Journal of Cancer Research and Clinical Oncology (2022) 148:2347-2373
https://doi.org/10.1007/500432-022-04011-3

REVIEW - CLINICAL ONCOLOGY q

Check for
updates

Liquid biopsy: early and accurate diagnosis of brain tumor
Zhenjie Yi"2 - Chunrun Qu'2 . Yu Zeng'?® - Zhixiong Liu'

Received: 7 March 2022 / Accepted: 1 April 2022 / Published online: 22 April 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Noninvasive examination is an emerging area in the field of neuro-oncology. Liquid biopsy captures the landscape of genomic
alterations of brain tumors and revolutionizes the traditional diagnosis approaches. Rapidly changing sequencing technolo-
gies and more affordable prices put the screws on more application of liquid biopsy in clinical settings. In the past few years,
extensive application of liquid biopsy has been seen throughout the whole diagnosis and treatment process of brain tumors,
including early and accurate detection, characterization and dynamic monitoring. Here, we summarized and compared the
most advanced techniques and target molecules or macrostructures related to brain tumor liquid biopsy. We further reviewed
and emphasized recent progression in different clinical settings for brain tumors in blood and CSF. The preferred protocol,
potential novel biomarkers and future development are discussed in the last part.
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WES Whole-exosome sequencing
WGS Whole-genome sequencing
Introduction

Brain and other CNS tumors encompass a broad range of
different histology, molecular types and subtypes. Gliomas
account for the most common primary cancer originated
from neuroepithelium, among which glioblastoma (GBM)
and medulloblastoma, respectively, make up the first leading
type of adult and pediatric malignant brain tumors, with high
intratumoural heterogeneity and low 5-year survival of 36%
for GBM patients overall (Miller et al. 2021). Moreover,
brain metastases (BMs) represent one of the most frequent
and adverse events during or after the treatment of their
extracranial primary tumors, and the top three types harbor-
ing intracranial metastatic tendency are lung cancer, breast
cancer and melanoma. As one of the top ten cancer death
causes, especially for men less than 40 years and women
less than 20 years in the USA in 2018, brain and other CNS
tumors are estimated to cause 18,600 cases of death in 2021
(Siegel 2021).

Most brain tumors are diagnosed at an advanced stage,
thus making it crucial for secondary prevention when the
tumor remains benign and significant mutations can be
identified. The clinical diagnosis of brain tumor is highly
dependent on radiological outcomes or histology of tumor
tissue after resection, which either lacks sensitivity and
specificity or is often delayed. Emerging nuclear medicine
and magnetic resonance can resolve the early evaluation of
the lesion localization, morphology and intensity; however,
information at the molecular level remains limited. Other
problems such as tumor evolution, heterogeneity and pseu-
doprogression (PsP), which presents as expanded and/or
new regions of edema and enhancement on images, largely
resembling tumor recurrence and radiation necrosis, also
hamper the accurate evaluation and characterization by
biopsy and radiology. As significant mutations like isocitrate
dehydrogenase (IDH), BRAF or histone K27M have been
discovered since 2008 and fundamentally changed the diag-
nostic approach in neuropathology to an integrated diagnosis
that combines histological diagnosis and molecular profile
(Capper et al. 2010, 2011; Khuong-Quang et al. 2012), early
and accurate diagnosis of brain tumors on a molecular level
becomes essential to reduce patients’ mortality and extend
survivorship.

While genotyping of informative alterations is becoming
more and more frequently involved in routine clinical oncol-
ogy practice, the availability of cancer tissue is largely lim-
ited. The emergence of liquid biopsy opened up the potential
of noninvasive sampling and dynamic genotyping. Liquid
biopsy was first introduced in a meeting as an approach for
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the analysis of therapeutic or prognostic tumor biomarkers
like circulating tumor cells (CTCs) in blood sample (Liani-
dou et al. 2010; Scher et al. 2009; Pantel and Alix-Panabiéres
2010). According to the NCI Dictionary of Cancer Terms,
liquid biopsy refers to a test done on a sample of blood to
search for cancer cells from a tumor that are circulating in the
blood or for DNA fragments from tumor cells released into
blood. Actually, liquid biopsy can be performed using other
molecules and macrostructures (e.g., RNAs and extracellular
vesicles (EVs)), from other tissue (e.g., premalignant lesions
that are often precursors for malignancy) and in other body
fluid, including cerebrospinal fluid (CSF), urine, saliva and
even breast milk (Serrano et al. 2020).

Here, we briefly exemplify the procedure and techniques
of liquid biopsy, and then focus on targets and clinical stud-
ies of liquid biopsy.

General procedure and analysis techniques

The general procedure of liquid biopsy typically involves
the acquisition of body fluid, sample centrifugation, target
isolation, extraction, quantification and a series of subse-
quent analyses. Subsequent procedure of different analysis
platforms is quite parallel, usually involving three stages:
library construction, sequencing, and data analysis.

Analysis techniques are mainly divided into PCR-based
methods and sequencing-based methods. The next-genera-
tion sequencing (NGS)-based broad panel combining hun-
dreds of genes and whole-genome approaches are optimal
sequencing methods for liquid biopsy, since they are high
throughput and time efficient, and can detect unknown muta-
tions with high single base resolution and coverage (Kilgour
et al. 2020).

PCR-based methods have advantages in sensitivity, cost,
operation and analysis difficulty; however, incapability in
detecting unknown mutations and PCR artifacts are shared
drawbacks. Common artifacts can be divided into two main
categories: amplicon biased variants (PCR bias) and mis-
paired primers (PCR errors) (Acinas et al. 2005). PCR also
participates in enriching targeted regions before library con-
struction and is a known source of false positives in some
sequencing-based methods.

Since the workflow of EVs liquid biopsy is the most com-
plex and challenging, we use it as an example as shown in
Fig. 1. In Table 1 we compared more detailed characteristics
of various assays.

Liquids
Due to the special anatomical structure of the brain and other

CNS tumors, most studies utilize blood (serum and plasma)
and/or CSF. Serum and plasma are the most common source
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Fig. 1 The general workflow of liquid biopsy to examine extracellular
vesicles (Evs). A The techniques of extracting Evs: ultracentrifuga-
tion is recommended, but it is time-consuming and requires higher
standard for techniques. Spin column-based methods are to filter by
size or membrane affinity of EVs. B Four steps to evaluate the qual-
ity of extracted Evs. (i) Western blotting is to detect the specific pro-
tein markers such as CD81/CD63. (ii) TEM (transmission electron
microscopy) allows direct EV characterization of structure and size
of Evs. (iii) NTA (nanoparticle tracking analysis) can visualize parti-

of liquid biopsy, and investigation on novel techniques usu-
ally start from blood. Martignano et al. recently conducted
the first successful third-generation sequencing (Nanopore-
seq) for copy number profiling from six lung cancer patients’
plasma DNA (Pittella-Silva et al. 2020). CSF may be more
meaningful for primary brain tumor. Blood-to-CSF com-
parison by liquid biopsy is also critical for identifying tumor
heterogeneity (Table 2).

Serum and plasma

Serum and plasma are completely different blood compo-
nents that have distinct isolation stages. Several studies
have agreed that plasma samples are more desirable than
serum samples regarding cfDNA in liquid biopsy (Wong
et al. 2016; Messaoudi et al. 2013; Thierry et al. 2010). The
main point is that although a larger quantity of cfDNA can
be extracted from serum samples (Jung et al. 2003), there is
a higher percentage of DNA derived from white blood cell
lysates, which lessens the purity of ctDNA (Umetani et al.
2006; Lui et al. 2002; Chan et al. 2005; Gautschi et al. 2004;
Pittella-Silva et al. 2020). Before centrifugation, serum sam-
ples generally need clotting at room temperature, which adds
to lysis of cells and even the degradation of ctDNA.

The existence of the blood—-brain barrier (BBB) restricts
the releasing of biomarkers from a primary brain tumor
into circulation and subsequently reduces the accuracy of
liquid biopsy for genomic alteration detection. Transcranial
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cles ranging from 10 to 1000 nm to show the concentration and size
of Evs. (iv) Flow cytometry supplements the information towards
Evs’ size and markers. C The sequencing or PCR techniques ranked
by sensitivity: sequencing of point mutation, epigenetic changes,
copy number variations, structural changes or rearrangements. ARMS
amplification refractory mutation system, BEAMing beads, emulsifi-
cation, amplification and magnetics, PAP Pyrophosphorolysis-acti-
vated polymerization, EFIRM electric field induced release and meas-
urement. * Targeted mutation, - unknown mutation

MR-guided focused ultrasound (MRgFUS) is capable of
temporarily discharging the BBB with safety, resulting in
enrichment of brain-derived cfDNA in circulation. Meng
et al. applied MRgFUS to compare biomarkers in whole
blood samples from nine GBM patients and healthy controls,
and found acutely enhanced plasma cfDNA, neuron-derived
EVs, and brain-specific protein S100b (Meng 2021).

When detecting ctDNAs in low abundance, the blood
volume is another important consideration. To target de
novo a single mutation with cumulative variant allele fre-
quency (VAF) of 0.01% with 95% confidence would require
150-300 ml blood (Haque and Elemento 2017). However,
the blood sample volume only required 15-30 ml for detect-
ing any of ten independent VAF=0.01% mutations or a
single VAF =0.1% mutation. Therefore, the sensitivity of a
specific ctDNA test to local cancer patients depends not only
on the amount of blood analyzed, but also on the number of
mutations screened (McDonald et al. 2019).

Cerebrospinal fluid (CSF)

CSF appears to have an advantage over blood, perhaps
partly due to the reduced background cells, for example,
less EVs from leukocytes when analyzing tumor-derived
EVs. Compared to plasma and serum, CSF is in direct con-
tact with primary brain tumors or brain metastases (BMs),
thus harboring a larger proportion of positive patients and
more abundant source for liquid biopsy (Pan et al. 2019;
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Panditharatna et al. 2018; Jiang et al. 2017a; Romero et al.
2021; Aldea et al. 2020). For advanced tumors with lep-
tomeningeal metastases (LM), CSF is the most representa-
tive liquid and CSF cytology has been the diagnostic gold
standard. Wang et al. examined 35 primary CNS malignan-
cies and found detectable levels of ctDNA in 74% cases of
patients’ CSF, as all medulloblastomas, ependymomas, and
high-grade gliomas that existed directly adjacent to a CSF
reservoir, indicating that CSF could be useful in analyzing
primary CNS tumor (Wang et al. 2015a). In another study
exploring the role of CSF as a source of liquid biopsy in
patients with LM, Li et al. enrolled 28 patients with EGFR-
mutated non-small cell lung cancer (NSCLC) and compared
the performance of detecting driver gene by liquid biopsy in
26 patients, yielding 100% (26/26) of CSF cfDNA, 84.6%
(22/26) of CSF lysis, and 73.1% (19/26) of plasma cfDNA
(Li et al. 2018). The highest number of copy number vari-
ations (CNVs), EGFR T790M and MET were detected in
CSF cfDNA, with the major CN'Vs being exclusive to CSF
cfDNA rather than primary tissue or plasma (Table 3).

Limitations of CSF analysis mainly lie in the acquisi-
tion and purification. The acquisition of CSF sample is usu-
ally performed during surgery to obtain maximal levels of
biomarkers or in routine lumbar puncture with radiological
surveillance. Though CSF liquid biopsy has shown mini-
mal invasiveness, symptoms of tumor-induced CNS space
occupation, or abnormal coagulation are contraindicated for
lumbar puncture due to risk of herniation. Contamination
by blood in the CSF sample is another technical issue to be
solved (Seoane et al. 2019).

Target molecules or macrostructures

Circulating cell-free DNA (cfDNA)/ circulating tumor
DNA (ctDNA)

Due to cellular turnover, active secretion, apoptotic and
necrotic cells surrounding or in the tumor tissue, a mixture
of nucleic acids, which is termed cfDNAs, released in a
tumor patient’s blood is elevated. A small tumor-derived
fraction is held in cfDNA that carries cancer-specific genetic
and epigenetic aberrations, which is termed ctDNA and can
provide actionable information toward subsequent diagno-
sis and treatment (Diaz and Bardelli 2014). Identification
methods of cfDNA usually involve one or more aspects of
common DNA-based changes, including cfDNA levels,
cfDNA integrity, copy number variations (CNV), tumor-spe-
cific DNA mutations, gene methylation, and gene fusions,
reflecting the status of DNA in the tumor cells (Meo et al.
2017; Wu et al. 2020). The increase of cfDNA level and
copy number in tumor patients are explained by the raised
number of apoptotic and necrotic carcinoma cells. High

@ Springer

cfDNA integrity (>400 bp) usually results from normal
tissue necrosis in addition to the typical oligonucleosomal
DNA fragments, whereas shorter DNA fragments (<400 bp)
indicate ctDNA due to apoptosis, which allows selection for
the shorter cfDNA to increase ctDNA sensitivity (Mouli-
ere 2011, 2021; Underhill 2016; Jiang et al. 2015). Human
GBM ctDNA identified in xenograft rat plasma was typi-
cally shorter than the background rat cfDNA (134-144 bp
vs. 167 bp, respectively) (Underhill 2016). Size difference
was also identified in CSF, plasma, and urine of glioma
patients (median size of 148 bp for mutant cfDNA vs 169 bp
for non-mutant cfDNA; 160 vs 169 bp; and 101 vs 133 bp,
respectively) (Mouliere 2021).

Standard methods optimized for cfDNA isolation include
column-based and magnetic bead-based methods, and many
DNA isolation kits are practical for both serum/plasma and
CSF cfDNA with different pre-processes. The column-based
approach refers to using spin columns with usually a silica
matrix to bind DNA fragments during the pre-process, and
subsequently applying a vacuum pump or a minicentrifuge
to remove contaminants. The magnetic bead-based approach
is based on nano-beads with magnetic coating able to bind
nucleic acids that can be regulated under a magnetic field.
Automatable manipulation is highlighted, which allows
large-scale processing and omits manual centrifugation that
may damage DNAs due to shear forces (Martignano and
Cell-Free 2019; Ali et al. 2017).

CtDNAs contain small fragments between 70 and 200
base pairs, and large fragments up to 21 kilobases in size
(Jahr et al. 2001). The concentration of cfDNA and ctDNA
is influenced by anatomical location, volume, and vascular-
ity of the tumor body, which is, in general, lower in patients
with early-stage disease than in patients with metastatic
disease. For example, the detection rate of ctDNA is over
half of most cancer types, even almost 100% of certain pri-
mary cancers (bladder, colorectal, and ovarian) and as low
as 10% of glioma cases (Butler et al. 2017). For patients with
extracranial localized tumors, only 49-78% of them present
detectable ctDNA levels, while the proportion is 86—100%
in patients with metastatic colorectal, gastroesophageal, pan-
creatic, and breast cancers (Bettegowda et al. 2014). The
amount of cfDNA and ctDNA is also influenced by clear-
ance, degradation and other physiological filtering events of
the blood and lymphatic circulation. Their clearance from
the circulation goes through the liver and kidney and their
half-life in the blood varies from 15 min to several hours
(Fleischhacker and Schmidt 2007).

Circulating free RNAs (cfRNA)
While mRNAs code for proteins, microRNAs (miRNA)

are usually 21-24 nucleotides in length, representing small
single-stranded non-coding RNA molecules that participate
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Table 3 (continued)

&

Analysis method  Performance Main findings

Biomarker
detected

Target molecule

Source and input

volume

Patients' popula-
4 pediatric MB, 4 200 pl CSF

tion

Objective

Authors

Springer

MB patients with a high DNA

DNA methylation WGBS and CMS- n.a

and hydroxym-
ethylation

cfDNA

Predicting sur-

JiaLietal.

hydrocephalus, IP-seq methylation level at this CpG

vival time

(2020)

site showed significantly lower
survival rates compared with

2 acute lympho-
blastic leukemia
and 2 normal
cerebellum
tissues

patients with a low DNA meth-

ylation level at this site

n.a. not available, WT wild type, BM brain metastases, GBM glioblastoma, DMG diffuse midline glioma, HGG high-grade glioma, LGG low-grade glioma, LM leptomeningeal metastases, MB
medulloblastoma, NSCLC non-small-cell lung cancer, CSF cerebrospinal fluid, WES whole-exosome sequencing, sWGS shallow whole-genome sequencing, WGBS whole-genome bisulfite

sequencing

in post-transcriptional regulation. MiRNAs are more pre-
dominant species of cfRNA and a number of studies on CNS
tumor liquid biopsy have revealed certain informative types
of miRNAs. For instance, overexpression of miR-15b and
miR-21 was found correlated with the presence of gliomas
by Baraniskin et al. (Baraniskin et al. 2012), and enrichment
of miR-10b and miR-21 in patients’ CSF might indicate
GBM (Teplyuk et al. 2012), while assessing miR-21, miR-
19, and miR-92a CSF levels led to a combined diagnostic
accuracy with 95.7% sensitivity and 96.7% specificity for
primary central nervous system lymphoma (PCNSL) diag-
nosis (Baraniskin et al. 2011).

Circular RNAs (circRNAs) mainly function as miRNA
sponges or peptide-coding RNAs and regulate alternative
splicing of parental genes, which are characterized by their
covalently closed structure and high tolerance to exonucle-
ases (Meng et al. 2017; Li et al. 2015; Hansen et al. 2013).
An increasing number of studies on circRNA deep sequenc-
ing have shown a correlation between a global reduction of
circRNAs and different types of cancers compared to their
normal tissues, such as GBM and colon rectal carcinoma
(Zhang et al. 2018; Xu et al. 2018; Yin and Liu 2020). Dif-
ferential expression levels of certain circRNAs have been
found to be in gliomas, indicating their potential function
in tumorigenesis (Zhang et al. 2018; Xu et al. 2018). From
newly pathologically diagnosed high-grade astrocytoma
(HGA) samples, Li et al. identified abundant circRNAs in
both HGA cells and corresponding cell-derived exosomes,
with a higher level in HGA cells (Li 2021). Additionally,
three serum exosome circRNAs were chosen as circulating
biomarkers screening of HGA and were promising in dis-
tinguishing HGA patients from healthy individuals (Fig. 2).

Although cancer is believed to be mainly driven by
changes in DNA, changes in some driving factors may be
manifested in RNA rather than mutations in DNA sequences
(Calabrese et al. 2020). Therefore, RNA analysis may exhibit
changes in cancer-related pathways that have not been
detected by pure DNA methods. Another benefit of RNA-
based sequencing is the ability to detect fusion genes, which
refer to hybrid of two or more coding gene sequences in a
common regulatory region that harbors a distinct function
from the two pre-fusion genes. They are pathognomonic
rearrangements which are commonly reported in about
30-50% of GBM patients (Shah et al. 2013). Wang et al.
applied targeted RNA sequencing and unveiled two novel
oncogenic fusion transcripts (FGFR3-TACC3 and VTI1A-
TCF7L2) in EVs extracted from GBM tissues, and five novel
fusions including two tissue-derived fusion transcripts in
the paired GBM patients’ plasma (n=9) (Wang et al. 2020).

Compared to RNA in the lipid bilayer enclosed structures
such as circulating tumor cells (CTCs), exocellular vesicles
(EVs) or tumor-educated platelets (TEPs), cfRNA is single
stranded and exposed to nucleases in bodily fluids with low
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Fig.2 A The circulating biomarkers in blood and CSF and B clinical application (detection, characterization and monitoring) in liquid biopsy

abundance and integrity; thus, it possesses limited reliability.
Moreover, a large part of RNA in cells comes from ribo-
somes and mitochondria. This limits the number of reads
of other RNAs and the accuracy of the expression levels of
these RNAs (Raz 2011).

Circulating tumor cells (CTCs)

CTCs refer to a crowd of tumor cells detached from a solid
tumor lesion into the peripheral circulation. As a direct
source of ctDNA, they not only represent a relatively eas-
ily available sample of tumor tissue, but also a group of
dynamic metastatic precursors such as epithelial and mes-
enchymal markers (Alix-Panabieres and Pantel 2013; Aceto
et al. 2015). It has been reported that approximately 39% of
GBM patients harbor CTCs, and defining its ctDNA could
help reveal the EGFR amplification status of the primary
tumor (Sullivan et al. 2014).

CTCs may be found held together by intercellular
cell-cell junctions traveling together through the blood-
stream, which are called CTC clusters. Clustered formation
hinders immunological surveillance and protects tumor cells
from reactive oxygen species (ROS), thus possessing greater
metastatic potential (Sprouse et al. 2019). For liquid biopsy,
CTCs clusters exhibit dissimilar genetic profiles and meta-
static characteristics from single CTCs. GBM can release
CTC clusters, which can overcome the BBB and reach the
peripheral circulation (Krol et al. 2018). Though the inci-
dence of extracranial metastatic GBM is low (0.4 to 0.5%
of patients), mostly to bone, lymph nodes, lungs, and liver
(Pasquier, et al. 1980; Kalokhe, et al. 2012; Fonkem et al.
2011), it is reported that CTCs are positive in 20.6-39%
GBM patients (Sullivan et al. 2014; Miiller et al. 2014).

Enrichment or isolation is a crucial step in the liquid
biopsy of CTCs. The technology approaches are divided

into two methods, respectively, based on immunological or
physical characteristics. To evaluate the quality of enriched
CTGCs, different characteristics from the normal cell are com-
pared by means of immunofluorescence, FISH (fluorescence
in situ hybridization), PCR-based detection methods, and/
or high-throughput single-cell sequencing. However, there
are some special occasions when CTC enrichment may be
difficult to complete. For instance, platelet-covered CTCs
can shield their surface antigen and enhance the interaction
between CTCs and leukocytes, which possess more meta-
static potential (Weber and Springer 1997; Kitamura et al.
2015). To solve the problem, Jiang et al. performed efficient
depletion of free plates in blood, then implemented herring-
bone CTC chip (HB-Chip), a microvortex-generating device,
to enhance cell-capture ability. As a result, they observed the
presence of CTCs extensively covered by platelets compared
to conventional EpCAM-based capture (Jiang et al. 2017b).

Conventional CTCs positive sorting methods mainly tar-
get epithelial markers such as EpCAM, which may lead to
fewer variety of molecular types of CTCs (Kulasinghe et al.
2017). GFAP is an activated protein marker located in the
cytoplasm of astrocytes that is commonly expressed among
brain tumors, with higher levels reported in gliomas com-
pared to other types (Bodegraven et al. 2019). Zhao et al.
utilized a novel CTCs positive sorting marker targeting the
endocytic GFAP and framed an isolation system on CTCs of
brain tumors derived from GFAP antibody immunomagnetic
liposome beads (GFAP-IMLs), which was further combined
with an EGFR immunofluorescent assay (Zhao et al. 2020).
Through subsequent validation of Sanger sequencing, g-PCR
and NGS, the system was shown to be feasible toward iden-
tifying CTCs from tumor tissues, CSF and peripheral blood
samples. GFAP markers also outperformed those of just
EpCAM or EGFR for CTC capture. One of these challenges
lies in the separation of CTC, which usually requires fresh
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blood samples with immediate sample processing. This may
limit the initial application of CTCs in small centers that do
not have the ability to process fresh samples in a short time
(Shankar et al. 2017).

Exocellular vesicles (EVs)

Both cancer and non-cancer cells may release EVs into the
extracellular space to transport messages between cells, by
means of budding or intracellular vesicles merging with the
plasma membrane (Colombo et al. 2014; Kros et al. 2015).
It is intriguing that double-stranded DNA in exosomes, the
smallest group of EVs, represents the entire genome and
reflects the mutational status of parental tumor cells (Thakur
et al. 2014). Compared to the rarity of ctDNAs and CTCs,
EVs are more abundant per milliliter of blood and are pre-
sent in almost all kinds of body fluids. Lipid bilayer wrapped
structures also protect the contents from degradation. Cargo
information is available in EV and exosome databases, such
as ExoCarta, Vesiclepedia, and EVpedia (Lin 2021).

EVs play an important part in transporting messages to
promote tumor progression. The tumor tissue secrete EVs
and then neighboring stromal cells may take EVs and alter
the cell program. For instance, glioblastoma stem cells
(GSCs) derive EVs that induce non-conventional angiogenic
pathways, which are free from classic anti-angiogenic drugs
inhibiting the vascular endothelial growth factor (VEGF)
or VEGF receptors (Geraldo et al. 2019; Kane 2019). Luc-
ero et al. examined the RNA transfer by EVs from GSCs to
human brain microvascular endothelial cells (HBMVECs)
on cell lines in vitro through RNA-seq and DNA methyla-
tion profiling plus computational epigenomic deconvolution
in vivo in the TCGA collection. The study provided multi-
dimensional evidence that morphologic vascularization pat-
terns of GSC EVs-mediated anagenesis were visually similar
to that of VEGF, but stimulated distinct transcriptional and
epigenomic alterations in HBMVEC:s, and that the downreg-
ulation of angiostatic genes could be mediated by miRNAs,
like export of miR-9-5p inducing therapy resistance in GSCs
(Lucero et al. 2020). Gliomas may produce EVs containing
miRNAs, such as miR-21, miR-222, miR-124-3p, miR-221,
miR-451, miR-23a, miR-29a, miR-30a, and miR-92b, which
may motivate proliferation and suppress apoptosis (Colombo
et al. 2014; Li et al. 2013; Godlewski et al. 2010). There is
evidence that analyzing the expression of miR-21, mir-222
and miR-124-3p from serum-isolated exosomes potentially
enables discrimination between HGGs and LGGs (Santan-
gelo et al. 2018). If the tumor-secreted EVs are taken by the
immune system, it may lead to immunosuppression, possibly
resulting in abnormally activated myeloid-derived suppres-
sor cells (MDSC) and regulatory T (Treg) cells (Kahlert and
Kalluri 2013). Additionally, in GSC-derived EVs, PD-L1
has been identified to be involved in this process which can
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be up-regulated in response to IFN-y, as by PD1 blockade
Ricklefs et al. significantly reversed the EV-mediated inhibi-
tion of T cell activation (Ricklefs et al. 2018).

Besides apoptotic bodies, the other two major classes of
EVs, exosomes and microvesicles (MVs), overlap in their
size and mimic surface proteins, but there is a lack a spe-
cific marker or cargo associated with MVs distinctive from
exosomes (Lawson et al. 2016) and so it is challenging to
isolate them. MVs are small vesicles ranging from 100 to
1000 nm that fall off the cell membrane after cell activation,
injury or apoptosis (Lee et al. 2012). Exosomes are small
saucer-shaped vesicles ranging from 40 to 100 nm in diam-
eter, usually excessively produced by tumor cells, composed
of proteins, lipids, DNA and RNA, which share large simi-
larity to their original cell or tissue and harbor more diagnos-
tic potentiality (Théry et al. 2002). In an exosome characteri-
zation study, Fernando et al. suggested that exosome-derived
cfDNA makes up 90% of cfDNA and 93% of amplifiable
plasma cfDNA in plasma (Fernando 2017). Thakur et al.
exploited a novel nano-biosensor (SAM-AuNIs) which ena-
bles direct detection of biophysical difference, membrane
property differentiation and distinguish between exosomes
and MVs (Thakur et al. 2017). In conclusion, the current
isolation and purification of EVs from plasma are technically
more difficult, mainly concerning specificity compared to
directly from cfDNA or CTCs, but harbor more sensitivity.

EVs from cancer cells and healthy cells are difficult to
distinguish. The 5-ALA oral administration is performed
before glioma surgery to promote tumor visualization and
maximal resection, and its metabolite, PpIX, may be accu-
mulated in gliomas-derived EVs. Maas investigated the
feasibility of identifying PpIX-positive EVs from GBM
patients orally administered 5-ALA (Maas et al. 2020).
High-resolution flow cytometric on sorting EVs was con-
ducted using plasma, and ddPCR analysis further presented
the existence of GBM-associated miRNAs in PpIX-posi-
tive EVs, like miR-21 and miR-10b. Jalali et al. reported
using a plasmonic microfluidic device with nanostructure
to discriminate tumor-derived EV subgroups from different
GBM cell lines, EVs from common glial cells and artificial
liposomes (e.g., DOPC/Chol) that is homogenous to EVs
demonstrated high sensitivity (Jalali 2021). TiN-NH-LSPR
biosensor developed by Thakur et al. could detect and quan-
tify CD44 and CD133 enhanced by GBM-secreted lactate,
thus distinguishing that secreted exosomes sensitively form
malignant cells (Thakur 2021).

Tumor-educated platelets (TEPs)

Platelets are blood cells forming blood coagulation in
response to vascular endothelium damage. However,
platelets also respond to a series of inflammatory events,
cancer genesis and metastasis. When tumor-associated
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biomolecules are transferred into platelets, they become
“educated”. For years high platelet count and expression of
coagulation factors by cancer cells have been recognized as
negative prognostic markers in a variety of cancers (Nash
et al. 2002; Erpenbeck and Schon 2010; Gay and Felding-
Habermann 2011). Firstly, platelets can regulate the tumor
vasculature through which circulating tumor cells (CTCs)
disseminate by releasing angiogenic and vascular remod-
eling factors in granules upon activation by thrombin trig-
gered by tumor tissue-associated factors (Gay and Felding-
Habermann 2011; Sabrkhany et al. 2011). For instance,
GBM stem cells can transdifferentiate into endothelial cells
(GECs) which are aberrantly responsive to increased levels
of VEGF released by TEPs and boost tumor progression
and angiogenesis (Vito et al. 2017). Increased expression
of its receptors VEGFR1 and VEGFR2, VWF, and S1P was
also identified in another study as predictive and monitor-
ing biomarkers (Campanella et al. 2020). Next, platelets can
generate cloaks covering tumor cells, which together with
fibrin can provide a physically protective shield (Nieswandt
et al. 1999; Palumbo et al. 2005) or MHC class I that con-
fers a pseudonormal phenotype that disrupts recognition of
tumor cell, to shelter tumor cells from cytotoxic activity of
natural killer cells (Placke et al. 2012). Finally, platelets also
play a role in the establishment of metastases by enhancing
interaction of tumor cell with vascular endothelium under
hemodynamic shear environment of circulation (Konstanto-
poulos and Thomas 2009) and recruit granulocytes to tumor
cells to form early metastatic niches (Labelle et al. 2014).

Since platelets themselves do not have a nucleus, all
RNA in platelets comes from the original megakaryocytes,
interacted cells and circulation. Nilsson et al. demonstrated
that cancer cells can transfer mutant RNA through EVs-like
membrane vesicles into blood platelets, and identified a
distinct group of cancer-associated RNA alterations includ-
ing EGFR-vIII mutations in the TEPs from GBM patients
compared to normal controls by gene-expression profil-
ing (Nilsson et al. 2011). By liquid biopsy, the detection
of tumor-related proteins, cfDNA and RNA sequestered by
platelets enables blood-based cancer diagnostics and treat-
ment monitoring. RNAs in platelets advance in their abun-
dance, easy isolation, high quality, and platelets’ capacity
to take up EVs comprising RNAs originated from tumors
(Best et al. 2018; Sol and Wurdinger 2017). What is more,
the life span of a common platelet is 7-10 days, thus it can
be a promising source of RNA analysis, revealing a real-time
status of tumor dynamics.

Recently, Best et al. reported a different liquid biopsy
approach called thromboSeq by detecting TEP-absorbed
tumor RNA and swarm-intelligence-enhanced algorithms to
optimize biomarker gene lists, with its accuracy up to 90%
(Best et al. 2017). Researchers investigated blood samples
from patients diagnosed with advanced non-small cell lung

cancer (n=>518), patients in early stage (n=106), and con-
trols without known cancers (n=155). In the study, throm-
boSeq scanned about 5000 different RNA molecules found
in platelets, continuously optimized its RNA gene panel, and
found a few RNAs that can predict tumors. The results con-
firmed that the accuracy of thromboSeq in diagnosing early
cancer was 81%, and the accuracy in diagnosing advanced
cancer was 88%. In the matched group controlling age,
smoking status and blood storage time, the accuracy rate
was as high as 91%. The protocol and details of thromboSeq
were updated in 2019 and it is promising in future pan-can-
cer and multiclass tumor diagnostics (Best et al. 2019).

There are some limitations that platelet mRNA profiles
may be affected by non-cancerous systematic factors such as
inflammatory or cardiovascular diseases; therefore, it makes
it difficult to differentiate between TEPs and normal platelets
and requires follow-up studies for further evaluation (Best
et al. 2015). During the platelet-isolation procedure, residual
cfDNA contamination can potentially introduce concomi-
tant sequencing of reads mapping to intergenic regions, thus
reducing the number of spliced intron-spanning platelet-
RNA sequencing reads (Best et al. 2019).

Metabolites and proteins

In the absence of CSF cytology findings, analyzing patients’
CSF metabolites may help diagnose and distinguish different
types of CNS tumors. However, identifying specific protein
markers for CNS cancer is more challenging than cfDNA
or cfRNA sequencing. Elevated protein levels may attribute
to inflammation, unrelated diseases or responses to stress/
hypoxia, making it hard to enter clinical practice.

Metabolomics and proteomics are promising in combina-
tion with liquid biopsy to identify novel biomarkers, thus
providing disease screening and diagnosis. Ballester et al.
examined 43 metabolites derived from CSF in primary or
metastatic brain tumors patients by utilizing different spec-
trometries (Ballester et al. 2018). Furthermore, they found
that /IDH-mutant gliomas exhibited metabolite alterations
of the tricarboxylic acid cycle, such as higher concentration
of D-2-hydroxyglutarate, malic acid and succinate in CSF,
when compared with healthy controls and other types of
tumors. More potential protein biomarkers are summarized
in a systematic review of eight proteomics articles (Shen
et al. 2014). Out of these 19 differentially expressed proteins
(B2M, CA2, CA12,CALDI1, DDAH1, MYCN, PPIA, SPP1,
VEGEFB, ALB, MAPT, SERPINA3, SPARCLI1), only attrac-
tin was identified twice among these 8 proteomic studies on
glioma CSF, which may function as a mediator in malignant
gliomas, representing a novel biomarker as well as a poten-
tial therapeutic target (Khwaja et al. 2006, 2007).
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Intracranial germinomas occur in the pineal and supra-
sellar region, arising from abnormal migration and differ-
ential of various germ cell layers during embryogenesis.
Bf-Human chorionic gonadotropin (bHCG) and alpha-
fetoprotein (AFP) are relevant proteins representing germ
cell origination, and the levels of both proteins have been
shown to be significantly elevated in germinomas patients’
CSF. Both bHCG and AFP have been used to diagnose
malignant germ cell tumors, monitor response to treat-
ment and predict recurrence (Nishizaki et al. 2001; Qad-
doumi et al. 2012). Placental alkaline phosphatase (PLAP)
holds clinical potentiality for the diagnosis and monitor-
ing of intracranial germinomas as a biomarker. Watanbe
tested PLAP in 28 patients’ CSF with a chemiluminescent
enzyme assay using antibodies, which presented high sen-
sitivity and specificity of 94% and 97% (Watanabe et al.
2012).

Clinical applications
Detection
Non-invasive and convenient “biopsy”

As for tumor tissue pathological biopsy, which is still the
golden standard for tumor diagnosis, there are many limi-
tations. Patients with CNS tumor usually undergo surgery
and the resected tumor tissue can be utilized for patho-
logical examination, though brainstem glioma biopsy is
not routinely performed, which ensures the quantity of
tumor cells regardless of biopsy area and size. For those
who do not meet the criteria of surgery, such as with dis-
seminated systemic disease, the biopsy is costly and may
induce adverse events. Surgical biopsy adds inconvenience
from a scheduling perspective and there are difficulties
in sample preservation. Tumor heterogeneity is another
problem hampering the biopsy. For primary CNS tumor,
there is intratumoral heterogeneity, and for BM, there is
intermetastatic heterogeneity within the same patient.

Compared to tissue biopsy, liquid biopsy is noninva-
sive and convenient, allowing for early assessment and
follow-up. Furthermore, since it is easy to acquire the
samples, the preservation of samples can be omitted, and
fresh samples enable monitoring the progression in real
time through molecular and epigenetic changes profiling.
Liquid biopsy samples contain synonymous or even more
comprehensive genetic information than biopsy, thus pro-
viding more insights into molecular mutation status, intra-
tumoral and intermetastatic heterogeneity, even predating
changes seen on MRI.

@ Springer

Early detection in asymptomatic patients

For those without clinical symptoms or radiological find-
ings, liquid biopsy helps evaluate the tumor existence or
progression risk, consequently implementing early interven-
tion to reduce the risk. The majority of cancer genes mutate
at moderate rates (2-20%) or lower, despite some genetic
changes happen at high incidence (Lawrence et al. 2014),
and mutation rate is not perfectly correlated with driver
gene potency. Though genetic mutations and chromosomal
changes are seemingly random, they may actually follow
specific patterns. Early monitoring of known patterns may
predict the tumor onset in healthy ones or progression in
diagnosed ones. Moreover, by revealing unknown patterns,
it is capable to successively link mutant genotypes to cellular
and clinical genotypes and obtain deep understanding of the
tumor evolution and its mechanisms (Wang et al. 2015b).

A recent study by Fanfani et al. suggested that germline
and somatic mutation information may help explain can-
cer heritability in the more comprehensive population with
higher tumor risk, and could provide guidance on formulat-
ing plans for early detection and progression surveillance
(Fanfani 2021).

For instance, Kammesheidt et al. successfully detected
TP53 and KRAS mutations by liquid biopsy using cfDNA in
healthy volunteers (Kammesheidt et al. 2016), which showed
the ability of liquid biopsy in early-stage tumor detection.

Reducing the cost

There are occasions that early diagnosis definitely leads to
better overall prognosis (Lennon et al. 2020), either because
of currently incurable cancer types, or indolent cancers that
would never progress. In both occasions, the early diagnosis
has very limited impacts on improving treatment effects,
but causes adverse economic, physical and psychological
burdens, which is termed “overdiagnosis” (Srivastava et al.
2019).

As liquid biopsy is simple, rapid, sensitive and specific
for low levels of target molecules or macrostructures to
achieve early detection, low incidence of cancer occurrence
in the general population is a parallel problem since current
screening methodology and many analysis techniques are not
cost-effective. Based on the analysis of thermodynamic and
kinetic parameters reflecting complex molecular interactions
in biological fluids, the DSC (differential scanning calorim-
etry) analysis has made promising progress in discriminating
healthy from glioma patients (Tsvetkov et al. 2018; Engh
2011; Chagovetz et al. 2013). When DSC thermograms are
applied in liquid biopsy, it is termed “thermal liquid biopsy”.
Compared to sequencing liquid biopsy, thermal liquid biopsy
has shown approximate performance but is more economical
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(Velazquez-Campoy et al. 2018; Hermoso-Durén et al. 2020;
Rodrigo et al. 2019).

Likewise, FTIR (Fourier transform infrared) spectros-
copy, nanoDSF (differential scanning fluorimetry) or CCP-
based FRET (cationic conjugated polymer-based fluores-
cence resonance energy transfer) may substitute sequencing
to reduce the cost, yet requiring more abundant studies to
validate sensitivity and specificity (Tsvetkov et al. 2021; Sala
et al. 2020; Ma et al. 2021). A new liquid biopsy technique,
CancerSEEK [NCT04213326], not only detects mutant
genes in the blood, but also locks on abnormal proteins in
the blood, with an average price lower than 500 dollars. In
about 1,000 cancer patients comprising common extracra-
nial tumors like ovarian cancer and liver cancer, its accu-
racy rate reached 70%, which holds promise in expanding
to screen brain tumors (Cohen et al. 2018). Other few com-
mercial assays are also under development, such as GRAIL
[NCT03085888], focusing on early detection.

Mouliere et al. implemented untargeted shallow whole-
genome sequencing (sSWGS, < 0.4 X) of ctDNA in CSF
derived from 13 patients (Mouliere et al. 2018). Through
cfDNA size profiles analysis, shorter DNA fragments
(145 bp) were shown to be in positive association with the
presence of tumor-derived somatic copy number alterations
(SCNAs) in CSF. Combining cfDNA SCNAs screening and
fragmentation analysis using sSWGS is feasible to provide
information on the tumor genome at lower cost and more
rapidly, which can also prepare for further sequencing in
larger scales, such as whole-exome sequencing or targeted
sequencing.

Characterization
Differential diagnosis

N6-methyladenosine (m6A) modification was widely found
in peripheral blood cfRNA and the dysregulation of m6A
modification level was closely linked with tumor occurrence
and progression (Patil et al. 2016; Zhang et al. 2020). Based
on 14,965 serum samples (gliomas=185) of 12 cancer
types, Zhang et al. screened a total of 228 m6A target miR-
NAs and selected 18 candidate miRNAs for the construction
of s diagnostic signature (Zhang et al. 2021). The signature
was proven to have no interference by gender, age or benign
disease and yielded excellent performance, with an AUC
of 0.979 in distinguishing cancer samples from non-cancer
controls, and an AUC of 0.703 in distinguishing GBM sam-
ples from all the mixed samples in the training cohort.
Shen et al. developed an approach called cell-free meth-
ylated DNA immunoprecipitation and high-throughput
sequencing (cfMeDIP-seq), which is bisulfite free and only
requires 1-100 ng of cfDNA input (Nassiri et al. 2020). By
profiling cfDNA of early-stage cancers from various body

liquids, researchers were able to identify methylation pat-
terns unique to each cancer type. Then with the help of big
data and machine learning, they could build a classifier to
determine the cancer type. Subsequent discovery cohort
consisted of 189 samples from seven different tumor types
to classify them, respectively, from healthy controls with
an AUC > 0.9 for each cancer type. For further validation
of plasma-based cfMeDIP-seq in CNS primary tumor, Nas-
siri et al. tested 220 patients with brain tumor and built a
machine learning classifier (Nassiri et al. 2020). The classi-
fier showed good performance (AUC =0.99) in recognizing
differentially methylated regions (DMRs) and distinguishing
gliomas from BMs with extracranial primary tumor types
along with healthy controls, and revealed highly specific
signatures discriminating different primary brain tumors.

Sol et al. investigated the extended diagnostic power of
thromboSeq (Best et al. 2017) to differentiate several neu-
rological diseases (GBM, BMs and active multiple scle-
rosis lesions) (Sol 2020). By comparing the spliced RNA
profile of TEPs, they successfully identified GBM patients
from healthy controls (AUC =0.97), and other neurological
diseases (AUC=0.81). They further developed a machine
learning algorithm called digital SWARM that scores on
TEP to improve monitoring of individual GBM patients,
which correlates with tumor behavior and allows distin-
guishing false positive progression from true progression
(AUC=0.86).

To discriminate tumor and non-tumor diseases and cross-
compare different types of brain tumor, Wang et al. enrolled
163 patients with either nontumorous brain diseases, sys-
temic lymphoma involving CNS, and metastatic or non-
metastatic lung adenocarcinomas and analyzed their CSF
using liquid chromatography—quadrupole time-of-fight spec-
trometric (LC-Q/TOF-MS) (Wang et al. 2020). As a result,
27 representative metabolites were proven diagnostic in
discriminating different brain tumor types and yielded good
performance with the highest AUC of 0.91 for the metastatic
status of lung adenocarcinomas.

The WHO classification of tumors of the CNS

For those with unidentified brain mass, liquid biopsy helps
ascertain the malignancy and correctly classify the tumor
in time. In 2016. WHO published a new guideline on clas-
sifying CNS tumors; the molecular markers were especially
spotlighted to describe brain tumor entities histology fea-
tures, which were further refined especially in pediatric
subtypes in 2021 (Louis et al. 2016). Furthermore, target
therapies and treatment strategies for malignant brain tumor
patients are predominantly dependent on specific molecular
markers, emphasizing the importance of precision oncology.
Recent clinical studies using liquid biopsy below approved
the feasibility.
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Wang et al. found using serum EVs for assessing the
expression level of EGFR provided accurate prediction
on HGG and LGG differentiation, and found positive cor-
relation with the EGFR level and ki-67 labeling index, by
implementing a flow cytometry method with microbead-
based EV enrichment for detection, isolation and analysis
of proteins and mRNAs in EVs. The analysis of NLGN3
and PTTG1 mRNA in EVs also revealed their potentiality
as diagnostic markers (Wang et al. 2019).

Syndecan-1 (SDC1) mRNA can be detected in several
GBM cell lines, but remains undetectable in normal brain
tissues (Watanabe et al. 2006), and its expression level is
related to a stroma hyperplastic, hypoxic and pro-angio-
genic phenotype. Chandran firstly identified SDC1 as a
plasma EV component which can help classify gliomas
into GBM or LGG in a cohort (n=82) (AUC: 0.81) and
further in an independent cohort from TCGA (AUC: 0.91).
They also provided robust evidence that the EVs contain-
ing SDC1 mRNA originated from GBM cells (Indira
Chandran et al. 2019).

Huang et al. studied 11 patients with pediatric gliomas,
including diffuse midline gliomas (DMGs) and successfully
assessed H3 gene mutations in their CSF ctDNA for the first
time, through targeted H3F3A and HISTIH3B via Sanger
sequencing, and targeted H3.3K27M mutant H3F3A allele
detection via nested PCR (Huang et al. 2017).

Billard et al. proposed a novel approach to classify dif-
fuse gliomas by detecting telomeric DNA in blood samples
and revealing telomere maintenance mechanisms (TMM)
(sensitivity: 100%; specificity: 97.3%) (Billard et al. 2021).
They further combined TMM with IDH mutation status and
histological grading to develop a simple and rapid classifica-
tion tool called the TeloDIAG, which efficiently defines five
glioma subtypes corresponding to five different classes by
the 2016 WHO classification (sensitivity of 56% and speci-
ficity of 97% for IDHwt astrocytoma).

Medulloblastoma (MB) is the most common form of
malignant pediatric brain tumor, with a much lower fre-
quency of oncogenic genomic mutations than other pedi-
atric cancers or adult cancers. During MB progression and
clinical treatment, distinct epigenetic signatures and altered
DNA methylation were found by Northcott et al. who epi-
genetically analyzed 1256 cases (Northcott et al. 2017). Dif-
ferent subtypes display distinct transcriptional and epigenic
profiles (WNT and SHH, driven by Wingless and Sonic
hedgehog signaling pathways, and Group 3 and Group 4,
with less clear underlying genetic and biological mecha-
nism). The prognosis of MB is correlated with the subtype,
for example, approximately 30% of patients with Group 3
or 4 MBs presented signs of metastasis at initial diagnosis
(Srinivasan et al. 2016), and relapsed MB still maintains
the original molecular subtype. Furthermore, they integrated
this data with large public datasets (training cohort: 438;
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validation cohort: 189) and set up a reliable survival score
for each patient.

Profiling genetic mutation for targeted therapy

Gliomas of the brainstem are molecularly heterogeneous
and difficult for resection. Pan et al. accessed alterations in
47 brainstem glioma patients by NGS with ctDNA in CSF
for potential targeted therapies, which include mutations
in H3F3A/HISTIH3B, IDH, BRAF, PDGFRA, PPMI1D
and MET. Among all CSF ctDNA samples, 82.5% (47/57)
yielded at least one tumor-specific mutation. Subsequently,
the patient cohort went through surgical resection or open
biopsy, and the matched DNAs were sequenced to verify
the sensitivity and specificity of liquid biopsy. The results
showed all primary tumor alterations by biopsy were
detected in over 83% (31/37) of matched CSF ctDNA sam-
ples. For those with primary tumor DNA biopsy negative for
mutations, they also found 30% (3/10) exhibited detectable
mutations exclusively by CSF ctDNA sequencing. Finally,
they carried out liquid biopsy using cfDNA from plasma,
which showed lower sensitivity than matched CSF ctDNA
(plasma: 38%, CSF: 100%) (Pan et al. 2019).

While previous study has exhibited that TERT promoter
mutations are among initial genetic alterations in IDH-WT
GBM (Barthel et al. 2018), they commonly happen and
act as a precondition for rapid growth. C228T and C250T
account for two of the most frequent alteration subtypes
in TERT promoter mutations, but technically difficult in
amplification due to the GC-rich regions in the promoter
loci. Recently, Muralidharan and his colleagues developed a
ddPCR assay to assess gliomas patients with TERT promoter
mutations in cfDNA from plasma, independently in discov-
ery and blinded validation (n=157) cohorts from multiple
centers (sensitivity: 62.5%; specificity 90%) (Muralidharan
et al. 2021).

BRAF V600E mutation activates the MAPK/ERK path-
way (Carlino et al. 2015) and contributes to a 10-year pro-
gression-free survival rate decrease by 33% compared to
wild type in patients with pediatric LGGs (Lassaletta et al.
2017). As one of the inhibitors of the kinase BRAF, which
mainly functions in MAPK/ERK signal paths, dabrafenib
holds excellent effectivity against BRAF in vitro and the best
diffusivity in brain tissues, thus harboring the most popu-
larity in clinical practice. However, the use of dabrafenib
is contraindicated in patients with wild-type BRAF due to
the risk of tumor progression in these patients (Sanchez
et al. 2018). To detect and quantify BRAF V60OE mutation
with a high efficiency, Garcia-Romero et al. sequestered
cfDNA and extracted EV-derived DNA from 29 pediatric
CNS tumor patients from serum, plasma and CSF (Garcia-
Romero et al. 2019). The results showed that ctDNA derived
from serum rather than plasma yielded the best performance
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for genetic characteristics such as BRAF V60OE mutation
of the original tumor by dPCR detection. Kang et al. tested
the feasibility of detecting circulating BRAF V60OE in a
cohort of nine patients with known BRAF mutant gliomas
or metastatic disease, showing a sensitivity up to 80% and a
specificity up to 100% (Kang et al. 2021).

The US NCCN guidelines recommend epidermal growth
factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs)
like osimertinib for the first-line treatment of NSCLC
patients with 7790M-positive mutations in the EGFR gene,
but acquired resistance of TKIs is prevalent in clinical man-
agement. BMs are frequently found in NSCLCs that pos-
sess at least one oncogenic driver mutation, which can be
a potential therapy target. Wei et al. assessed 375 patients
harboring either an EGFR 19del or L§58R mutation that sen-
sitizes TKIs ascertained by initial biopsy and implemented
ddPCR and ARMS-PCR assay on evaluating 7790M muta-
tion, which approximately explains for 50% of the acquired
TKI resistance in Caucasian and Asian populations, through
plasma extracted ctDNA validated by NGS (Wei et al. 2019).
Their results indicated that acquired 7790M mutation is
positively correlated with primary EGFR 19 del and brain
metastasis as revealed by univariate analyses. Kaplan—-Meier
survival curves suggested that progression-free survival
of initial EGFR-TKI treatment was significantly longer in
T790M-positive patients than negative ones.

Another study involving 71 GBMs was reported by
Figueroa et al. The CSF of patients was collected, and the
EVs were isolated and assessed for EGFR-vIII mutation and
EGFR amplification status, with comparison of cells from
primary tumor biopsies (Figueroa et al. 2017). The results
elucidated that CSF-derived EVs contain RNA signatures
reflecting wild-type EGFR expression and EGFR-vIII status
in GBMs, with a sensitivity up to 61% and a specificity up
to 98%.

Monitoring
Evaluating early treatment response

For DMGs which are impossible for surgical resection,
radiotherapy remains the standard of care at diagnosis. In
a recent study aiming at differentiating pseudoprogression
(PsP) and DMG progression carried out by Panditharatna
et al., 88% of patients with pediatric DMGs were H3K27M
positive using CSF and matched plasma, with the highest
enrichment of ctDNA in CSF (Panditharatna et al. 2018).
Following radiotherapy, a significant decrease in H3K27M
plasma ctDNA (at least 50% decrease) consistent with MRI
assessment (at least 10% decrease) of tumor volume altera-
tions was found in 83% of patients, which indicates that lig-
uid biopsy could function as a strong supplement.

Compared with genomic alterations, the specificity
of detecting epigenic changes is often lower, but ctDNA
methylation often yields good sensitivity, since methylated
DNA often occurs in early carcinogenesis. The detection of
06-methylguanine-DNA methyltransferase (MGMT) pro-
moter methylation status through cfDNA helps predict the
treatment response of temozolomide in adults (Maire 2021).
Sabedot et al. identified a cfDNA-derived methylation sig-
nature through genome-wide DNA methylation profiling of
gliomas (Sabedot 2021). Based on the signature, they further
verified a score metric (the "glioma epigenetic liquid biopsy
score" or GeLB) that optimally distinguished patients with
or without glioma (sensitivity: 100%, specificity: 97.78%).
Following up patient’s GeLLB score can also reflect their
tumor progression and treatment response.

Accessing minimal residual disease

A traditional way of monitoring the dynamics of tumor is to
access the sugar, cholesterol and/or protein circulating bio-
markers, such as prostate-specific antigen (PSA) for prostate
cancer and cancer antigen (CA) 19-9 for pancreatic cancer.
However, these biomarkers are found only in a small portion
of tumor and lack specificity for an individual. The analysis
of cfDNA deals with the above problems, since the genetic
alteration happens in every tumor. To discriminate ctDNA
from normal cfDNA, genetic alterations in cfDNA must be
detected and compared with DNA in normal cells in the
same individual. Also, circulating biomarkers are not accu-
rate for onset time prediction, since the protein biomarkers
are persistent in circulation for several weeks. The half-life
of cfDNA is comparatively short (approximately 2 h), so
changes in cfDNA can be identified before beingseen on reg-
ular imaging or employing protein biomarkers with weeks
to months ahead (Diehl et al. 2008; Dawson et al. 2013).
This characteristic allows liquid biopsy to be utilized in early
detection and monitoring of tumor progression during or
after treatment.

During routine cancer surveillance, MRI and CTCs found
in CSF cytology and flow cytometry analysis are highly spe-
cific of CNS relapse, but harboring low sensitivity. Ignati-
adis et al. introduced a term ‘ctDNA relapse’ for those with
detectable ctDNA, but without obvious imaging evidence
after completion of primary cancer surgery and neoadju-
vant and/or adjuvant chemotherapy (Ignatiadis et al. 2021).
Escuderoln et al. reported that CSF ctDNA analysis not
only facilitated MB subgroup and risk stratification, but also
helped to identify minimal residual disease in two cases, as
ctDNA obtained in the follow-up CSF samples had similar
mutations and/or loss of chromosome arms (Escudero et al.
2020). Liu enrolled 123 MB patients and 476 CSF samples,
and applied low-coverage whole-genome sequencing for
cfDNA detection of tumor-associated CNVs, which were
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used as a biomarker for measurable residual disease (MRD)
and showed good detectability (85% in patients with meta-
static MB, 54% for those with non-metastatic disease and
64% for those with negative CSF cytology findings) (SHH,
32%; WNT 63%; Group 3, 77%; Group 4, 75%). Persistent
MRD positivity at the end of treatment in patients, regard-
less of initial risk grouping, is correlated with shorter PFS,
which is detectable months ahead of radiographic progres-
sion (Liu et al. 2021).

Bobilo et al. evaluated CSF and plasma from 19 patients
with CNS B-cell lymphomas and observed that CSF ctDNA
levels increased earlier than CTCs by flow cytometry,
which confirmed CNS relapse after months (Bobillo et al.
2021). Besides, ctDNA also showed better performance in
monitoring CNS tumor burden and response to treatment.
In another trial exploiting the effect of ibrutinib with HD-
MTX-based chemotherapy in CNS lymphomas, Grommes
applied MSK-HemePACT targeted panel to sequence CSF
ctDNA and observed a considerable fraction of patients with
subsequent recurrence or refractory harbor tumor DNA in
CSF (Grommes et al. 2019).

Tracking evolution of resistance in real time

GBM is characterized by a high infiltration rate and treat-
ment resistance, remaining the most fatal brain tumor. While
GBMs may be primary, or secondary ones that evolve from
LGGs, it makes tracking gliomas evolution of great impor-
tance. Zeng et al. looked into the mechanism of TMZ resist-
ance by characterizing exosomes from two TMZ-resistant
cell lines, patients’ serum and matched CSF using qPCR,
and demonstrated that miR-151a in exosomes not only plays
as a positive predictor to TMZ response, but also potentially
serves as a target for treatment of refractory GBMs. The
results suggested that recurrent GBM samples and TMZ-
resistant cells usually present lower levels of miR-151a,
while high levels of miR-151a can strengthen the response
to TMZ in vitro via inhibiting XRCC4-mediated DNA repair
(Zeng et al. 2018).

Brain tumor may directly release ctDNA into CSF and
its level is related to tumor burden and adverse outcome. In
extensive research carried out by Miller et al., 85 patients
with WHO II-IV gliomas were evaluated using CSF-derived
ctDNA (Miller et al. 2019). The data suggested that the
alterations detected in CSF ctDNA from diffuse gliomas
represent the genome landscape found in tumor biopsies.
They exploited this technique to track the pattern of genomic
evolution within the same patient and found out that truncal
genetic alterations are characterized by IDHI and 1p/19q
codeletion in early tumorigenesis and subsequently in 7P53,
TERT and ATRX, which mostly correlate with the core path-
ways of gliomas, especially growth factor receptor pathways.
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To investigate liquid biopsy techniques and mediums
in leptomeningeal metastases (LM) frequently reported in
NSCLC with EGFR mutations, Jiang et al. detected the
driver and resistance mutations in 21 NSCLC patients diag-
nosed with LMs and investigated the performance of Cell-
Search Assay ', the Thinprep cytologic test (TCT), and brain
MRI (Jiang et al. 2017a). The results supported CellSearch
as it yielded the highest sensitivity (95.2%) and specificity
in capturing CSF CTCs among other single methods. By
CellSearch, they also found significantly higher concentra-
tion of CTCs in CSF than peripheral blood samples.

Predicting survival time

To noninvasively detect MBs and discriminate the sub-
types, Li et al. performed whole-genome bisulfite sequenc-
ing (WGBS) and CMS-IP-seq analysis that elucidated 6598
differentially methylated CpGs in the CSF-derived ctDNA
paralleling the mutation direction of MB tumors. By associ-
ating DNA methylation level at this CpG site with survival
rates, they found that high DNA methylation may function
as a poor prognostic marker for pediatric MB patients (Li
et al. 2020).

Since IDH mutations are common in LGGs and the
mutated enzymes result in increasing abundance of tis-
sue total 2-HG, including R-2-hydroxyglutarate (R-2-HG)
and S-2-hydroxyglutarate (S-2-HG), Sim et al. quantitated
R-2-HG and S-2-HG and calculated the individual ratio of
R-2-HG/S-2-HG (rRS) in tissues and blood samples from
glioma patients intraoperatively, based on HPLC—mass spec-
trometry (Sim et al. 2019). The tissue rRS proved sensitive
and specific for IDH mutations, while blood rRS did not;
it is rapid and can be implemented during surgery. Higher
rRS is associated with poorer prognosis, which may be an
additional target of CSF liquid biopsy.

Future development

Tissue-based multi-panel gene analysis has been contrib-
uting to the clinical application of liquid biopsy. As more
and more novel genes are discovered, gene panels in panel
sequencing are rapidly developing, for instance, TAM-Seq
(tagged-amplicon deep sequencing) and CAPP-Seq (can-
cer personalized profiling by deep sequencing) both harbor
high sensitivity and coverage depth with balanced cost and
coverage mutation number (Thierry et al. 2010). The ear-
liest application of liquid biopsy in brain tumor may take
place in most prevalent mutation points or panels of different
miRNA, such as IDH mutation, TERT mutation, a marker
correlated with ATRX loss on total blood cells, and miR-21.

For example, GliomaDx assay, an LNA-based allele-spe-
cific gPCR method developed by Diplas et al., has yielded
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much sensitivity and rapidity in diffuse glioma classifica-
tion (Diplas et al. 2019). Based on the sensitivity analysis,
GliomaDx targets recurrent mutations in the TERT pro-
moter and codon 132 of IDHI in samples, which is over
200 times more sensitive than Sanger sequencing and can
be performed within an hour. Besides exploiting CTCs or
ctDNA in plasma, voided urine, or CSF, GliomaDx also
showed ability in genotyping surgically resected tissue or
frozen specimens of variable tumor purity, making intraop-
erative diagnosis more practical. Other researches like the
circTeloDIAG, a liquid biopsy tool combining detection of
three markers for glioma, are ongoing (NCT04931732).

Recently, urine is emerging as a CNS tumor liquid biopsy
source. With the development of a nanowire device that
needs only 1 mL of urine from mainly glioma patients and
noncancer individuals, an artificial intelligence (AI) diag-
nostic model detecting miRNAs of such tumors in urine
samples was established at a sensitivity and specificity of
100 and 97% (Kitano et al. 2021). Mouliere et al. detected
tumor-derived DNA in vast samples (in CSF, 7/8; in plasma,
10/12; and in urine, 10/16) (Mouliere 2021). Based on
cfDNA fragmentation features in urine samples, they fur-
ther built a random forest (RF) to classify gliomas and non-
cancer patients that exhibited a median AUC=0.91.

Combining liquid biopsy with machine learning is prom-
ising to improve the accuracy and efficiency in recognizing
mutational patterns and identifying key features predictive
of progression, which has been proven by several studies
(Zhang et al. 2021; Nassiri et al. 2020; Sol 2020; Li et al.
2020). With the development of machine learning and the
prevalence of big data from multiple centers, it is also fea-
sible to uncover the unknown driver genes by sequencing
multiple mutational patterns and further utilize these pat-
terns for the construction of predictive models. However,
aging, chemo and popular germline mutations may affect
the analysis of patterns and they have been not extensively
catalogued. Like other noninvasive diagnosis tools, artifi-
cial intelligence is promising to be involved in future liquid
biopsy workflow and accelerate liquid biopsy into clinical
practice. Multiple studies have utilized machine learning for
sequencing analysis. However, deep learning requires a large
quantity of data. While deep learning in radiomics can easily
gain images for analysis, liquid biopsy lacks extensive clini-
cal application which limits the source of learning material.
A public database with standard criteria of reporting is cru-
cial for future development of liquid biopsy.

Based on multiple noninvasive diagnostic tools, somatic
mutation accumulation and driver genes can be evaluated,
the characteristics of tumor can be assessed, and progres-
sion of tumor can be recorded and visualized. For example,
Cucchiara et al. integrated liquid biopsy and radiomics to
monitor clonal heterogeneity of EGFR-positive NSCLC
(Cucchiara 2020). As a result, more individualized treatment

plans can be tailored and patients with imperceptible prema-
lignant lesion or those who undergo surgery can also benefit.
Future studies should focus on improving the sensitivity and
specificity.

Conclusion

The emergence of noninvasive detection techniques such as
liquid biopsy has yielded much progress in recent years. The
liquid biopsy, analyzing molecules or macrostructures in low
concentration from body liquid, shows minimal invasive-
ness toward patients who are susceptible to tumor or cannot
withstand biopsy. The blossoming of sequencing technique,
such as ddPCR and NGS, ensures more accurate molecular
profile, higher specificity, and more clinical practicability.
The plasma is the most preferable source for brain tumor
liquid biopsy due to convenient sampling. For patients with
primary brain tumor, the CSF may be a better source of
liquid biopsy, since the BBB blocks the spreading of the
target molecule or macrostructure, which may be safely and
transiently opened by techniques like MRgFUS. For patients
with metastases, the comparison among CSF, blood and nor-
mal tissue may provide more information regarding intratu-
moral and intermetastatic heterogeneity. Though cfDNA is
more convenient, EV-derived DNA may hold inherent stabil-
ity due to its lipid bilayer enclosed structures, yet isolation
and purification of EVs are associated with more technical
difficulties. Due to the limitations in the low concentration,
discrimination and quantification of the target molecules,
the overall profiling is still challenging, thus needing more
reliable source and more sophisticated sequencing tech-
niques. Another barrier hindering liquid biopsy’s extensive
clinical application is its high cost. Shallow WGS or targeted
extreme including ddPCR may be relatively cost-effective
(Mouliere et al. 2018). Other noninvasive detection tech-
niques like DSC, FTIR, nanoDSF or CancerSEEK (Tsvetkov
et al. 2018; Tsvetkov et al. 2021; Engh 2011; Chagovetz
et al. 2013; Sala et al. 2020; Cohen et al. 2018) may initially
replace sequencing to reduce the cost and may prepare for
further larger-scale sequencing, but require more studies to
prove feasibility.
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