
Vol.:(0123456789)1 3

Journal of Cancer Research and Clinical Oncology (2023) 149:3575–3586 
https://doi.org/10.1007/s00432-022-04263-z

RESEARCH

Optical coherence tomography and convolutional neural networks can 
differentiate colorectal liver metastases from liver parenchyma ex vivo

Iakovos Amygdalos1 · Enno Hachgenei2 · Luisa Burkl2 · David Vargas3 · Paul Goßmann1 · Laura I. Wolff1 · 
Mariia Druzenko1 · Maik Frye2 · Niels König2 · Robert H. Schmitt2,4 · Alexandros Chrysos1 · Katharina Jöchle1 · 
Tom F. Ulmer1 · Andreas Lambertz1 · Ruth Knüchel‑Clarke3 · Ulf P. Neumann1 · Sven A. Lang1

Received: 1 June 2022 / Accepted: 2 August 2022 / Published online: 12 August 2022 
© The Author(s) 2022

Abstract
Purpose Optical coherence tomography (OCT) is an imaging technology based on low-coherence interferometry, which 
provides non-invasive, high-resolution cross-sectional images of biological tissues. A potential clinical application is the 
intraoperative examination of resection margins, as a real-time adjunct to histological examination. In this ex vivo study, we 
investigated the ability of OCT to differentiate colorectal liver metastases (CRLM) from healthy liver parenchyma, when 
combined with convolutional neural networks (CNN).
Methods Between June and August 2020, consecutive adult patients undergoing elective liver resections for CRLM were 
included in this study. Fresh resection specimens were scanned ex vivo, before fixation in formalin, using a table-top OCT 
device at 1310 nm wavelength. Scanned areas were marked and histologically examined. A pre-trained CNN (Xception) 
was used to match OCT scans to their corresponding histological diagnoses. To validate the results, a stratified k-fold cross-
validation (CV) was carried out.
Results A total of 26 scans (containing approx. 26,500 images in total) were obtained from 15 patients. Of these, 13 were of 
normal liver parenchyma and 13 of CRLM. The CNN distinguished CRLM from healthy liver parenchyma with an F1-score 
of 0.93 (0.03), and a sensitivity and specificity of 0.94 (0.04) and 0.93 (0.04), respectively.
Conclusion Optical coherence tomography combined with CNN can distinguish between healthy liver and CRLM with great 
accuracy ex vivo. Further studies are needed to improve upon these results and develop in vivo diagnostic technologies, such 
as intraoperative scanning of resection margins.

Keywords Optical coherence tomography · Hepatobiliary · Neural networks · Machine learning · Colorectal liver 
metastases · Deep learning
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OCT  Optical coherence tomography
PN  Predicted negative
PNG  Portable network graphics
PP  Predicted positive
PPV  Positive predictive value
RGB  Red–green–blue
SD  Standard deviation
SD-OCT  Spectral domain OCT
SNR  Signal-to-noise ratio
SVM  Support vector machine
UH-RWTH  University hospital RWTH Aachen
VLE  Volumetric laser endomicroscopy

Background

Colorectal cancer (CRC) is the third most common cancer 
type worldwide, with more than a million new cases diag-
nosed in 2018 (Bray et al. 2018). The primary cause of mor-
tality in CRC patients is metastatic disease, with up to 25% 
of patients suffering from synchronous liver metastases and 
a further 40% developing metachronous disease (Bingham 
et al. 2020; Hitpass et al. 2020, 2021). Curative liver resec-
tion with complete tumor removal is the best option for colo-
rectal liver metastases (CRLM) and frozen sections are rou-
tinely employed to ensure tumor-negative resection margins 
(Hitpass et al. 2020, 2021; Lee et al. 2020). However, intra-
operative frozen sections are time-consuming, especially 
when multiple tissue samples are examined. This leads to 
longer operation times, particularly when frozen sections are 
positive, requiring further clearance of the resection margin.

An attractive technology, with the potential to overcome 
these hurdles, is optical coherence tomography (OCT). This 
is a non-invasive imaging technology, based on low-coher-
ence interferometry, which produces real-time, high-resolu-
tion cross-sectional images at a depth of 1–3 mm, depend-
ing on tissue type and wavelength (usually 800–1300 nm). 
Axial and lateral resolutions of 1–20 μm can be achieved, 
which are high enough to identify microscopic features such 
as lymphatic aggregates and blood vessels (Garcia-Allende 
et al. 2011; Amygdalos 2014; Samel and Mashimo 2019; 
Zhu et al. 2020; Kufcsak et al. 2021). Combining the attrac-
tive features of OCT with an efficient and accurate quantita-
tive analysis technique would result in a powerful diagnostic 
tool, especially when using advanced processing modali-
ties, such as machine learning (ML) (Aggarwal et al. 2021, 
Saratxaga, Bote et al. 2021). For example, in surgery, intra-
operative OCT could help better define resection planes and 
potentially provide information on surgical margins faster 
than frozen section examination.

In the field of artificial intelligence, ML is a technique 
for training machines to autonomously perform tasks, 
using computational methods. In this process, features are 

extracted from known data and used to make predictions on 
a new dataset (Goodfellow 2016; Chollet 2017; Beam and 
Kohane 2018; Esteva et al. 2019; Kelly et al. 2019; Aggar-
wal et al. 2021; Saratxaga et al. 2021). A ML model consist-
ing of connected layers of computational units is known as a 
neural network (NN). In NN, units are typically structured in 
multiple layers, where each layer´s output serves as the input 
for the next (Goodfellow 2016; Chollet 2017; Beam and 
Kohane 2018; Esteva et al. 2019; Kelly et al. 2019; Aggar-
wal et al. 2021; Saratxaga et al. 2021). Such models form 
the basis of deep learning (DL), where much more complex 
problems can be processed. An example of a DL model that 
is widely used for the processing of images, is the convo-
lutional neural network (CNN). Here, convolutional layers 
apply multiple filters on the input, allowing the DL process 
to recognize various structures in images during the learning 
process (Goodfellow 2016; Chollet 2017; Beam and Kohane 
2018; Esteva et al. 2019; Kelly et al. 2019; Aggarwal et al. 
2021; Saratxaga et al. 2021).

The aim of this study was to investigate the ability of 
OCT combined with CNN to differentiate between healthy 
liver parenchyma and CRLM, ex vivo.

Methods

Patient cohort and inclusion criteria

Consecutive adult patients undergoing elective liver resec-
tions for CRLM at the University Hospital RWTH Aachen 
(UH-RWTH) between June and August 2020 were included 
in this study. Patients undergoing emergency operations 
were excluded, as were those unable or unwilling to provide 
informed consent.

OCT device and scan settings

A commercially available table-top spectral domain OCT 
(SD-OCT) device was used (Telesto™ V1, Thorlabs 
GmbH, Lübeck, Germany), operating at 1310 nm central 
wavelength, with an axial resolution of 4.9 μm in water and 
6.5 μm in air, a maximum imaging depth of 2.5 mm and 
a scan rate of up to 92 kHz. The system can scan a sin-
gle point, producing a column of pixels (A-scan) or sweep 
the beam to create two-dimensional (B-scan) or three-
dimensional (C-scan) images. In this study, C-scans were 
obtained for each area of interest and dimensions were set 
at 3.0 mm × 3.0 mm × 2.5 mm and 1024 × 1024 × 512 pix-
els, respectively. This effectively produced 1024 B-scans for 
each site, at 1024 × 512 pixel resolution. The A-scan rate for 
acquisition was set to 28 kHz and at each point of the field 
of view four consecutive A-scans were acquired and then 
averaged in order to improve the signal-to-noise ratio (SNR). 
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The resulting pixel sizes were 2.93 µm in the X and Y axis 
and 4.97 µm in the Z axis direction, respectively. Scanning 
time for each C-scan was approximately 4 min. A typical 
SD-OCT system is depicted in Fig. 1.

Specimen collection and scanning

The specimen collection process and scanning methodology 
were similar to our previously described work on upper gas-
trointestinal tissues (Garcia-Allende et al. 2011; Amygdalos 
2014). Briefly, resection specimens were collected directly 
from the operating room and scanned whilst still fresh. 
Tissues were placed in formalin only after imaging, as the 
cross-linking of tissue proteins caused by the formalin fixa-
tion process changes their structural and optical properties. 
In cases of frozen section examination, OCT scanning took 
place after reporting on frozen sections was complete, to pre-
vent any interference with the diagnostic process. For each 
resection specimen, tumor and healthy liver parenchyma dis-
tant to tumor sites were scanned, completely filling up the 
system´s field of view with each tissue type. This reduced 
the complexity of the CNN´s task, by ensuring that all OCT 

images were purely tumor or healthy liver parenchyma, 
without any mixed tissues, thus creating a classification task 
with only two classes for the neural network to solve. Liver 
specimens were sectioned into multiple lamellae for histo-
logical reporting, which allowed access to deep-lying tumor. 
Tissues were kept intact for the scanning process, to prevent 
drying-out and to ensure that specimens remained anatomi-
cally correct for histological reporting. Additionally, isotonic 
sodium chloride solution was poured onto the tissue surface 
between scans, to maintain hydration. Scanning was carried 
out in an “open air” configuration, with specimens placed 
directly under the OCT lens, at a slightly tilted angle, to 
minimize reflections from the tissue surface. No covers, such 
as glass slides, were used and tissues were not treated with 
any contrast-enhancing agents. A real-time B-scan mode was 
used for initial placement of tissues and height adjustment 
of the OCT lens. The aim here was to minimize the amount 
of air above the tissue surface, in order to maximize signal 
penetration. At the same time, care was taken to prevent any 
tissue being cut off at the top of the image, as the laser beam 
traversed the surface to build up the C-scan. After acquisi-
tion, each three-dimensional C-scan was controlled in all 

Fig. 1  A typical spectral domain OCT system. Broadband light is 
split into sample and reference arms, which travel equal distances 
to the tissue sample and a mirror, respectively. Transverse scanning 
allows for multiple points in tissue to be scanned. Light reflected 

from tissue and the reference mirror is recombined inside a spectrom-
eter. Computer processing of the signal intensity at different depths 
produces A-scans, which are combined to create two-dimensional B- 
and three-dimensional C-scans. Created with www. BioRe nder. com

http://www.BioRender.com
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directions for errors such as reflection artefacts or cropped 
tissue. Scanned specimen areas were marked with pins and/
or embedded in separate containers. These areas were later 
sectioned, examined, and reported on independently of the 
main resection specimen, allowing for exact matching of 
OCT data with histological diagnoses. All specimens were 
placed in formalin within 30 min of resection and a dedi-
cated pathologist reviewed the corresponding paraffin-fixed 
sections, providing detailed histological information for 
each patient and OCT scan. A typical scanning orientation 
is depicted in Fig. 2.

Image pre‑processing

The OCT data outputted from the Thorlabs system was 
imported for processing into the Anaconda environment 
(Anaconda Software Distribution, 2020. Anaconda Docu-
mentation. Anaconda Inc. Retrieved from https:// docs. 
anaco nda. com/), using the Python programming language 
(RRID:SCR_008394) (VanRossum and Drake 2010). 
C-scans were reconstructed using metadata (such as image 
dimensions, number of rows and columns, number of pixels 

etc.) and intensity values in decibel (dB), embedded in 
the original Thorlabs OCT files. As the range of intensity 
values in the raw OCT images is too high for viewing and 
would drastically increase computational time, the next step 
involved scaling to a 0–255 range. For this, the first, middle, 
and last B-scan of each C-scan was analyzed for minimum 
and maximum intensities, which were then used to scale 
intensities across the whole C-scan. Analysis of intensity 
values was done in the direction of A-scans (top to bottom), 
as the highest intensities are produced by reflected signal 
at the tissue surface and the lowest are deep in the tissue, 
where signal is scattered and absorbed. This scaling tech-
nique produced images with higher contrast compared to 
standard methods, such as histogram analysis, which exam-
ines intensity across the whole image, regardless of location.

As the CNN is not designed to work with three-dimen-
sional data, each C-scan was analyzed as a series of B-scans. 
These were first exported as portable network graphics 
(PNG) files and pre-processed, starting with correction of 
artefacts caused by reflections from the tissue surface during 
the scanning process. These artefacts are caused by satura-
tion of single pixels in the detector camera used within the 

Fig. 2  Typical OCT scanning 
orientation. Here a lamella 
including both CRLM and 
healthy liver parenchyma is 
being scanned. The area of 
tumor already scanned has been 
marked with red pins

https://docs.anaconda.com/
https://docs.anaconda.com/


3579Journal of Cancer Research and Clinical Oncology (2023) 149:3575–3586 

1 3

spectrometer of the OCT system and manifest as bright col-
umns in the images, which contain no useful information. 
The artefacts were corrected by a function, which removed 
columns with a significantly higher mean intensity than the 
mean intensity of the whole image, resulting in slightly nar-
rower final images. These corrected images then underwent 
a series of steps to remove further errors and areas contain-
ing no useful information, such as the air above the tissue 
surface or areas deep in the tissue with insufficient SNR. To 
identify those regions, a 5 × 5 median filter was applied, fol-
lowed by binarization through gray value thresholding. Here, 
any pixel with a value of 20 and below was converted to 
black and the rest turned to white. The binarization process 
was followed by floodfill, erosion and dilation operations, 
to connect pixels of the same type (tissue or non-tissue) to 
continuous areas, resulting in images where all useful infor-
mation (superficial tissue) is white, and the rest (air, deep tis-
sue) is black. After that, the OpenCV function findContours 
(Suzuki and Abe 1985) was applied to better define bound-
aries between these areas. The process produced images 
where useful information was sharply displayed, whereas 
air and deep tissue were blackened out, making cropping of 
these areas easier. Finally, corrected images were cropped 
to remove blackened out areas and produce overlapping 
299 × 299 pixel square shapes, which is the required input 
size for the Xception CNN (Chollet 2017). After the auto-
mated pre-processing of all data, manual quality control was 
carried out on the outputs through expert OCT users (IA and 
LB), to remove problematic C-scans and to guarantee the 
highest possible quality of the used data. Criteria for exclu-
sion of C-scans were: too many reflection artefacts, caus-
ing the error-correction process to crop a significantly large 
(≥ 1/3) part of the image, artefacts which persisted even after 
error-correction, affecting the readability of images through 
the ML algorithm, and pronounced tissue surface irregulari-
ties, resulting in cropped images which contained little tissue 
information. In cases where these problems were limited 
to a few B-scans, they were ignored. If, however, ≥ 1/3 of 
B-scans per C-scan were affected, the whole C-scan was 
excluded from analysis. The preprocessing methodology is 
summarized in Fig. 3.

Neural network analysis

For DL analysis of the preprocessed images, the open-
source, high-level application programming interface (API) 
Keras was used (available at https:// github. com/ keras- team/ 
keras). From there, a pre-trained Xception CNN was fine-
tuned and used to differentiate OCT scans based on their 
corresponding histological diagnoses. The original architec-
ture of Xception and a modified version for OCT image anal-
ysis have been extensively described before (Chollet 2017; 
Saratxaga et al. 2021). Briefly, Xception consists of a linear 

stack of 36 depth-wise separable convolution layers, struc-
tured into 14 modules with residual connections in all but the 
first and last one (Chollet 2017). It is an “extreme” version of 
the Inception module first described in 2014 (Szegedy et al. 
2015), applying a 3 × 3 convolution to every single output 
channel of the pointwise convolution, a so-called depth-wise 
convolution. Effectively, Xception examines cross-channel 
correlations first, then spatial correlations. Experiments 
have shown that the absence of non-linearities leads to both 
faster convergence and better final performance. Therefore, 
the Xception modules are implemented without intermediate 
non-linearity, in contrast to Inception (Chollet 2017). The 
input of Xception is a fixed size 299 × 299 red–green–blue 
(RGB) image, with an input channel for each color. As OCT 
scans are grayscale images and therefore only use one chan-
nel, the same grayscale image was used for all three input 
channels and the model was modified for a binary output 
(healthy or tumor). Additionally, a GlobalAveragePooling 
layer, a fully connected layer with a single output and the 
sigmoid activation function were added to the model archi-
tecture. The modified Xception architecture, as used in this 
study, is outlined in Fig. 4.

Stratified k-fold cross-validation (CV) was used to apply 
a 70:15:15 data-split for training, validation, and testing. 
First, 15% of the total dataset was randomly selected for 
the testing phase and set aside. Then, the CV process was 
carried out on the remaining 85%, in 5 sets (labelled A–E), 
each with 5 random, non-overlapping iterations of the 70:15 
training/validation split. Individual C-Scans were kept intact 
throughout all data-splitting and randomization processes, 
preventing neighboring B-Scans being split into training 
and validation sets, which would result in falsely high accu-
racy. Through multiple exploratory model-training runs, 
the optimal CNN hyperparameters were determined to be 
a batch size of 20 over 10 epochs and a learning rate of 
0.00001. Batch size refers to the number of images being 
processed by the model at the same time, whereas an epoch 
is a complete cycle, where all batches comprising the data-
set have been processed. The learning rate defines the step 
size in which the weights of the model are changed between 
epochs, to optimize the CNN performance. The CV process 
resulted in a total of 25 trained versions of the CNN (labelled 
A1–E5), identical in all but the data-split on which their 
training was based. Each version then made predictions on 
the same test data previously set aside, ensuring inter-model 
comparability.

A cross-entropy loss function was used to calculate pre-
diction errors and construct confusion matrices for the CV 
process. From these, sensitivity, specificity, F1-score and loss 
values were calculated, the latter being common performance 
metrics in ML. The F1-score is the harmonic mean of positive 
predictive value (PPV) and sensitivity (also known as preci-
sion and recall in the ML context, respectively), whereas loss 

https://github.com/keras-team/keras
https://github.com/keras-team/keras
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is a metric of CNN prediction accuracy on the training and 
validation set, indicating how well the model is learning (Mur-
phy 2013; Tharwat 2020). The F1-score and loss values were 
plotted as learning curves for each CV run, to illustrate model 
optimization after an increasing number of epochs. Predictions 
on the test set from the 25 trained and validated versions of 
the CNN were also recorded as confusion matrices, providing 
performance metrics for each individual model. These were 
then averaged to provide F1-score, sensitivity, and specificity 
values for the study as a whole. Continuous data are presented 
as mean (standard deviation) where applicable. More informa-
tion about the F1-score and loss functions can be found in the 
Supplement. The programming code used in this study has 

been uploaded to https:// github. com/ iamyg dalos/ OCT_ CRLM 
and can be used to reproduce these experiments, as well as be 
modified for new research questions. Furthermore, the OCT 
data used in this study is available upon reasonable request to 
the corresponding author.

Results

Specimen statistics

Two C-scans of tumor and two of healthy liver parenchyma 
were discarded due to persisting noise and reflection errors. As 

Fig. 3  Summary of the preprocessing methodology. A detection and 
removal of reflection artefacts from a B-scan, resulting in a slightly 
narrower final image. B application of a median filter, binary mask, 
floodfill, erosion, dilation and findContours functions, resulting in 

images where all useful information is white and the rest is black. C 
cropping of black areas and conversion of useful areas in the image 
into 299px x 299px squares, for input into the neural network

https://github.com/iamygdalos/OCT_CRLM
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a result, 26 scans (comprising approximately 26,500 B-scans) 
from 15 patients (7 males, 8 females, mean age 57) were 
included in the study. Of these, 13 were of normal liver paren-
chyma and 13 of CRLM. As both tumor and normal scans 
were largely obtained from the same patients, there are no 
clinical or demographic differences to report between healthy 
and tumor groups.

Xception classification results

Across all 25 trained versions, the Xception CNN distin-
guished tumor from healthy liver parenchyma with a mean 
F1-score of 0.93 (0.03). Mean sensitivity and specificity were 
0.94 (0.04) and 0.93 (0.04), respectively. Sensitivity and speci-
ficity across all 25 models ranged from 0.86 to 0.99 and from 
0.78 to 0.96, respectively, whereas the F1-score ranged from 
0.88 to 0.97. During CNN training and validation, F1-scores 
fluctuated among the first four epochs of each CV, then flat-
tened out for the rest (see plotted learning curves in Supple-
mental Fig. 1), showing a good optimization of the model. The 
prediction results on the test set for all models are outlined in 
Table 1 and the corresponding confusion matrices are depicted 
in Fig. 5.

Discussion

This ex vivo study demonstrated that OCT combined with 
the Xception CNN can differentiate between healthy liver 
parenchyma and CRLM with high sensitivity and specific-
ity. Specifically, across 25 trained versions of the CNN, a 
mean F1-score of 0.93 was achieved, with a mean sensitiv-
ity and specificity of 0.94 and 0.93, respectively.

The application of ML in clinical situations is the sub-
ject of an ever-increasing number of studies in diverse 
clinical areas (Esteva et al. 2019; Kelly et al. 2019; Zhou 
et al. 2020; Aggarwal et al. 2021). Many focus on the 
identification of pathological lesions in various imaging 
modalities, such as magnetic resonance imaging (MRI), 
computed tomography (CT), ultrasound, mammography, 
or endoscopic pictures (Esteva et al. 2019; Kelly et al. 
2019; Zhou et al. 2020; Aggarwal et al. 2021). Further-
more, DL models are increasingly being applied to digi-
tal patient records (Esteva et al. 2019; Kelly et al. 2019; 
Beaulieu-Jones et al. 2021), or clinical and perioperative 
data, with the aim of predicting morbidity, mortality and 
oncological outcomes (Motwani et al. 2017; Hofer et al. 

Fig. 4  Diagram of the modified Xception model architecture, as used in this study. The input has been modified to accept the same image in 
grayscale for each channel and a global averaging pool has been added to the model
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2020; Rahman et al. 2020; Subudhi et al. 2021). Finally, 
DL analysis of histopathological images has been shown 
to predict survival and response to chemotherapy or immu-
notherapy regimens in oncological patients (Esteva et al. 
2019; Kelly et al. 2019; Wulczyn et al. 2021).

Deep learning has also been applied to OCT images in 
various settings, such as ophthalmology, cardiology and neu-
rosurgery (Athanasiou et al. 2019; Alqudah 2020; Le et al. 
2021; Moller et al. 2021; Zhang et al. 2021). In the gastro-
intestinal system, Saratxaga et al. combined Xception CNN 
with OCT to achieve an accuracy of 89% in distinguishing 
between healthy and diseased mouse colon (Saratxaga et al. 
2021). Furthermore Zeng et al. scanned fresh human colon 
resection specimens, in a similar fashion to our study, and 
used the RetinaNet DL to distinguish healthy colon from 
tumor (Zeng et al. 2020). In their study, the CNN was manu-
ally trained by human operators to detect a dentate pattern in 
normal mucosa images. A sensitivity of 100% and specificity 
of 99.7% was achieved (Zeng et al. 2020). Finally, Fonollà 

et al. combined volumetric laser endomicroscopy (VLE), a 
form of OCT, with multiple pre-trained CNN based on the 
Vgg167 architecture and achieved 88% accuracy in detect-
ing neoplasia in patients with Barrett´s oesophagus (Fonollà 
et al. 2019).

Despite the plethora of studies on OCT in gastrointesti-
nal tissues, there are hardly any on liver tissues. An in vitro 
study investigated drug-induced liver injury using OCT on 
3D liver spheroids (Martucci et al. 2018), whereas various 
ex vivo studies have been carried out on animal liver tissues, 
ranging from proof-of-concept studies (Jain et al. 2011), to 
experiments on improving contrast in OCT images (Genina 
et al. 2012), to investigations of fibrosis and steatosis using 
polarization-sensitive OCT (Wu et al. 2007; Mukherjee et al. 
2021). Mu et al. carried out a proof-of-concept ex vivo study 
on formalin-fixed human tissues, including liver, using full-
field optical coherence tomography (FF-OCT) (Mu et al. 
2019). This was a side-by-side demonstration of imaging 
capabilities compared to histology pictures, without any 

Table 1  Performance metrics 
of the 25 trained CNN models, 
derived from their predictions 
on the test set

CNN convolutional neural network; PPV positive predictive value; NPV negative predictive value; SD 
standard deviation. The CNN models are labelled A1–E5, according to which cross-validation set and cycle 
they were trained and validated in

CNN Sensitivity/
Recall

Specificity PPV/Precision NPV Accuracy F1-score

A1 0.91 0.95 0.94 0.92 0.93 0.92
A2 0.96 0.92 0.91 0.96 0.94 0.94
A3 0.95 0.91 0.91 0.96 0.93 0.93
A4 0.97 0.94 0.93 0.97 0.95 0.95
A5 0.90 0.96 0.95 0.92 0.93 0.92
B1 0.86 0.93 0.92 0.89 0.90 0.89
B2 0.98 0.95 0.94 0.99 0.96 0.96
B3 0.96 0.94 0.94 0.97 0.95 0.95
B4 0.97 0.95 0.94 0.97 0.96 0.95
B5 0.86 0.92 0.90 0.88 0.89 0.88
C1 0.89 0.78 0.78 0.89 0.83 0.83
C2 0.92 0.93 0.92 0.93 0.93 0.92
C3 0.90 0.95 0.94 0.91 0.93 0.92
C4 0.98 0.95 0.95 0.98 0.96 0.96
C5 0.96 0.94 0.93 0.96 0.95 0.94
D1 0.90 0.89 0.88 0.91 0.89 0.89
D2 0.97 0.92 0.91 0.97 0.94 0.94
D3 0.99 0.95 0.94 1.00 0.97 0.97
D4 0.91 0.96 0.95 0.93 0.94 0.93
D5 0.96 0.94 0.93 0.97 0.95 0.95
E1 0.92 0.96 0.95 0.93 0.94 0.94
E2 0.98 0.90 0.90 0.98 0.94 0.93
E3 0.88 0.93 0.92 0.90 0.91 0.90
E4 0.95 0.94 0.93 0.96 0.95 0.94
E5 0.96 0.93 0.92 0.97 0.94 0.94
Mean 0.94 0.93 0.92 0.94 0.93 0.93
SD 0.04 0.04 0.04 0.03 0.03 0.03
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testing of the system´s diagnostic capabilities. A similar 
study from Zhu et  al. demonstrated FF-OCT images of 
human liver tissues, hepatocellular carcinoma (HCC) and 
cholangiocarcinoma (Zhu et al. 2015). In a following study, 
the same research group applied a support vector machine 
(SVM) model to FF-OCT images of formalin-fixed human 
liver specimens, distinguishing morphological characteris-
tics of HCC from healthy liver parenchyma with an area 
under the curve (AUC) of 0.94 (Zhu et al. 2020). Finally, 
Zhou et al. carried out an in vitro study with human normal 
and cancerous liver tissues using gold nanoparticles as con-
trast agents. Tissue samples were frozen within 12 h after 
resection and continuously scanned over 4 h whilst thawing, 
as nanoparticles were applied on the tissue surface. Com-
parisons of signal intensity were carried out between cancer 
and normal, showing a larger signal attenuation in cancerous 
tissues, although no formal statistical analysis was carried 
out (Zhou et al. 2015).

All in all, previous studies have demonstrated the poten-
tial of OCT as a diagnostic system beyond its imaging capa-
bilities, but also suffer from various limitations. There is 
a great variation in methodologies, computer models and 
processing algorithms, OCT systems and tissues being 

investigated (Garcia-Allende et al. 2011; Amygdalos 2014). 
Many studies are designed as proof-of-principle demonstra-
tions, without systematic calibration and long-term data 
gathering. In contrast, we employed a pre-trained CNN and 
used CV, both being well accepted techniques (Beam and 
Kohane 2018; Esteva et al. 2019; Kelly et al. 2019; Aggar-
wal et al. 2021; Saratxaga et al. 2021). Specifically, the CV 
process in our study was carried out fivefold over 5 non-
overlapping sets, producing 25 trained versions of the CNN 
with consistently high F1-scores ranging from 0.88 to 0.97, 
giving us confidence in the reproducibility of our results. 
Furthermore, we used Xception, which is a top performer 
in tests on large image datasets and has been shown to work 
well on OCT images (Saratxaga et al. 2021). Moreover, 
a common problem in ex vivo OCT studies is the lack of 
access to fresh tissues, leading to generally low sample num-
bers and a large variation in the physiological conditions of 
tissues between different studies (fresh, frozen, formalin-
fixed, whole specimens, small biopsies) (Garcia-Allende 
et al. 2011; Amygdalos 2014; Zhu et al. 2015, 2020; Mu 
et al. 2019; Zeng et al. 2020, 2021; Saratxaga et al. 2021). In 
this study, we scanned fresh tissues directly after resection 
and before fixation in formalin, keeping their structural and 

Fig. 5  Confusion matrices for the 25 trained CNN models, derived 
from their predictions on the test set. The models are labelled A1–E5, 
according to which cross-validation set and cycle they were trained 

and validated in; AP actual positive; AN actual negative; PP predicted 
positive; PN predicted negative
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optical properties as close to in vivo as possible, which lets 
us extrapolate our results to that domain (Garcia-Allende 
et al. 2011; Amygdalos 2014). Additionally, access to whole 
resection specimens allowed for imaging orientations appli-
cable to real-life clinical scenarios and the examination of 
various tissue types, such as tumor, liver parenchyma, bile 
ducts, lymph nodes or even areas of transition from healthy 
to cancerous tissue. Finally, the non-destructive methodol-
ogy of this study (no excision of separate tissue samples, 
instead marking of areas on resection specimens), which 
left the histopathological diagnostic process unencumbered, 
enabled the collection of a relatively large dataset in a short 
time period, even after the exclusion of OCT scans with high 
noise levels and other problems.

Notably, no studies were found in the literature on clas-
sifying SD-OCT scans of liver tissue using ML or DL 
approaches, such as CNNs. Hence, to the best of our knowl-
edge, our study is the first to combine these techniques using 
human liver tissue. Expanding on this work with a larger 
dataset would allow us to investigate new research ques-
tions, such as the differentiation of different tumors or prop-
erties of liver parenchyma (for example, steatosis, fibrosis, 
chemotherapy-associated liver damage). Furthermore, we 
could modify the CNN architecture, for example by increas-
ing the number of hidden layers to enable learning of more 
complex features, tuning hyperparameters to improve learn-
ing rate, or programming the CNN to process whole volume 
data (C-scans) to extract more relevant information (Chollet 
2017; Esteva et al. 2019; Saratxaga et al 2021).

Our study suffers from some limitations, starting with 
our OCT system, whose speed and memory capacity placed 
constraints on image quality and scan size, as time is limited 
when working with fresh tissues. As OCT technology is rap-
idly evolving, new systems are continually being produced, 
offering higher speed, resolution, and SNR. Utilizing such 
a system in future work would allow us to overcome some 
of these problems. Moreover, although Xception performed 
well in distinguishing liver tissue from CRLM, an increas-
ing loss was observed over the epochs of most CV runs, 
indicating overfitting (Cawley and Talbot 2010). Addition-
ally, the F1-scores varied greatly within individual CV runs, 
which suggests a high dependence on the distribution of the 
training and validation data split. These problems could be 
overcome by training the CNN on a larger dataset. Finally, 
using a larger or external test dataset (such as from another 
clinic or research group) would have also strengthened our 
results (Beam and Kohane 2018; Esteva et al. 2019; Kelly 
et al. 2019; Aggarwal et al. 2021). However, as already men-
tioned, there is little available data on OCT in liver tissues.

Despite its limitations, our study showed promising 
results as a proof of concept, with the potential for develop-
ment into future clinical applications. These include quick 
intraoperative examination of liver resection margins, which 

would reduce the number of frozen sections and total opera-
tion time (Moller et al. 2021). A key obstacle is the differ-
entiation of benign lesions (such as ductular proliferations, 
von Meyenburg complexes or hemangiomas) or scarred liver 
tissue from clinically relevant malignant lesions. This is cru-
cial for the correct definition of resection margins as tumor-
free and can be challenging under real-life frozen section 
conditions (Moglerr et al. 2012; Pittman and Yantiss 2018). 
For these challenges to be overcome, the algorithm must 
be trained on a larger dataset, encompassing diverse tissue 
types and pathologies, as well as mixed-tissue scans. This 
will be the aim of further ex vivo studies, eventually moving 
to the in vivo domain.

Conclusions

This ex vivo study on human liver specimens showed that 
the Xception CNN can differentiate between healthy liver 
parenchyma and CRLM in OCT images, with a high sensi-
tivity and specificity. This could lead to quick and accurate 
detection of tumors in vivo, for example in the intraopera-
tive examination of resection margins during liver surgery. 
Further studies are necessary in this area, especially moving 
from the ex vivo to the in vivo setting.
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