046-d1057

Nicolas AM, Pesic M, Engel E, Ziegler PK, Diefenhardt M, Kennel 
KB, Buettner F, Conche C, Petrocelli V, Elwakeel E et al (2022) 
Inflammatory fibroblasts mediate resistance to neoadjuvant ther-
apy in rectal cancer. Cancer Cell 40:168-184.e113

Öhlund D, Elyada E, Tuveson D (2014) Fibroblast heterogeneity in the 
cancer wound. J Exp Med 211:1503–1523

Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-
Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ et al (2017) Dis-
tinct populations of inflammatory fibroblasts and myofibroblasts 
in pancreatic cancer. J Exp Med 214:579–596

Pape J, Magdeldin T, Stamati K, Nyga A, Loizidou M, Emberton M, 
Cheema U (2020) Cancer-associated fibroblasts mediate can-
cer progression and remodel the tumouroid stroma. Br J Cancer 
123:1178–1190

Rupp C, Scherzer M, Rudisch A, Unger C, Haslinger C, Schweifer N, 
Artaker M, Nivarthi H, Moriggl R, Hengstschläger M et al (2015) 
IGFBP7, a novel tumor stroma marker, with growth-promoting 
effects in colon cancer through a paracrine tumor-stroma interac-
tion. Oncogene 34:815–825

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans 
RM, Fearon D, Greten FR, Hingorani SR, Hunter T et al (2020) A 
framework for advancing our understanding of cancer-associated 
fibroblasts. Nat Rev Cancer 20:174–186

Si G, Li S, Zheng Q, Zhu S, Zhou C (2021) miR-1246 shuttling from 
fibroblasts promotes colorectal cancer cell migration. Neoplasma 
68:317–324

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal 
A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN 

Estimates of Incidence and Mortality Worldwide for 36 Cancers 
in 185 Countries. CA Cancer J Clin 71:209–249

Togo S, Polanska UM, Horimoto Y, Orimo A (2013) Carcinoma-
associated fibroblasts are a promising therapeutic target. Cancers 
(Basel) 5:149–169

Unterleuthner D, Neuhold P, Schwarz K, Janker L, Neuditschko B, 
Nivarthi H, Crncec I, Kramer N, Unger C, Hengstschläger M et al 
(2020) Cancer-associated fibroblast-derived WNT2 increases 
tumor angiogenesis in colon cancer. Angiogenesis 23:159–177

Wang Y, Liang Y, Xu H, Zhang X, Mao T, Cui J, Yao J, Wang Y, Jiao 
F, Xiao X et al (2021) Single-cell analysis of pancreatic ductal 
adenocarcinoma identifies a novel fibroblast subtype associated 
with poor prognosis but better immunotherapy response. Cell 
Discov 7:36

Wang H, Li Z, Ou S, Song Y, Luo K, Guan Z, Zhao L, Huang R, Yu 
S (2022a) Tumor microenvironment heterogeneity-based score 
system predicts clinical prognosis and response to immune check-
point blockade in multiple colorectal cancer cohorts. Front Mol 
Biosci 9:884839

Wang H, Luo K, Guan Z, Li Z, Xiang J, Ou S, Tao Y, Ran S, Ye J, Ma 
T, et al (2022) Identification of the crucial role of CCL22 in F. 
nucleatum-related colorectal tumorigenesis that correlates with 
tumor microenvironment and immune checkpoint therapy. Front 
Genet 13:811900

Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class dis-
covery tool with confidence assessments and item tracking. Bio-
informatics 26:1572–1573

Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package 
for comparing biological themes among gene clusters. OMICS 
16:284–287

Yuan Z, Hu H, Zhu Y, Zhang W, Fang Q, Qiao T, Ma T, Wang M, 
Huang R, Tang Q et al (2021) Colorectal cancer cell intrinsic 
fibroblast activation protein alpha binds to Enolase1 and activates 
NF-κB pathway to promote metastasis. Cell Death Dis 12:543

Zhu HF, Zhang XH, Gu CS, Zhong Y, Long T, Ma YD, Hu ZY, Li ZG, 
Wang XY (2019) Cancer-associated fibroblasts promote colorec-
tal cancer progression by secreting CLEC3B. Cancer Biol Ther 
20:967–978

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	A comprehensive multi-omics analysis identifies a robust scoring system for cancer-associated fibroblasts and intervention targets in colorectal cancer
	Abstract
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Results
	Construction of CAF clusters with different prognosis and immune states
	Identification of the key genes affecting the prognosis of patients in different CAF clusters
	Colorectal cancer patients with high CAFGs score have poor outcomes in multiple colorectal cohorts
	Patients with a high CAF score develop resistance to immunotherapy
	Exploring potential molecules associated with the identity and function of CAF

	Discussion
	Materials and methods
	Data source and process
	Machine learning
	Evaluation of immunological characteristics
	Weighted correlation network analysis (WGCNA)
	Functional enrichment analyses
	Construction and validation of CAFGs scoring system
	Survival analysis
	Inferring the consensus molecular subtypes (CMS) classification
	ICB response prediction
	Statistical analysis

	Acknowledgements 
	References




