
Vol.:(0123456789)1 3

Journal of Cancer Research and Clinical Oncology (2022) 148:2169–2186 
https://doi.org/10.1007/s00432-022-04028-8

REVIEW – CANCER RESEARCH

Current trends of targeted therapy for oral squamous cell carcinoma

Hongjiao Li1 · Yao Zhang1 · Mengmeng Xu1 · Deqin Yang1 

Received: 18 January 2022 / Accepted: 15 April 2022 / Published online: 2 May 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Oral squamous cell carcinoma (OSCC) is a malignant disease in the world which has a profound effect on human health 
and life quality. According to tumor stage and pathological diagnosis, OSCC is mainly treated by combinations of surgery, 
radiotherapy and chemotherapy. However, traditional treatment methods suffer from some limitations, such as systemic 
toxicity, limited therapeutic effect and drug resistance. With the rapid development of nanotechnology, nanodrug delivery 
systems (DDSs) and intelligent DDSs have been widely used in targeted therapy for OSCC. Meanwhile, the newly developed 
therapeutic techniques such as immunotherapy, gene therapy and bionic technology provide the possibility to realize the 
active targeted therapy. Here, the latest advances of target therapy for OSCC are reviewed, and their therapeutic remarks, 
current limits and future prospects are also systematically interpreted. It is believed that active and passive targeted therapies 
have great potentials for clinical transformation and application of OSCC, which will greatly improve human quality of life.

Keywords Oral squamous cell carcinoma · Targeted therapy · Drug delivery system · Nanoplatforms · Treatment of oral 
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Introduction

Head and neck cancer, developed in the mucosal lining of 
the upper-aerodigestive tract, is a tumor that arises in the 
oral cavity, oropharynx, hypopharynx, and larynx, ranks 
top ten of all cancers. A majority of head and neck can-
cers are squamous cell carcinomas (SCCs) and the 5-year 
survival rate is approximately 50% (van Harten and Brak-
enhoff 2021). OSCC, constituting 48% of head and neck 
cancer cases, refers to tumors that occur at the lips, gums, 
tongue, mouth, and palate, while pharyngeal squamous cell 
carcinoma (PSCC) comprises cancers of the tonsils, base of 
tongue, soft palate, and uvula (Chen et al. 2021; Nakashima 
et al. 2017; Tshering Vogel et al. 2010). OSCC and PSCC 
comprise the most common subtype of head and neck squa-
mous cell carcinomas (HNSCC) (Torre et al. 2015). Even 
though anatomically adjacent to each other, a growing body 
of data prove that OSCC is significantly different from other 

subtypes of HNSCC from different perspectives. OSCC is 
mainly associated with smoking and betel nut consumption, 
while the incidence of PSCC is on the rise in recent dec-
ades due to chronic latent infections of human papilloma-
virus (HPV) and 85–96% are caused by HPV-16 infections 
(Hussein et al. 2017; Sturgis and Cinciripini 2007). From 
molecular biology perspective, OSCC, PSCC, and laryn-
geal squamous cell carcinoma (LSCC) show significant dif-
ferences in genetic change patterns. In general, PSCC and 
LSCC have more copy number aberrations per tumor than 
OSCC. Different chromosome aberrations may play a role 
in the occurrence and development of different subgroups of 
HNSCC (Huang et al. 2002). Besides, in the direct compari-
son of oral and pharyngeal tumors, 46 miRNAs were found 
to be differentially expressed, and there were differences in 
miRNA expression patterns between oral and pharyngeal 
normal epithelium and SCCs (Johnson et al. 2020). In terms 
of angiogenesis, due to the differential expression of vascu-
lar endothelial growth factor (VEGF), OSCC and PSCC are 
clinically invasive compared with LSCC (Boonkitticharoen 
et al. 2008). Oral cancers may develop from some prema-
lignant dysplastic lesions, such as  leukoplakia, erythropla-
kia and lichen planus, while patients with advanced-stage 
HNSCC without a clinical history of a premalignancy (Ker-
awala et al. 2016; Montero and Patel 2015). Therefore, oral 
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cavity and larynx cancer can be diagnosed at an early stage 
because patients perceive mass lesions and symptoms that 
interfere with eating and speaking. In contrast, due to its hid-
den anatomical location, the oropharyngeal primary tumor 
usually presents symptoms at a later stage which poses a 
great challenge to clinical treatment and prognosis. Accord-
ing to the stage of the disease, oral cancer is usually treated 
with surgical resection, followed by chemotherapy or radio-
therapy plus radiation. Chemoradiation has been the main 
treatment for pharyngeal or laryngeal cancer (Johnson et al. 
2020). However, all these modalities have nonnegligible 
sides and adverse effects. For example, surgery is the most 
effective method for the treatment of OSCC, but surgery 
trauma significantly affects the functions and esthetics of 
the oral and maxillofacial region. Besides, chemotherapy 
can bring about hair loss, nausea, vomiting, and infections, 
while radiation therapy can cause transient or permanent 
damage to healthy tissues and severely affect the quality of 
life (Argiris et al. 2008; Zhang et al. 2020). Moreover, about 
one-third of patients are still at risk of recurrence and resist-
ance to radiotherapy and chemotherapy after receiving these 
traditional treatments, which poses a serious threat to public 
health (Greenberg et al. 2003).

With recent advances in nanotechnology, DDSs have 
been widely used in passive targeted therapy for OSCC. 
Owing to the abnormal and high porosity of tumor blood 
vessels, DDSs can pass through high permeability tumor 
vessels and stay there without being cleared quickly, which 
is named enhanced permeability and retention (EPR) effect 
(Greish 2012; Nakamura et al. 2016). Through EPR effect 
or by targeting active modifications, DDSs enable targeted 
drug delivery and thus have been widely explored in OSCC 
therapy (Greish 2012; Wu et al. 2015). Recently, a new 
generation of DDSs with tumor environmental stimulus 
response have been applied to OSCC treatment (Kalaydina 
et al. 2018; Ketabat et al. 2019). In response to the unique 
tumor microenvironment (TEM) stimuli, these smart DDSs 
can achieve specific drug delivery and release, improving 
treatment effect and reducing side effects (Li et al. 2019a, 
b). Besides, low pH, high levels of reactive oxygen species 
(ROS), up-regulated antioxidant capacity and overexpres-
sion of specific enzymes and receptors in tumor areas pro-
vide another opportunity for targeted therapy of OSCC. 
Although TME has their unique characteristics compared 
with normal conditions, the uncontrollable and unstable 
nature of TEM limits the application of internal stimu-
lus–response DDSs. Some recently developed novel active 
targeted therapies, such as gene therapy and immunother-
apy, have shown promise as an additional treatment option 
in oral cancer (Marcazzan et al. 2018; Veigas et al. 2021). 
Gene therapy has the potential to target cancer tissues while 
preserving normal tissue. This strategy is useful for recur-
rent and adjuvant therapy for OSCC. Nevertheless, gene 

delivery and transfection efficiency need to be optimized 
before this technology can be used in clinic. Immunotherapy, 
a recently developed modality, can prevent the development 
of OSCC by blocking the pathway that cancer cells escape 
from the immune system or enhancing the immune response 
of patients against tumor cells (Cheng et al. 2019). Immuno-
therapy for oral cancer target multiple immune processes and 
key checkpoints, such as cytotoxic T lymphocyte-associated 
antigen-4 (CTLA4) and programmed death (PD-1) and its 
ligand (PD-L1) (Veigas et al. 2021). However, only a small 
percent of patients perceive clinical benefit.

Here, we conducted a literature review on current trends 
of targeted therapy for OSCC. Our review is divided into the 
following three parts: the common methods of passive and 
active targeted therapy for OSCC are summarized, respec-
tively. Based on previous literature we show the current 
trends and several future prospects in OSCC therapy.

Passive targeted therapy of OSCC

As tumor cells metabolize vigorously and need more nutri-
ents than normal cells, VEGF and other factors are secreted 
in tumors to promote angiogenesis. Compared with that of 
normal vessels, the endothelial gap of neovascularization is 
larger, which facilitates the transport of macromolecules to 
tumor tissues through blood vessels. In addition, the lack 
of lymphatic vessels in the tumor leads to lymphatic reflux 
asphyxia. In this dual case, macromolecules or nanoparticles 
(NPs) accumulate in the tumor tissue through the EPR effect, 
which is the basis of passive targeted therapy of OSCC.

Nanoparticles‑based drug delivery 
for OSCC‑targeted therapy

Anticancer drugs, such as cisplatin (CDDP), paclitaxel 
(PTX),5-fluorouracil (5-FU), and doxorubicin (DOX), are 
used alone or in combination for OSCC treatment (Ketabat 
et al. 2019). However, some shortcomings, including high 
toxicity, limited solubility, permeability and poor biocom-
patibility, have prevented their further clinical application 
(Kruijtzer 2002; Zhang et al. 2020). To address the issues 
mentioned above, there is a great demand for the targeted 
DDSs with the potentials to improve drug bioavailability 
and biological distribution at the site of the primary tumor. 
Due to the excellent physical and chemical characteristics, 
NPs can be tailored to achieve targeted drug delivery with 
improved biocompatibility and therapeutic efficiency, reduc-
ing its systemic toxicity of oral cancer treatment. Commonly 
used NPs include polymeric NPs, liposomes, gold NPs 
(AuNPs), and hydrogels (Fig. 1).
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Polymeric nanoparticles for OSCC‑targeted therapy

The ideal drug carriers should have high loading capacity, 
good biocompatibility, biodegradability, and site-specific 
administration, and avoid adverse drug reactions. Naturally 
sourced or synthetical polymers, such as polysaccharides, 
poly (lactic acid) (PLA), polycaprolactone (PCL), poly 
(glycolic acid) (PGA), and polyethylene glycol (PEG) have 
received much attention. Through encapsulating, absorbing 
or bounding, therapeutic agents can be entrapped in polymer 
or adhered to their surface. These submicron-sized polymer 
NPs can improve the effectiveness, bioavailability, and solu-
bility of drug molecules and can further provide targeted 
delivery by modifying with active targeting moieties. For 
example, to increase the antitumor effects and reduce the 
toxicity problems, based on a PEG–poly (glutamic acid) 
block copolymer, Endo et al. prepared a kind of polymeric 
NPs carrying CDDP. With a prolonged circulation time and 
EPR capability, CDDP accumulates in an orthotopic tongue 
cancer model and showed equivalent antitumor effects (Endo 
et al. 2013). Other studies also prepared NPs composed of 
polymers, including poly (lactic-co-glycolic acid) (PLGA), 
PEG, polyethylenimine (PEI), PCL, and N-vinylpyrrolidone/
acrylic acid, and then loaded with photosensitizer or radio-
sensitizing drug for oral cancer treatment (Ma et al. 2017; 
Parul et al. 2018; Pornpitchanarong et al. 2019; Ren et al. 
2017). Besides, to achieve the targeted therapy, Wang et al. 
formulated CDDP-loaded PLGA-NPs and further conjugated 

them with NR7 peptide, which can specifically bind to the 
epidermal growth factor receptor (EGFR) domain. In EGFR 
receptor-overexpressed OSCC cancer cells, the feasibility 
of using NR7 peptide to achieve superior anticancer effects 
and enhanced cytotoxic effect has been proved (Wang et al. 
2015). Similarly, Wang et al. formulated PEGylated doxo-
rubicin (PD) NPs and further modified by HN-1 peptide 
which can specifically bind to and be efficiently internalized 
in HNSCC cells. The in vitro and in vivo results showed that 
PD NPs modified with HN-1 peptide have enhanced tumor-
targeting properties and exhibited significantly higher cellu-
lar uptake and toxicity (Wang et al. 2017a, b). Wu et al. also 
reported modifying polymeric NPs by folic acid (FA), which 
can bind very firmly to folate receptors over-expressed in 
oral cancer, and both the in vitro and in vivo results proved 
hybrid NPs are a controllable and targeted anticancer drug 
delivery system to OSCC (Wu et al. 2015). At the same 
time, polymeric NPs are also used for the delivery of RNA 
interference in the therapy of OSCC, which will be covered 
in more detail later.

Another ideal and biocompatible nanocarrier is hyalu-
ronic acid (HA), one of the main components of the extra-
cellular matrix (Huang et al. 2014). Moreover, HA is one 
of the ligands of CD44 which was highly expressed on the 
OSCC cellular membranes and is closely associated with 
tumor growth, proliferation, and metastasis (A et al. 2015; 
Cai et al. 2014). In 2019, HA was used to encapsulate CDDP 
and organic molecule, TQTPA [4,4ʹ-((6,7-bis(4-(hexyloxy)

Fig. 1  Different drug delivery systems for oral squamous cell carcinoma: (a) polymeric nanoparticles; (b) liposomes; (c) gold nanoparticles; (d) 
hydrogels
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phenyl)-[1,2,5]thiadiazolo [3,4-g]quinoxaline-4,9-diyl)
bis(thiophene-5,2-diyl))bis(N,N-diphenylaniline)], form-
ing new tumor-targeted NPs (HT@CDDP). Through in vivo 
study, Wang et al. proved that HT@CDDP NPs could accu-
mulate at tumor sites through CD44-mediated endocyto-
sis on the surface of OSCC and exert improved antitumor 
effect in OSCC orthotopic models (Wang et al. 2019a, b, 
c, d, e). Besides, chitosan NPs are promising cancer drug 
vehicles and other drugs such as glycyrrhetic acid, ellagic 
acid, CDDP, and curcumin have been encapsulated for local 
application of oral tumors, avoiding biological inactivation 
of the drug (Arulmozhi et al. 2013; Cacciotti et al. 2018; 
Goldberg et al. 2014; Mazzarino et al. 2015). In addition, 
chitosan may increase the residence time of the drug device 
at the absorption site by electrostatic interaction with the 
negatively charged mucosal surface, showing prospect appli-
cation in drug delivery (Zheng et al. 2021). Collectively, the 
polymer nanoplatform can improve the site-specific distri-
bution of chemotherapeutic drugs, which show promise for 
application in clinical practice.

Liposomes for OSCC‑targeted therapy

Liposomes are variable-sized artificial vesicles made of 
amphiphilic phospholipid bilayers, which can encapsulate 
water-soluble and hydrophobic drugs into the selected tis-
sues. Liposome carriers can significantly improve the low 
water solubility of drugs and enhance the passive targeting 
ability of tumors based on EPR effects to achieve effective 
drug delivery. However, drug-loaded liposomes are so eas-
ily recognized and cleared by the reticuloendothelial system 
(RES) that some biocompatible polymers such as PEG have 
been used to modify the surface of liposomes.

In 2019, El-Hamid et al. investigated the apoptotic effect 
of DOX and PEGylated liposomal doxorubicin (PLD) on 
Cal-27 cells (Ibrahim et al. 2019). PLD performed a higher 
apoptotic effect on Cal-27 cells due to the increased stabil-
ity of dox after liposome encapsulation and enhanced drug 
accumulation in tumors through the EPR effect (Kaminskas 
et al. 2012; Seynhaeve et al. 2013). Narayanan et al. coen-
capsulated PEGylated liposomal nanocarrier formulation of 
DOX and resveratrol and evaluated the anticancer efficacy in 
oral cancer, which proved that the effect of drug combina-
tion encapsulated in the liposomal formulation was better 
than that of free drugs (Mohan et al. 2016). Meanwhile, a 
liposomal nanoplatform formulation of photosensitizer and 
anticancer drugs also has great potentials for oral cancer 
diagnosis and treatment. Wei et al. integrated photosensitizer 
indocyanine green (ICG) and evodiamine into a liposomal 
nanoplatform against OSCC. In vitro and in vivo studies 
proved that the theragnostic liposomes showed enhanced 
inhibition on tongue tumor (Wei et al. 2021). Other drugs, 
such as curcumin, paclitaxel, carboplatin, and CDDP also 

have been incorporated in the liposomes and showed great 
effect in inducing the apoptosis of cancer cells (Gusti-Ngu-
rah-Putu et al. 2019; Zhang et al. 2015). In summary, with 
characteristics of good biocompatibility and controlled drug 
release, liposomes are widely used as drug delivery system 
for the therapy of OSCC. After modification by a polymer 
coating, NPs obtained increased the stability and blood cir-
culation time, reaching the target sites of OSCC through 
leaky blood vessels and pressure in tumor-specific organs. 
Despite promising preclinical evidence for the use of lipo-
some in oral cancer therapy, some limitations prevent the 
use of liposomes in clinical practice, mainly due to their lim-
ited capacity to deliver drug. Also, the underlying immune 
response in the organism cannot be ignored.

Gold nanoparticles for OSCC‑targeted therapy

Gold NPs have been widely used in biomedicine fields due 
to their good biocompatibility, tunable optical properties, and 
high tissue permeability. In the nanometer size range, gold 
NPs have different geometric shapes, such as nanoshells, 
nanospheres, nanocages, nanorods, and nanocrystals. AuNPs 
in these shapes can be used as carriers to achieve delivery of 
drugs to tumor cells and exert therapeutic effects. Some studies 
reported AuNPs can limit cancer cell proliferation and improve 
the efficacy of chemotherapy and radiotherapy (Mackey and 
El-Sayed 2014; Teraoka et al. 2018; Wu et al. 2011). Pho-
tosensitizer, such as rose bengal (RB) and sulfonated alu-
minum phthalocyanines, have been combined with AuNPs 
to obtain synergistic effect of photothermal therapy (PTT) 
and PDT on OSCC (Chu et al. 2016; Wang et al. 2014). To 
obtain enhanced antitumor efficacy, AuNPs were always cou-
pled with specific OSCC-homing ligands, such as antibodies, 
aptamer, or peptides. For example, through folate-mediated 
active targeting, folate–gold bilirubin (FGB) NPs can deliver 
bilirubin (a potential anticancer agent) to tumor sites and 
inhibit tumor growth (Rathinaraj et al. 2020). Given the fact 
that PDPN is a transmembrane protein and highly expressed 
in several squamous cell carcinomas, Liu et al. prepared a 
PDPN antibody–AuNP–DOX system and performed a com-
bined chemo-photothermal therapy against oral cancer. PDPN 
antibody-modified AuNPs can achieve accumulation of the 
drug and NPs in the tumor site actively, thus realizing the syn-
ergistic chemo-photothermal therapy against oral cancer (Liu 
et al. 2020). Melancon et al. have developed a multifunctional 
superparamagnetic iron oxide coated with gold nanoshell 
(SPIO@Au NS), which were further modified with the C225 
monoclonal antibody against EGFR overexpressed in more 
than 90% of OSCC. This system can be selectively heated 
up and induce tumor destruction (Melancon et al. 2011). In 
addition, other studies also reported that upconversion nano-
particles (UCNPs) combined with gold nanorod (AuNR) can 
enhance plasmon-PDT (Chen et al. 2016; Chen et al. 2015a, 



2173Journal of Cancer Research and Clinical Oncology (2022) 148:2169–2186 

1 3

b). With its unique photothermal function and higher photo-
stability, AgNPs have been widely used in the diagnosis and 
treatment of OSCC. Since AgNPs are difficult to biodegrade 
and remove in vivo, it is of great significance to study methods 
to promote the removal of non-metabolizable AgNPs, which 
will further promote the application of AgNPs in drug deliv-
ery, photoacoustic imaging, and PTT therapy for OSCC.

Hydrogels for OSCC‑targeted therapy

As a three-dimensional porous structure, hydrogels not only 
provide an ideal environment for cell adhesion, prolifera-
tion and metabolism, but harbor some advantages in targeted 
drug delivery (Yan et al. 2020). Injection of various hydro-
gel formulations directly into the site of injury can be used 
to locally target drug delivery, avoiding small NPs injected 
intravenously into the blood circulation. Besides, in con-
trast to other carriers, hydrogels provide controlled release 
management of hydrophilic and hydrophobic agents as well 
as other biomolecules. Li et al. successfully developed a 
novel poly (ethylene glycol)–poly (ε- caprolactone)–poly 
(ethylene glycol) (PEG–PCL–PEG,PECE) hydrogel loaded 
with suberoylanilide hydroxamic acid (SAHA) and CDDP. 
When it was injected into mice, the drug delivery system 
showed continued release of SAHA and CDDP in vivo, 
which improved the therapeutic effect compared with the 
simple superposition of SAHA and CDDP (Li et al. 2012). 
Tan et al. prepared a nanohybrid in which metal organic 
frameworks (MOFs), DOX and celecoxib were coloaded into 
thermosensitive hydrogels to act against oral cancer. The 
resulting hybrid nanocomposite showed positive outcomes 
in achieving high-efficiency drug loading, pH-responsive 
release and enhanced toxic effects against oral cancer cells 
(Tan et al. 2020). Additionally, drugs-loaded hydrogel can 
also achieve coordinated treatment of OSCC with chemo-
therapy and phototherapy. For example, Wang et al. synthe-
sized matrix metalloproteinase (MMPs)-responsive hydro-
gel, incorporated with DOX and ICG. Results showed that 
DOX and ICG were released effectively in the presence of 
MMPs, greatly enhancing the retention of nanomaterials at 
the tumor site, thus killing oral cancer cells with 808 nm 
near-infrared (NIR) irradiation (Wang et al. 2019a, b, c, d, 
e). In a word, hydrogel has realized the targeted therapy of 
OSCC in preclinical stage through specific site injection and 
controllable drug release. But some obstacles such as the 
high cost, initial burst, and poor mechanical properties limit 
further use.

Stimuli‑responsive drug delivery for OSCC‑targeted 
therapy

The occurrence and development of tumor is a slow and 
dynamic process. TEM exhibits some unique characteristics 

during cancer development, including lower pH, overexpres-
sion of specific enzymes, higher levels of ROS and antioxi-
dant up-regulation, which enables targeted therapy for oral 
cancer through stimulus-responsive drug delivery system 
(Koontongkaew 2013; Weinberg et al. 2019). In the past few 
years, many studies have fabricated novel stimuli-responsive 
DDSs for oral cancer. Moreover, these stimuli-responsive 
DDSs can be further modified to produce multifunctional 
DDSs, which can be used for active drug administration, 
integrated diagnosis and combination therapy.

pH‑responsive drug delivery for OSCC‑targeted therapy

As known, the pH of normal tissue is about 7. 4. In the 
TEM, due to hypoxia and high anaerobic glycolysis rate, the 
production of acidic metabolites of tumor cells is increased, 
resulting in an acidic environment with pH of about 6. 5. 
Although acidic TEM increases the risk of local invasion, 
metastasis and therapeutic drug resistance, it also provides 
an opportunity for the application of pH-responsive drug 
delivery (Fig. 2A).

In the treatment of OSCC, the mechanism of pH-respon-
sive drug delivery system can be divided into two categories 
(Li et al. 2019a, b; Taghizadeh et al. 2015). One is that in 
response to varied pH values, the polymeric systems con-
taining ionizable groups change conformation or dissolve, 
leading to controlled-drug release. For example, based on 
hollow mesoporous  MnO2 nanoshells, a pH-sensitive intel-
ligent “theranostic” platforms was prepared, which can 
decompose in the acidic TME and release docetaxel and 
CDDP, showing a series of antiangiogenic and oxidative 
antitumor reactions in OSCC treatment (Zhou et al. 2021). 
Other delivery systems for achieving pH-responsive drug 
release have been reported such as polymers, graphene 
quantum dots and hydrogels (Li et al. 2017; Tan et al. 2020; 
Wei et al. 2018). Another pH-responsive DDS relies on the 
breaking of acid-sensitive bonds attached on polymers to 
trigger the release of anticancer drug. For example, in recent 
two studies, nanomedicines were effectively released via the 
breaking of acid-labile amide bond in acidic condition, lead-
ing to a promising therapeutic performance (Li et al. 2021; 
Liu et al. 2020). Similarly, Saiyin et al. also reported that 
DOX was encapsulated into the carriers by acylhydrazone 
linkages, which broke in TEM, achieving drug release and 
exerted an increased proliferation inhibition of tumor cells 
(Saiyin et al. 2014).

Matrix metalloproteinases‑responsive drug delivery 
for OSCC‑targeted therapy

MMPs, a family of zinc-containing endopeptidases, play an 
important role in the degradation of extracellular matrix pro-
teins (Kessenbrock et al. 2010). Normally, the concentration 
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and activity of MMPs are very low in healthy tissues, but 
they are up-regulated under many pathological conditions, 
including cancer. This process is usually associated with 
cancer initiation, growth, and metastasis (Coussens et al. 
2002; Gabriel et al. 2011). Specifically for OSCC, many 
MMPs such as MMPs 2, MMPs 7, and cathepsin B are 
considered closely related to cancer invasion, progression, 
recurrence, and metastasis (Aznavoorian et al. 2001; Kawa-
saki et al. 2002). At the same time, MMPs are also a trig-
ger of stimulus responsive DDSs in recent years (Yao et al. 
2018) (Fig. 2B).

For example, based on engineered human ferritin heavy 
chain, Damiani et al. constructed a novel nano-ferritin com-
plex, which can efficiently entrap and deliver DOX to can-
cer cells. The carrier contains a short motif sequence and 
is responsive to MMPs, triggering drug delivery (Damiani 
et al. 2017). Similarly, in another study, DOX was encap-
sulated in biodegradable micelles and further loaded into 
injectable HA hydrogel cross-linked by MMP-2-responsive 
peptide (GCRDGPQGIWGQDRCG). The DDSs exhibited 
sustained release of DOX and cytotoxicity against OSCC (Li 
et al. 2019a, b). Others also reported that MMPs-responsive 
DDSs also provide a combined chemotherapy and photo-
therapy for the treatment of OSCC (Tan et al. 2020; Taras-
soli et al. 2016; Wang et al. 2019a, b, c, d, e). Tarassoli 
et al. developed ICG-containing polyglutamate (PGA) NPs, 

which can be digested by cathepsin B, a matrix metallopro-
teinase overexpressed in OSCC. Upon NIR exposure, the 
DDSs demonstrated improved cytotoxicity and antitumor 
effect in vitro (Tarassoli et al. 2016). Therefore, it is a great 
potential to have more various kinds of MMPs-responsive 
DDSs for oral cancer therapy in future.

Reactive oxygen species (ROS)‑responsive drug delivery 
for OSCC‑targeted therapy

ROS, derived from mammalian organelles and NADPH oxi-
dase, are oxygen-carrying active molecules and high concen-
tration of ROS have been associated with various types of 
cancers, including oral cancer (Alfadda and Sallam 2012). 
Therefore, it is promising to construct ROS-responsive 
DDSs to realize tumor site-specific drug release and targeted 
therapy of oral cancer.

The ROS-responsive DDSs carriers were commonly 
combined with thioketal (TK) linker that would break in 
the presence of intracelluar ROS (Fig. 3A). For instance, 
Li et  al. developed an ROS-triggered TK-containing 
linker and conjugating RGD-containing peptide drug 
delivery nanoplatform. The NPs showed ROS-triggered 
drug release and significant inhibition of Cal-27 cells (Li 
et al. 2016a, b). Similarly, other studies also constructed 
TK linked DDSs loaded with DOX for OSCC therapy (Li 

Fig. 2  Illustration of internal PH-responsive and MMPs-responsive DDSs commonly applied for OSCC therapy in recent research
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et al. 2016a, b; Wang et al. 2019a, b, c, d, e). To achieve 
a tumor-targeting effect, Wang et al. modified the DDSs 
with FA. With the site-specific release of DOX, the DDSs 
induced the apoptosis of Cal-27 cells, which exhibited an 
enhanced antitumor efficacy (Wang et al. 2019a, b, c, d, 
e). In addition to being used for chemotherapy delivery for 
OSCC, ROS-responsive DDSs have also been reported to 
be combined with light or pH response to achieve effective 
treatment for OSCC. In 2019, Wang et al. designed a poly-
meric NPs system containing both chemotherapeutic agent 
and photosensitizer for OSCC therapy. Upon the inner 
ROS stimulus, the TK link was broken and DOX released. 
Meanwhile, ROS generated by PDT further triggered the 
degradation of nanocarriers to prompt the release of drugs, 
which induced an added inhibitory effect on tumor growth 
(Wang et al. 2019a, b, c, d, e). In 2018, Jin et al. fabricated 
a novel trimodal photochemotherapy nanoplatform based 
on mesoporous silica NPs (MSNs)–Fe–AuNPs. Under 
low pH and a considerable amount of  H2O2 tumor condi-
tion, the NPs trigger the three therapeutic actions and the 
tumor can be inhibited after 2 weeks of treatment (Jin et al. 
2018). However, the research of ROS-responsive DDSs in 
OSCC therapy is still limited. Future studies need to fur-
ther explored in in vivo applications and more controlled 
in situ ROS levels.

Redox‑responsive DDSs drug delivery for OSCC‑targeted 
therapy

As described above, the production of ROS in tumor areas 
induced a high level of oxidative stress, which led to com-
pensatory up-regulation of antioxidants. It is reported that 
the concentration of glutathione in tumor tissues is higher 
than that in normal tissues, and glutathione (GSH)/glu-
tathione disulfide (GSSG) coupling is the most ample redox 
coupling in cancer cells (Guo et al. 2018). In recent years, 
the wide study of redox-responsive DDSs has provided 
another new strategy for the treatment of OSCC (Fig. 3B). 
Among all redox-responsive bonds, disulfide bonds and dis-
elenide bonds are most broadly involved redox-responsive 
linkages, which could be cleaved by GSH, and induced con-
trolled drug release (Huo et al. 2014). For example, Fan et al. 
developed GSH-sensitive and FA-targeted NPs-entrapped 
paclitaxel (FA–PEG–S–S–PCL@PTX, FA-NPs). In vitro 
experiments showed PTX would be site specifically released 
due to disulfide bonds breaking by redox reaction, while 
FA-NPs can accumulate in tumor and exhibited potent anti-
tumor effects in vivo (Fan et al. 2020a, b). Similarly, Zhang 
et al. prepared a pH/GSH combined responsive drug delivery 
system by molecular imprint technique. In this study, with 
DOX as the template, surface molecular imprinting polymer 

Fig. 3  Illustration of internal ROS-responsive and redox-responsive DDSs commonly applied for OSCC therapy in recent research
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(SMIP) was  prepared on the surface of MSN, which was 
degraded under high concentration of GSH and acidic con-
ditions, leading to controlled release of DOX. Results con-
firmed that DOX in SMIP can invade Tca-8113 cancer cells 
and inhibit its growth (Zhang et al. 2016). The application 
of multifunctional redox-responsive DDSs in oral cancer 
should be further studied in future.

Light‑responsive DDSs drug delivery for OSCC‑targeted 
therapy

Among various stimuli used for controlled drug release, 
light-responsive DDSs have been extensively studied with 
characteristics of non-invasive feature and high spatial and 
temporal precision. In recent years, light stimulus-respon-
sive therapies have exhibited promising treatment efficacy in 
many preclinical animal studies and clinical trials. The light-
responsive DDSs mainly included PDT and PTT (Fig. 4).

PDT has been regarded as an important method for OSCC 
treatment, with minimal invasiveness, low systemic toxicity, 
and negligible drug resistance (Meulemans et al. 2019). In 
the PDT process, under light with specific wavelength, pho-
tosensitizers are activated and then oxygen converted into 
ROS such as singlet oxygen in cells, resulting in apoptosis, 
necrosis or autophagy. To achieve favorable PDT, two gen-
erations of photosensitizers, including complex mixtures of 

porphyrins and 5-aminolevulinic acid have been developed, 
exhibiting their good therapy effect for OSCC (Fan et al. 
2020a, b). However, some disadvantages such as hypoxia-
induced drug resistance and associated toxicity have limited 
the application of PDT. At present, more and more studies 
have developed third-generation photosensitizers, that is, 
using DDSs to load photosensitizers. A number of nano-
carriers have been applied for site-specific drug delivery of 
OSCC, such as carbon-based NPs, AuNPs, magnetic NPs, 
lipid-based NPs and other copolymer NPs (Fan et al. 2020a, 
b).

Based on the fact that cancer cells are more sensitive to 
temperature, PTT is the recognized effective strategy for 
cancer therapy. On locally illuminating the tumor areas, 
PTT agents effectively change light energy into heat, which 
in turn generates a higher temperature in tumor cells and 
“burn” them efficiently. Many optical absorbing nanomateri-
als have been used in PTT therapy. Specifically, AuNPs are 
commonly applied in PTT (Jiang et al. 2015). However, due 
to the defense mechanism of cellular heat-shock response 
and the non-targeted selectivity of nanomaterials, the thera-
peutic effect of PTT is not ideal. In 2016, Wang et al. pre-
pared a gold nanorod (GNRs)–siRNA platform by loading 
siRNA oligos targeting BAG3, an efficient gene to block 
the heat-shock response, which showed improved PTT effi-
ciency (Wang et al. 2016).

Fig. 4  Illustration of internal light-responsive DDSs commonly applied for OSCC therapy in recent research
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Some studies proved that the combination therapy can 
increase the clinical efficacy of OSCC treatment through 
potential synergies. For example, in 2014, Wang et al. 
conjugated GNRs with RB, applying PTT and PDT into 
the same platform. With the increase of RB uptake by 
oral cancer cells, RB–GNRs showed improved photody-
namic efficacy. In vivo experiments showed RB–GNRs 
harbored synergetic PDT–PTT effects better than PDT or 
PTT alone (Wang et al. 2014). By applying gold nanor-
ings and sulfonated aluminum phthalocyanine photosensi-
tizer to OSCC treatment, Chu et al. also demonstrated the 
improved therapeutic effect of PDT–PTT (Chu et al. 2016). 
Ren et al. encapsulated ICG and organic compound (C3) 
in PEG–PCL, forming hybrid NPs (PEG–PCL–C3–ICG 
NPs). Under the irradiation of 808 nm laser at the tumor 
sites, the PEG–PCL–C3–ICG NPs inhibited the tumor 
growth by the PDT–PTT synergistic effect (Ren et  al. 
2017). Except the treatment of PTT and PDT, some stud-
ies have also confirmed the role of phototherapy com-
bined with chemotherapy or gene therapy in OSCC-tar-
geted therapy. For example, to improve the inefficiency of 
chemotherapy, Wang et al. constructed a novel DDS which 
simultaneously encapsulated ICG and CDDP. Under NIR 
irradiation, ICG–CDDP coordination bonds break, and 
ICG and CDDP are released into OSCC tissues, resulting 
in the synergistic therapeutic functions of PDT, PTT, and 
chemotherapy (Wang et al. 2019a, b, c, d, e). Based on 
MMPs-responsive DDSs, Wang et al. also constructed a 
collaborative nanotherapy platform integrating the effects 

of PTT, PDT and chemotherapy, which achieved good 
antitumor efficacy (Wang et al. 2019a, b, c, d, e).

In a short, based on the OSCC environment, which is 
different from normal tissue, stimulus-responsive targeted 
therapy has made progress in preclinical research. However, 
the unstable and uncontrollable tumor environment also lim-
its the wide application of the internal stimuli-responsive 
DDSs. Therefore, to improve the sensitivity and controllabil-
ity of stimulus-responsive DDSs, more strategies are needed. 
Moreover, it may be a good choice to combine with external 
stimuli-responsive ability.

Active targeted therapy of OSCC

Compared with passive targeted therapy, active targeted 
therapy usually targets specific receptors on the surface of 
tumors, and actively recognizes specific targets on the sur-
face of nanocarriers through modified ligands, effectively 
enhancing the specificity and targeting of drugs. Active tar-
geting therapy, including immunotherapy, gene therapy and 
bionic technology, provides a new paradigm in the treatment 
of OSCC, which is illustrated in Fig. 5.

Gene therapy of OSCC

In recent years, gene therapy has been widely used as a treat-
ment for genetically inherited, monogenic disorders, espe-
cially in the field of oncology (Farmer et al. 2019). Several 

Fig. 5  llustration of active 
targeted therapy for OSCC
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general strategies have been utilized in OSCC treatment, 
including: (1) up-regulation of genes that inhibit tumor 
growth or down-regulation of genes that promote tumor 
growth; (2) delivery of small RNA-targeting drug resistance 
genes to protect chemotherapy; (3) “suicide” gene therapy. 
Ma et al. delivered Wnt-1 small interfering RNA (siRNA), 
which inhibits the expression of epithelial–mesenchymal 
transformation (EMT)-related genes into the cytoplasm of 
KB cells and effectively restricted the invasion and migra-
tion of cancer cells (Ma et al. 2017). Peng et al. studied the 
role of circRNA_0000140 in OSCC growth and metastasis. 
Both in vitro and in vivo results showed that circ_0000140 
could repress tumor growth, which was attributed to the fact 
that circ_0000140 combined with miR-31 can up-regulate 
the target gene LATS2 and affect the OSCC cellular EMT 
(Peng et al. 2020). Similarly, Liu et al. explored the role of 
circular RNAs in OSCC. They confirmed that knockdown 
of circIGHG can damage the expression of IGF2BP3 and 
attenuate the invasiveness of OSCC cells. Therefore, cir-
cIGHG can be used as a biomarker for early-stage diagnosis 
and is a great potential target for the treatment of OSCC 
(Liu et al. 2021). Wu et al. also found that MiR345 induces 
OSCC cell cycle arrest by inhibiting the expression of its 
target gene ZEB2, regulating OSCC development negatively 
(Wu et al. 2020a, b).

Multidrug resistance has always been a significant hurdle 
during cancer chemotherapy, so it is of great importance 
to prevent or reverse the effect of multidrug resistance in 
this process (Gottesman et al. 2002). Multiple drug resist-
ance protein 1 (MDR1) is a cell membrane protein which 
plays an important part in pumping foreign substances out 
of cells. Unfortunately, higher levels of MDR1 can also be 
detected in OSCC, leading to drug resistance and failure of 
cancer treatment. To avoid the effect of multidrug resistance, 
Wang et al. fabricated MSNs, encapsulated with DOX and 
MDR1-siRNA to block MDR1 expression, and then trans-
fected into cancer cells in vitro. MSNs could down-regulate 
the gene expression of MDR1 and induced the apoptosis of 
cancer cells (Wang et al. 2017a, b). Study showed that the 
expression level of long non-coding RNA urothelial cancer 
associated 1 (UCA1) was strikingly up-regulated and exerted 
an oncogenic effect in the progress of OSCC (Yang et al. 
2016). Fang et al. investigated the role of UCA1 in the pro-
gression of OSCC through siRNA targeting UCA1. Results 
proved that silencing UCA1 not only inhibited the migration 
and invasion of OSCC cells, but also promoted the early 
apoptosis in vitro and suppressed the tumor growth in vivo 
(Fang et al. 2017).

Suicide genes usually encode non-mammalian enzymes 
which can change non-toxic prodrugs into toxic metabolites. 
Inducing apoptosis of cancer cells by suicide gene is one 
of the methods of cancer gene therapy (Ren and Mei-Juan 
2009). To improve targeting efficiency, magnetic NPs have 

been widely used as vehicles for gene therapy (Ren and 
Mei-Juan 2009). In 2014, PEI-modified  Fe3O4 NPs were 
used to mediate transfection of OSCC by human-TRAIL 
gene driven with a human telomerase reverse transcriptase 
tumor-specific promoter (pACTERT-TRAIL) inducing apop-
tosis to observe its antitumor function in vitro and in vivo. 
Compared with conventional PEI/lipofectin, pACTERT-
TRAIL NPs harbored a higher transfection efficiency and 
mediated the killing of Tca-8113 cells (Ren and Mei-Juan 
2009). Given the unique expression of the SERPINB3 gene 
in OSCC, Wu et al. prepared a pSERPINB3-PE38KDEL 
toxin plasmid containing the SERPINB3 gene fragment and 
then studied the targeted inhibition of the plasmid in the 
treatment of OSCC. In vitro experiments proved that the 
pSERPINB3-PE38KDEL plasmid inhibited the proliferation 
and invasion of Tca-8113 cells and induced cell apoptosis, 
which may be a novel strategy for targeted OSCC gene ther-
apy (Wu et al. 2020a, b). To improve the transfer efficiency 
of suicide gene, Yu et al. prepared a hydrophilic–hydropho-
bic deblock copolymer based on PEG–poly (g-benzyl-lglu-
tamate) (PBLG), which was further loaded with the herpes 
simplex virus thymidine kinase (HSV-TK) gene. HSV-TK-
loaded PEG–PBLG NPs showed higher gene transfer effi-
ciency and a superior killing effect on Tca-8113 cells in vitro 
(Yu et al. 2008).

In addition, gene therapy combined with other therapies 
has shown synergistic effects in the treatment of OSCC 
(Wang et al. 2016, 2021). For example, Wang et al. pre-
pared chitosan NPs loaded with 5-aminolevulinic acid 
(ALA) photosensitizer and the GBAS gene plasmid DNA 
(shGBAS) to identify the effect of PDT and gene therapy for 
OSCC in vitro and in vivo. The resulting co-delivery sys-
tem displayed a stronger targeted anticancer effect on OSCC 
(Wang et al. 2021). PDT has been shown to promote hypoxia 
in tumor areas, leading to overexpression of angiogenic 
markers such as VEGF. In recent two studies, lipid-–cal-
cium–phosphate NPs (LCPNPs) were used to deliver HIF1α 
and VEGF-A siRNA to human squamous cell carcinoma cell 
lines, SCC4, or SAS-xenografted model. When combined 
with PDT, HIF1α siRNA LCP-NPs and VEGF siRNA LCP-
NPs both reduced tumor growth (Chen et al. 2015a, b; Leca-
ros et al. 2016). Besides, gene therapy was used to block 
the heat-shock protein response, improving the therapeutic 
effect of PTT in OSCC treatment (Wang et al. 2016). All in 
all, as a new promising clue and approach, a large number 
of cancer researches have been working on the development 
of gene therapy. Compared with traditional treatment meth-
ods, gene therapy provides a new basis for target therapy 
of OSCC from the molecular level. However, many chal-
lenges still remain before gene therapy can be applied to 
the clinic. For example, to achieve target gene introduction 
and improve transfection efficiency, suitable vectors are 
needed. Besides, it would be highly valuable to understand 
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theoretically and experimentally how the nanovectors trans-
fer the gene into target cells. Last but not least, the expres-
sion stability and long-term safety of existing gene therapy 
methods still need to be further studied. In the coming years, 
with the development of therapeutic gene and technologies 
relating to transfer-gene expression, gene therapy against 
OSCC will be used in the clinic.

Immunotherapy of OSCC

Recently, immunotherapy is considered as a promising 
method in the treatment of some cancers. Immune check-
point molecules, such as PD-1, and its ligands PD-L1 and 
CTLA-4, are the normal components of the immune sys-
tem, which play an important role in normal immunoregula-
tory pathways (Smyth et al. 2016). However, some immune 
checkpoint inhibitors (ICIs) targeting PD-1, PD-L1 and 
CTLA-4 are highly expressed in the tumor environment, 
and can block these inhibitory pathways, contributing to 
tumor-promoting immunosuppression. Avelumab is a fully 
human anti-PD-L1 IgG1 monoclonal antibody. When com-
bined with PD-L1, it can prevent its interaction with PD-1 
and inactivate T cells (Heery et al. 2017). Cetuximab is a 
human–mouse IgG1 monoclonal antibody and can inhibit 
endogenous ligand-activated receptors by binding to the 
extracellular ligand binding domain of EGFR, resulting in 
enhanced cell apoptosis, down-regulated cell proliferation, 
invasion, metastasis, and angiogenesis (Liu et al. 2019). 
Besides, cetuximab also down-regulates EGFR expres-
sion via internalizing and degrading receptors and thus cut 
off the downstream cascade signal (Vigneswara and Kong 
2018). ICIs can be combined with other therapeutics with 
complementary effects to improve the therapeutic effect 
(Chowdhury et al. 2018; Mahoney et al. 2015). Cetuximab, 
combined or not with cisplatin, showed significant tumor 
regression rates in platinum-refractory head and neck cancer 
patients (Baselga et al. 2005; Herbst et al. 2005). In addition, 
conjugated with therapeutic drugs, checkpoint inhibitors 
can also produce a cytotoxic effect on cancer cells (Ver-
morken et al. 2008). Huang et al. examined the effects of the 
anti-EGFR monoclonal antibody C225 on SCC cell lines. 
Results showed that C225 culture inhibited SCC prolifera-
tion in a time-dependent manner and increased its sensitivity 
to chemotherapy (Huang et al. 1999). Novaes et al. proved 
that PD-1 antibody treatment inhibited the progression of 
precancerous lesions to carcinoma in a 4-nitroquinoline 
1-oxide (4NQO)-exposed mouse OSCC model, and this 
inhibition was low in PD-L1 knockout mice treated with 
4NQO (de Oliveira et al. 2021). Further, when combined 
with radiotherapy, cetuximab improved survival in patients 
with locally advanced head and neck squamous cell car-
cinoma (Bonner et al. 2006). Due to the heterogeneity of 
OSCC patients, many risk factors, such as smoking and 

drinking, are involved in the occurrence and development 
of OSCC, so immunotherapy is not the preferred strategy for 
OSCC treatment. It has been proved that the benefits of ICIs 
are limited to a small number of patients. Therefore, eluci-
dating the mechanisms associated with immunotherapy and 
identifying predictive markers of response and resistance 
are critical to develop rational trial design in the new era of 
OSCC immuno-oncology.

Highly expressed markers for OSCC‑targeted 
therapy

Numerous studies have directed their attention on changes 
in gene or protein expression, as well as abnormal genetic 
and epigenetic mutations in tumor cells. It has been proved 
that guiding drugs or DDSs targeted at the tumor site using 
specific molecular markers and receptors that are specifically 
overexpressed in cancer tissues is a promising therapeutic 
strategy (Xu et al. 2013). Widely used molecular markers 
and receptors in OSCC treatment include EGFR receptor, 
folate receptor, CD44, integrin αvβ6, urokinase plasmino-
gen activator receptor (uPAR) and so on. In 2016, to widen 
the application of PDT in oral cancer, Lucky et al. devel-
oped PEGylated  TiO2–UCNPs, which was further modified 
with EGFR. Compared with conventional photosensitizer 
Chlorine6 (Ce6), the treatment efficiency of UCNPs-based 
980 nm NIR PDT showed delay in tumor growth (Lucky 
et al. 2016). Some other studies tried to conjugate NPs with 
anti-EGFR antibodies for targeted photothermal therapy 
of OSCC cells (Huang et al. 2007; Melancon et al. 2011). 
Other studies have shown that FA-modified NPs can specifi-
cally target tumor sites due to the overexpression of folate 
receptor in cancer cells (Cheng et al. 2021; Rathinaraj et al. 
2020). Currently, folate-mediated DDSs for targeted therapy 
of OSCC include magnetic NPs, gold NPs and lipid–poly-
mer hybrid NPs. CD44 is a cell-surface glycoprotein highly 
expressed at the OSCC cellular membranes (Cai et al. 2014). 
Some studies have reported that it is effective to achieve 
targeted therapy of OSCC with CD44 participates (Su et al. 
2019; Wang et al. 2019a, b, c, d, e). Since integrin αvβ6 and 
uPAR are also well-characteristic OSCC biomarker, anti-
αvβ6 antibodies and AE105 (H-Asp-Cha-Phe- (d)Ser- (d)
Arg-Tyr-Leu-Trp-SerOH) peptide against uPAR have been 
used in the targeted treatment of OSCC (Legge et al. 2019; 
Zuo et al. 2020). In addition, protein, highly expressed in 
numerous tumors including OSCC, has also been designed 
and applied in the clinic. For example, Wang et al. developed 
a new nanocarrier of human serum albumin indocyanine 
green cisplatin NPs (HSA–ICG–CDDP NPs). They proved 
that the secreted protein acidic and rich in cysteine (SPARC) 
protein, which is highly expressed in OSCC, can bind to 
HSA and enable HSA–ICG–CDDP NPs to inhibit tumor 
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growth, enabling targeted therapy for OSCC (Wang et al. 
2019a, b, c, d, e).

In recent years, with the widespread use of nanodetec-
tion systems in cancer detection and diagnosis, a number of 
novel biomarkers are being researched, which not only pro-
vide opportunities for diagnosis, treatment and prognosis of 
OSCC, but reduce off-target side effects, achieving targeted 
therapy. Unfortunately, treatment options for patients with 
late-stage oral cancer are limited. Therefore, a more com-
prehensive understanding of the molecular pathogenesis of 
OSCC, especially the interaction between OSCC and their 
microenvironment, is an unmet need to explore effective 
systemic therapies.

Biomimetic NP for OSCC‑targeted therapy

Cell membrane for OSCC‑targeted therapy

Cellular plasma membranes have been reported to take part 
in many important biological processes. More important, 
the cellular plasma membranes inherit the merits of the par-
ent cells and have high biocompatibility. As a result, many 
cell membranes have been explored to generate bioinspired 
DDSs for the therapy of corresponding diseases. Due to their 
unique properties, such as immune evasion, longer circula-
tion time and homologous targeting, many cell membranes 
have been used to camouflage NPs, including red blood cell 
(RBC) membranes, cancer cell membranes, macrophage 
membrane and so on (Zhen et al. 2019). Rao et al. pioneerly 
loaded AuNR into platelets (PLTs) via the electroporation 
process. The hybrid membrane-coated NPs exhibited longer 
systematic circulation compared with bare AuNPs. Moreo-
ver, upon laser irradiation, the PTT-ablated tumor tissues 
further recruited PLTs and enhanced tumor accumulation 
of PLT@AuNRs, proving the unique self-reinforcing char-
acteristic of PLT–PTT in OSCC therapy (Rao et al. 2018). 
However, PLTs do not endow the ability to target tumor 
site. Some plasma membrane proteins, such as N-cadherin, 
galactose agglutinin-3 or epithelial cell adhesion molecule 
(EpCAM), existed on the cancer cells surface, enabling 
cancer cells to acquire the ability of homologous targeting 
and immune escape, which can be leveraged for specific 
and effective cancer therapy (IURISCI et al. 2009; Osta 
et al. 2004; Yue et al. 2010). To achieve targeted therapy of 
OSCC, squamous cell membranes have been widely used 
in recent years (Rao et al. 2016; Sun et al. 2020; Zhu et al. 
2016). Zhu et al. devised a MNP@DOX@CCCM nano-vehi-
cle based on doxorubicin hydrochloride-modified magnetic 
iron oxide nanoplatform which was further be modified with 
human SCC membrane. Notably, MNP@DOX@CCCM 
nano-vehicle not only showed specifically self-recognition to 
the parent cell lines in vitro, but also superior self-targeting 
“homing” ability and strong potency for tumor treatment to 

the homologous tumor in vivo (Zhu et al. 2016). Similarly, 
Rao et al. developed nanoprobes based on UCNPs coated 
with cancer cell membrane (Cal-27) for tumor imaging 
specifically. The obtained NPs displayed characteristics of 
immune escaping and homologous targeting abilities (Rao 
et al. 2016). In addition, NPs camouflaged by cancer cell 
membranes are also used in photothermal therapy for oral 
cancer. In 2016, Sun et al. prepared AuNR with suitable lon-
gitudinal surface plasmon resonance (LSPR) in the second 
near-infrared (NIR-II) window and further camouflaged with 
the plasma membrane of oral squamous KB cancer cells. 
The obtained GNR@Mem demonstrated specific homotypic 
targeting to parent cells in vitro. Besides, under suitable NIR 
light and X-ray irradiation, GNR@Mem suppresses tumor 
growth for the combination of PTT and radiotherapy (Sun 
et al. 2020). Up to now, due to the homotypic targeting abil-
ity of cancer cell membranes, NPs coated with cancer cell 
membranes can proactively deliver their cargo to the can-
cer site, achieving targeted, precise and controllable drug 
release. However, some shortcomings have prevented their 
clinical translation: first, due to the lack of mature produc-
tive technique for preparing membrane-coated biomimetic 
NPs, there are some unique challenges in achieving indus-
trial scale and manufacturing of biomimetic NPs. Second, 
it has not been revealed how to accurately characterize the 
integrity of membrane camouflage NPs in vivo, which is 
important to keep the functionality during blood circulation. 
Third, membrane-camouflaged NPs exhibit biocompatibil-
ity and cytotoxicity in vivo, but it is necessary to further 
study their biological effects on living organisms (Zhen et al. 
2019). Despite these challenges, these biomimetic NPs and 
their synthetic materials offer unique and valuable strategies 
for targeted therapy of OSCC.

Exosomes for OSCC‑targeted therapy

Exosomes are vesicles with a diameter of 30–120  nm 
secreted by various types of cells (Batrakova and Kim 2015). 
Exosomes contain many types of biomolecules, such as 
mRNAs, microRNAs, lipids and proteins, so they play a 
significant role in intercellular communication (Bunggul-
awa et al. 2018). Several pioneering reports have shown that 
exosomes are ideal nanocarriers owing to their characteris-
tics of small size and deformable cytoskeleton (Bunggul-
awa et al. 2018). More importantly, exosomes can not only 
escape the degradation or clearance by the immune system, 
but cross biological barriers, even the blood–brain barrier 
(Batrakova and Kim 2015; Hood 2016). Given exosomes can 
efficiently fuse with cell membranes, non-coding RNA or 
peptide, drugs can be packaged into exosomes and delivered 
to OSCC tumors for treatment. Furthermore, exosomes com-
bined with tumor-targeting proteins, antibodies or peptides 
can achieve targeted therapy of OSCC (Lu et al. 2021).
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In addition, some studies have also reported active tar-
geted therapy of OSCC via exosomes. In 2019, Rosenberger 
et al. studied the effect of exosomes derived from menstrual 
mesenchymal stem cell (MenSC-exosomes) on endothelial 
cells and assessed their effect on angiogenesis and tumor 
growth on the OSCC model. This work demonstrated for 
the first time that MenSC-exosomes exerted cytotoxic effects 
on endothelial cells and inhibited tumor growth by decreas-
ing tumor angiogenesis (Rosenberger et al. 2019). In 2020, 
Tomita et al. suggested that macrophage-derived exosomes 
play an important role in reducing the sensitivity of OSCC 
cells to chemotherapeutic drugs by activating the AKT/
GSK-3β signaling pathway, which reduced the prolifera-
tion inhibition of 5-FU and CDDP and apoptosis of OSCC 
cells (Tomita et al. 2020). Compared with activated antigen-
presenting cells, exosomes are more stable and can be eas-
ily engineered, so it is a promising therapy for oral cancer 
treatment by functional exosomes. All in all, due to their 
biocompatibility, nontoxicity, low immunogenicity, long life 
span and high delivery efficiency, exosomes may be used 
as a novel nanocarrier to a great extent. Besides, exosomes 
contain a diversity of proteins, mRNAs, and non-coding 
RNAs, which could serve as non-invasive biomarkers and 
therapeutic targets for the screening and treatment of OSCC 
(Lu et al. 2021). Moreover, to avoid metastasis and improve 
the prognosis of OSCC, exosomes derived from OSCC may 
be an important diagnostic tool (Chen et al. 2012). However, 
there is still a significant gap to overcome before exosomes 
can be used for the diagnosis, prognosis, and targeted ther-
apy of OSCC, such as efficient separation of exosomes, strict 
purity process, efficient drug delivery rate, and elimination 
of potential biosafety risks (Ha et al. 2016).

Conclusion and future outlook

In this article, the current progress of passive and active 
targeted therapy of OSCC was reviewed. The ultimate goal 
of targeted therapy for OSCC is to produce a "magic bullet", 
which can escape immune system recognition, specifically 
target tumors, and effectively enter cancer cells. Due to the 
fact that passive targeting is usually influenced by the dis-
tribution of blood vessels in tumor tissues, and the tumor 
environment is unstable and uncontrollable, the degree of 
targeting for various tumors is not the same. To improve the 
targeting of NPs, active targeting components (e.g., small 
molecules, monoclonal antibodies, peptides) and stimulus-
responsive DDSs have been widely used in preclinical stud-
ies of OSCC therapy.

Although targeted therapy is a promising approach of 
oral cancer, most studies still need further exploration. Few 
NPs can evade multiple biological barriers, and none of 
these NPs are Food and Drug Administration (FDA) and/or 

European Medicines Agency (EMA) approved (Blanco et al. 
2020; Wicki et al. 2015). Given most investigations are still 
focused on in vitro or in vivo studies and few clinic studies 
have been performed so far, it is indicated that achieving pre-
cise drug delivery, reducing drug side effect and translating 
research into clinical application are highly challenging. A 
personalized and reliable DDS explicitly tailored on the spe-
cific genetic, molecular, and histological aspects of a given 
tumor in specific patients seems an ideal approach in OSCC 
treatment. At the same time, with the advancement of high-
throughput sequencing technology, the emergence of a large 
amount of information from transcriptome, genomics, epi-
genome, and metabolomics will provide novel approaches 
for the treatment of OSCC. Obviously, recent data suggest 
that we are at the dawn of a new era. It is expected that 
the prevention and treatment of OSCC will lead to major 
breakthroughs, improving human survival rate in the future.
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