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Abstract
Background  Non-small cell lung cancer is the most common subtype of lung cancer in the world. However, the survival rate 
of non-small cell lung cancer patients remains low currently. Immune checkpoint and long non-coding RNAs are emerging 
as critical roles in prognostic significance and the immunotherapeutic response of non-small cell lung cancer. It is critical 
to discern LncRNAs related with immune checkpoints in patients with Non-small cell lung cancer.
Methods  In this study, immune checkpoint-linked LncRNAs were determined and achieved by the co-expression analysis. 
Immune checkpoint-linked LncRNAs with noteworthy prognostic value (P < 0.05) gained were next utilized to separate into 
two cluster by non-negative matrix factorization (NMF). Univariate and a least absolute shrinkage and selection operator 
were applied to construct an immune checkpoint-linked LncRNAs model. Kaplan–Meier analysis, Gene Set Enrichment 
Analysis, and the nomogram were utilized to investigate the LncRNAs model. Lastly, the capability immunotherapy and 
chemotherapy prediction value of this risk model were also estimated.
Results  The model consisting of ten immune checkpoint-related LncRNAs was acknowledged to be a self-determining 
predictor of prognosis. Through regrouping the NSCLC patients by this model, difference between them more efficiently on 
immunotherapeutic response, tumor microenvironment and chemotherapy response could be discovered. This risk model 
related to the immune checkpoint-based LncRNAs may have an excellent clinical prediction for prognosis and the immuno-
therapeutic response in patients with NSCLC.
Conclusions  We performed an integrative analysis of LncRNAs linked with immune checkpoints and emphasized the signifi-
cance of NSCLC subtypes classification, immune checkpoints related LncRNAs in estimating the tumor microenvironment 
score, immune cell infiltration of the tumor, immunotherapy, and chemotherapy response.

Keywords  Non-small cell lung cancer · Immune checkpoint · LncRNA · Immunotherapeutic response · TME

Introduction

Non-small cell lung cancer (NSCLC) is the most common 
subtype of lung cancer globally, accounting for 25% of all 
cancer deaths (Bray et al. 2018). With the development of the 
diagnosis, surgery, radiotherapy, chemotherapy and immu-
notherapy, the clinical consequence of NSCLC patients has 
meaningfully improved (Ramalingam et al. 2011). Never-
theless, the five-year overall survival possibility of patients 
with NSCLC is hitherto at a low level (Herbst et al. 2018). 
At present, some evidence shows that the finding and usage 
of molecular markers can improve prognostic value. The 
growing researches have indicated that Immune Checkpoints 
play a vital role in cancer development and aggressiveness 
(Fritz and Lenardo 2019). The programmed cell death 1 
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(PDCD1, also known as PD-1)/ CD274 molecule (CD274, 
also known as PD-L1) and cytotoxic T-lymphocyte associ-
ated protein 4 (CTLA-4) pathways are implicated in tumor 
immune evasion, and therefore, immune checkpoint inhibi-
tors targeting PD-1 and CTLA-4 thereby enhance anti-tumor 
immunity. PD-1 was first discovered as a member of the 
immunoglobulin gene superfamily thought to be involved 
in programmed cell death (Ishida et al. 1992). It is a trans-
membrane protein expressed by select thymocyte subsets 
and T and B lymphocytes, especially after antigen recep-
tor stimulation (Shinohara et al. 1994). PD-1 is triggered 
by the B7 homologues, PD-L1 (B7-H1) and PD-L2 (B7-
H2), constitutively reside on nonlymphoid tissues, which 
can be up-regulated in immune cells by proinflammatory 
cytokines such as IFN-γ and TNF. Immune regulation tar-
geting PD-1 plays a vital role in anti-tumor, anti-infection, 
anti-autoimmune diseases and organ transplant survival (Yi 
et al. 2009; Keir et al. 2008). Its ligand PD-L1 can also be 
used as a target, and the corresponding antibody can also 
play the same role. The combination of PD-1 and PD-L1 
initiates the programmed death of T cells and makes the 
tumor cells get immune escape. The effectiveness of PD-1/
PD-L1 inhibition in tumor regression encouraged clinical 
tests in humans with advanced cancer (Topalian et al. 2012). 
The fully human PD-1 (nivolumab) and PD-L1 (MDX-1105 
and atezolizumab) monoclonal blocking antibodies showed 
exciting regression in patients with diverse incurable can-
cers, including melanoma (Takeuchi et al. 2017) and renal 
cell carcinoma (McDermott et al. 2018). Especially, inhi-
bition of immune checkpoint molecules through PD-1 or 
PD-L1 blockade has demonstrated significant clinical 
advancements for patients with lung cancer (Yang et al. 
2018; Garon et al. 2015; Brahmer et al. 2015). CTLA-4 is 
a member of the CD28 family of receptors that are induced 
on the cell surface on conventional T cells by antigen acti-
vation and constitutively expressed on regulatory T (T reg) 
cells, a specialized subset of CD4 + T cells that can arrest T 
cell responses (Sansom 2000). Anti-CTLA-4 inhibitors has 
shown certain efficacy in the treatment of melanoma (Afzal 
et al. 2018; Meerveld-Eggink et al. 2017), non-small cell 
lung cancer (Perets et al. 2021) and other tumors (Monja-
zeb et al. 2021; Zhang et al. 2021). Long non-coding RNAs 
(LncRNAs), have been revealed to be involved in a varied 
of biological functions (Yao et al. 2019; Moran et al. 2012). 
Recent studies have proved that LncRNAs are rising as 
crucial monitoring elements in human immune system and 
act vital roles in the growth and differentiation of diverse 
immune cell lineages (Turner et al. 2014; Atianand et al. 
2017; Chen et al. 2017). Immune checkpoints such as PD1/
PD-L1, CTLA4 inhibitors become aggressively important 
for cancer therapy, the specific role of Immune checkpoints 
related LncRNA is still indistinct, thus, comprehending the 
mechanism of immune checkpoints related LncRNA in the 

progress of NSCLC may be helpful for uncovering new 
prognostic and therapeutic targets.

In our research, we distracted the expression matrix of 
14,086 LncRNAs and 3 Immune checkpoint recognized 
genes (PD1, PD-L1, CTLA4) based on NSCLC patients in 
The Cancer Genome Atlas (TCGA) online database. Next, 
we identified the Immune checkpoints related LncRNAs 
through Pearson correlation analysis. A novel prognos-
tic model of immune checkpoints related LncRNAs, was 
constructed to predict the overall survival (OS) in NSCLC 
patients. Furthermore, we investigate the relationship asso-
ciated with chemotherapy and immunotherapy responses. 
Lastly, we launched a nomogram to foretell the patients’ 
OS of NSCLC.

Materials and methods

Acquiring data of patients with NSCLC

We attained RNA sequence transcriptome data of FPKM, 
relevant clinical info of patients with NSCLC from the 
online database TCGA (https://​cance​rgeno​me.​nih.​gov/) 
(Tomczak et al. 2015). For reducing statistical bias of this 
analysis, we excluded NSCLC patients with OS days < 30, 
and this study did not require ethical approval.

Selection of immune checkpoint genes and immune 
checkpoint‑related LncRNAs

We obtain the expression matrix of LncRNAs and 3 immune 
checkpoint genes (PD1(PDCD1), PD-L1(CD274) and 
CTLA4) from the online TCGA database. We screened 
immune checkpoint-related LncRNAs by Pearson correla-
tion analysis. In this study, the cutoff criteria were |Pearson 
R|> 0.3, and p value < 0.001.

NSCLC subtypes identification

The R package called “survival” was applied to Univariate 
Cox regression analysis for estimating all candidate genes’ 
association with overall survival. Immune checkpoint-
linked LncRNAs with important prognostic value (P < 0.05) 
obtained were later utilized to non-negative matrix factori-
zation (NMF) clustering (Gaujoux and Seoighe 2010). The 
unsupervised NMF clustering methods were conducted by 
using the “ConsensusClusterPlus” and “limma” R pack-
age on the metadata set, then the best cluster number 
was selected as the coexistence correlation coefficient K 
value = 2.

https://cancergenome.nih.gov/


1599Journal of Cancer Research and Clinical Oncology (2022) 148:1597–1612	

1 3

Constructing an immune checkpoint‑related 
LncRNAs signature

TCGA’s entire cohort was randomized divided into train-
ing cohort and the testing cohort (Table 1). The training 
cohort was used to fabricate the immune checkpoint-related 
LncRNAs risk model. The entire cohort and the testing 
cohort were applied to corroborate this established risk 
model. In conjunction with NSCLC survival data in TCGA, 
we marked off the prognosis of immune checkpoint-related 
LncRNAs from above LncRNAs in the NSCLC data of 
TCGA dataset (P < 0.05) and univariate Cox regression 
analyses was utilized in this process. R package “glmnet” 
was used to perform LASSO Cox regression (The penalty 
parameter assessed by tenfold cross-validation), then, we 
discovered that 22 immune checkpoint-related LncRNAs 
were definitely correlated to the OS of NSCLC patients, 
and an immune checkpoint-related LncRNAs risk model 
was established ultimately. The following formula was 
utilized to compute the risk score: risk score = coeffi-
cient1 × expression (LncRNA1) + coefficient2 × expression 
(LncRNA2) + … + coefficientn × expression (LncRNAn), 
where the coefficient of LncRNAs associated with overall 
survival. Based on the median risk score, we recognized the 
two subcategories (including high- and low-risk groups).

Assessment and validation of immune 
checkpoint‑linked LncRNAs signature

After fabricating the immune checkpoint-linked LncRNAs risk 
model, we utilized it to the testing and entire cohort to confirm 
the model’s accuracy. The receiver operating characteristic 

curve (ROC) was also applied to measure the models’ predic-
tion capability in the cohort of training, testing, and entire, 
respectively.

Independence of the immune checkpoint‑related 
LncRNA model and establishing and proving 
a predictive nomogram

To confirm whether the prognostic signature could be self-
determining among clinical parameters, including age, gender, 
stage, risk score, univariate and multivariate Cox regression 
model method was performed with a stepwise forward proce-
dure. Statistical significance was defined as a P value < 0.05. 
All data were processed using the R package “survival ROC”. 
Furthermore, a nomogram was formed based on the self-deter-
mining prognostic factors acknowledged by multivariate cox 
analysis to explore the 1, 3, and 5 year OS of NSCLC patients. 
The nomogram and calibration plots were generated using the 
RMS R package (Version: 5.1–3).The prediction ability of the 
nomogram and other predictors (age, gender, stage, risk score) 
for 1, 3, and 5 year OS were established.

Assessment of tumor microenvironment 
and tumor‑infiltrating immune cells

Stromal, Immune and Estimate scores of tumor microenvi-
ronment (TME) were evaluated by the R package (“ESTI-
MATE”) (Yoshihara et al. 2013). CIBERSORT is an analytical 
tool developed by Newman et al. to provide an estimation of 
22 immune cell types in a mixed cell population using gene 
expression data, and it is highly consistent with ground-truth 
estimations in many cancers (Newman et al. 2015). Hence, we 
used a combination of the normalized NSCLC gene expression 
matrix and the LM22 signature matrix to estimate the scores of 
22 human immune cell phenotypes between high- and low-risk 
patients. For all sample, the amount of estimated 22 immune 
cell scores is equal to 1. P < 0.05 is considered to be statisti-
cally significant.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) (Kuleshov et al. 2019; 
Reimand et al. 2019) was used to investigate the possible 
active immune-related Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways in the cluster 1 and cluster 2, 
high-risk and low-risk groups. P < 0.05 is considered to be 
statistically significant.

Table 1   Clinical characteristics of patients with NSCLC in TCGA​

Characteristics Training cohort Testing cohort Entire cohort

Patients, n 480 480 960
  > 65 272 260 532
  ≤ 65 203 210 413
 NA 5 10 15

Gender
 Female 183 200 383
 Male 297 280 577

Stage
 I 259 229 488
 II 119 151 270
 III 81 78 159
 IV 14 17 31
 NA 7 5 12

Survival status
 Dead 183 194 377
 Alive 297 286 583
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Investigation of the risk model 
in the immunotherapeutic and drug therapeutic 
response

We utilized the online Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm to foresee the possibility of 
the immunotherapy response (Fu et al. 2020). The R pack-
age (“pRRophetic”) was utilized to assess the drug therapy 
response determined by the half-maximal inhibitory con-
centration (IC50) of each patients with NSCLC based on the 
Genomics of Drug Sensitivity in Cancer (GDSC) website 
(Garnett et al. 2012; Yang et al. 2012; Iorio et al. 2016).

Statistical analyses

In this study, statistical analyses were executed by R soft-
ware (Version 4.0.2). Cox regression analyses (univariate, 
lasso and multivariate) were utilized to assess prognostic 
value. Kaplan–Meier (KM) survival analysis, was utilized to 
explore the OS time of the two different risk groups. Then, 
we verified the accurateness of this immune checkpoint-
related LncRNAs model in the testing cohort and the entire 
cohort. A P value < 0.05 was concerned as a statistically 
noteworthy variance.

Results

Identification of immune checkpoint‑linked 
LncRNAs in patients of NSCLC

The expression matrixes of three immune checkpoint genes 
(PD1, PD-L1, CTLA4) and 14,086 LncRNAs were sepa-
rated from the TCGA database. We characterized immune 
checkpoint-related LncRNA as the expression level of 
LncRNA, which was significantly relevant to greater than 
or equal to one of the three immune checkpoint genes (cut-
off value: Pearson R|> 0.3, P < 0.001). At last, the immune 
checkpoint–LncRNA co-expression network were visual-
ized by using the network diagram and Sankey diagram in 
Fig. 1A and B, respectively. 164 LncRNAs were determined 
as immune checkpoint-related LncRNAs.

Classification of NSCLC based on immune 
checkpoint‑related LncRNAs

From the TGGA RNA-seq data, gene expression matrix 
of 1037 samples and three immune checkpoint-related 
genes were obtained. A total of 22 immune checkpoint-
related LncRNAs were selected by Univariate cox regres-
sion analysis, based on the significant prognostic value, 
P < 0.05(Fig. 2A). There was a significant difference in 
the expression level of these LncRNAs between NSCLC 
and normal tissues (Fig. 2B, C). Based on the 22 immune 
checkpoint-related LncRNAs expression matrix and overall 
survival time of NSCLC patients, the non-negative matrix 

Fig. 1   Identification of immune checkpoints related LncRNAs in 
patients with NSCLC. A Network diagram for PD1, PD-L1, CTLA4 
and 164 immune checkpoints related LncRNAs. B Sankey relational 

diagram for three immune checkpoint genes and the immune check-
points related LncRNAs
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factorization was utilized to divide NSCLC samples into 
two obviously different clusters (cluster 1 and cluster 2). 
The determination of non-negative matrix factorization is to 
detect potential characteristics in gene expression landscapes 
by separating the original matrix into two obviously different 
non-negative matrices. We utilized a full correlation coef-
ficient to ascertain the k value. The best total cluster number 
was set to k = 2 (the two subtypes were separated as cluster 1 
and cluster 2). For example, when the cluster number k = 2, 
the heat map of consensus matrix showed a clear and sharp 
boundary, which indicated that these patients had steady and 
robust clusters (Fig. 3A, B).

Clinical correlation analysis of cluster 1 and cluster 2

Kaplan–Meier (KM) survival analysis showed Patients in 
cluster 1 had an obviously worse OS than their correspond-
ing counterparts in cluster 2 (P < 0.004, Fig. 3C). The sur-
vival rate of 50% for cluster 1 was four years; in contrast, 

that for cluster 2 was six years. Based on the features (Stage, 
Gender, Age, T, M, N, cluster), the heatmap Fig. 3D showed 
that 22 immune checkpoint-related LncRNAs of differences 
in expression levels. Compared with normal tissues, PD1 
and CTLA4 were highly expressed in cancer tissues, while 
PD-L1 expression was low in cancer tissues (Fig. 3E–G). 
Compared to cluster 1, we discovered that PD1, PD-L1, and 
CTLA4 were highly expressed in cluster 2 (Fig. 3H–J).

TME, TIDE, immune cell infiltration landscape, 
and GSEA between cluster 1 and cluster 2

We found that there were noteworthy differences in Immu-
neScore, StromalScore and ESTIMATEScore between the 
cluster 1 and cluster 2 (Fig. 4A–C). However, there is no 
significant difference in TIDE_score between cluster 1 and 
cluster 2 (Fig. 4D). Furthermore, we investigated the dif-
ference of tumor immune cell infiltration between cluster 1 

Fig. 2   Identification of immune checkpoints linked LncRNAs of 
prognostic value in patients with NSCLC. A Univariate Cox regres-
sion analysis reveals that 22 obtained immune checkpoints linked 
LncRNAs significantly correlate with clinical prognosis. B Heatmap 
for the expression difference of immune checkpoints related LncR-

NAs between tumor and normal tissue. C Boxplot for the expres-
sion difference of immune checkpoints related LncRNAs between 
tumor and normal tissue (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001)
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and cluster 1 patients via the CIBERSORT algorithm in 22 
immune cell infiltrates of NSCLC.

The Wilcoxon rank-sum test was also accurately applied 
to explore this difference. We found that several immune 
cells conferred a significantly high infiltration density 
in the cluster 2, including T cells CD4 memory resting 
(P < 0.001), Dendritic cells resting (P < 0.001), Mast cells 
resting(P < 0.002); On other hand, B cells naïve (P = 0.038), 
B cells memory(P < 0.001), Plasma cells (P = 0.007), NK 
cells resting (P < 0.004), Macrophages M0 (P < 0.001), Mast 
cells activated (P = 0.003) have a high infiltration density 
in the cluster 1 (Fig. 4E). In light of the above analysis, we 
hypothesized that these two clusters were linked to immune 
cell infiltrates and have implications for survival outcomes. 
Based on Gene Set Enrichment Analysis, we found that the 
main active pathways of cluster 2 are KEGG_T_CELL_
RECEPTOR_SIGNALING_PATHWAY, KEGG_B_CELL_
RECEPTOR_SIGNALING_PATHWAY and KEGG_NAT-
URAL_KILLER_CELL_MEDIATED_CYTOTOXICITY; 

On other hands, the main active pathways of cluster 1 are 
KEGG_CELL_CYCLE, KEGG_DNA_REPLICATION and 
P53_SIGNALING_PATHWAY (Fig. 4F).

Construction and validation of an immune 
checkpoint‑related LncRNAs risk in NSCLC patients

We investigated prognostic LncRNAs from 164 immune 
checkpoint-associated LncRNAs based on the training 
cohort through univariate Cox regression analysis. The result 
indicated that 22 immune checkpoint-linked LncRNAs in the 
training cohort of TCGA dataset were meaningfully associ-
ated with OS (Fig. 2A). These 22 immune checkpoint-linked 
LncRNAs were used for LASSO-penalized Cox analysis 
and model construction. Hence, 10 immune checkpoint-
related LncRNAs(including MMP2-AS1, HLA-DQB1-
AS1, AC099343.3, AC006369.1, AC104971.3, LINC01281, 
LINC02084, AL035530.2, LINC00944, AC243960.3) 
are picked out from the LASSO-penalized Cox analysis 

Fig. 3   Identification of NSCLC subtypes using NMF consensus clus-
tering in NSCLC patients. A, B NMF clustering based on 22 immune 
checkpoints linked LncRNAs. Patients were separated into two 
clusters (cluster 1 and cluster 2). C Survival analysis of patients in 
Clusters 1 and 2 in the NSCLC cohort. D Heatmap of two clusters 

well-defined by the immune checkpoints linked LncRNAs expression. 
E–G The difference of PD1, PD-L1, CTLA4 expression between 
lung cancer tissue and normal tissue. H–J The difference of PD1, 
PD-L1, CTLA4 expression between cluster 1 and cluster 2



1603Journal of Cancer Research and Clinical Oncology (2022) 148:1597–1612	

1 3

(Fig. 5A, B). As a result, 10 immune checkpoint-linked 
LncRNAs were the prognostic features associated with OS 
in the TCGA training cohort and constructed to be a risk 
model to calculate patients’ prognosis risk with NSCLC 
(Table 2). NSCLC samples were categorized into low-risk 
and high-risk groups on the bias of the median value of the 
prognostic risk grade.

The survival analysis proved that the patients’ OS in the 
high risk group was obviously shorter than that of the low 
risk (P < 0.001) (Fig. 5C). The ROC analyses found that this 
immune checkpoint-related LncRNAs model was a valuable 
tool to predict NSCLC patients’ OS (AUC = 0.665, Fig. 5D). 
The distribution of risk scores based on the ten LncRNAs, 
vital status of patients sorted by risk grade, and the ten 
LncRNAs expression were also according to these findings 
(Fig. 5E). To validate the prognostic competence of this rec-
ognized model, we computed risk scores for every patients 
in the testing cohort and the entire cohort by using the above 
formula. Moreover, Kaplan–Meier survival analyses carried 
on patients of the testing cohort and the entire cohort have 
no differences in the outcomes from the training cohort: the 
OS time of NSCLC patients with higher risk grades was 
worse than that of patients with lower risk grades (Fig. 6A, 

D). The ROC analyses uncovered that this model was an 
effectual instrument to predict NSCLC patient OS in the 
testing cohort (AUC = 0.631, Fig. 6B) and the entire cohort, 
respectively (AUC = 0.647, Fig. 6E). The distribution of risk 
scores, array of survival status and time, the expression of 
the immune checkpoint-related LncRNAs were showed in 
the testing cohort (Fig. 6C) and the entire cohort (Fig. 6F).

Estimate the risk model of the immune 
checkpoints‑linked LncRNAs and clinical characters 
of NSCLC patients

Univariate and multivariate Cox regression analyses was 
utilized to estimate whether this risk model of immune 
checkpoint-related LncRNAs was an independent prognostic 
character for NSCLC. The univariate and multivariate cox 
analyses revealed that Stage and risk score are independent 
prognostic issues of patients with NSCLC (Table 3).

Formation and assessment of the nomogram

A nomogram including the risk score and clinical features 
was manufactured to foresee 1, 3 and 5 year OS rates. 

Fig. 4   Identification of immune cell infiltration landscape, tumor 
microenvironment score, Kegg-pathway, and TIDE_Score in the two 
clusters. A–C ImmuneScore, StromalScore and ESTIMATEScore 
between cluster 1 and cluster 2. D The difference of TIDE_score 

between the two clusters. E The difference of immune cell infiltration 
between cluster 1 and cluster 2. F Kegg Pathway analysis between 
cluster 1 and cluster
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Through comparing with clinical features, the risk score 
of the risk model showed powerful predictive capability in 
the nomogram (Fig. 7A). Correction charts presented that 
the detected versus predicted values of 1, 3 and 5 year OS 
revealed ideal consistence (Fig. 7C–E). The conformance 
index of the nomogram was calculated. This processes were 

handled to better assess the particularity and susceptibleness 
of risk grades in predicting OS in patients with NSCLC. 
With the increase of time, we found that the nomogram's 
concordance index was continuously greater than other clini-
cal features, signifying that the nomogram could better pre-
dict the prognosis of patients with NSCLC (Fig. 7B).

Clinical correlation analysis and tumor immune 
microenvironment based on the risk model

Just as depicted in Fig. 8A–F, according to the subcatego-
ries sorted by gender, age, or tumor stage, the patients' 
OS of the low-risk group continuous are better to that 
in high-risk group. We found that there were significant 
differences in risk score in clinical features, cluster, age, 
gender, stage, T, N, and TME. The risk score of cluster 1 
was significantly higher than that of cluster 2 (Fig. 8G). 
There was no significant difference in risk score between 
groups older than 65 and less than 65 (Fig. 8H). The risk 
score of male patients was higher than that of female 
patients (Fig. 8I). Patients with advanced clinical stage had 

Fig. 5   A risk model for patients with NSCLC from immune check-
points linked LncRNAs. A The LASSO coefficient profile of 22 
OS-correlated immune checkpoints linked LncRNAs and the per-
pendicular imaginary line was drawn at the value selected by tenfold 
cross-validation. B The tuning parameters (log λ) of patients' OS 
related immune checkpoints linked LncRNAs were chosen to cross 
validate the error curve. Along with the minimal criterion and 1-se 

criterion, the perpendicular imaginary line is dragged at the ideal 
value. C Kaplan–Meier survival curves of patients’ OS in the low- 
and high-risk groups. D The ROC analyses of this model in the train-
ing cohort. E The distribution of risk scores based on the immune 
checkpoints related LncRNAs, vital statuses of patients sorted by risk 
score and the ten-LncRNAs expression heatmap in the training cohort

Table2   The model information 
of Immune checkpoint related 
LncRNAs

Gene Coef

MMP2-AS1  − 0.01674
HLA-DQB1-AS1  − 0.02424
AC099343.3  − 0.05855
AC006369.1  − 0.08069
AC104971.3  − 0.0676
LINC01281  − 0.57522
LINC02084  − 0.09936
AL035530.2  − 0.14297
LINC00944 0.510384
AC243960.3  − 0.18752
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higher risk scores (Fig. 8J–L). There was no significant 
difference in risk scores between patients with metastasis 
and those without metastasis due to the small number of 
patients considering metastasis (Fig. 8M). There was a 
significant difference in tumor microenvironment scores 
(ImmuneScore, StromalScore, and ESTIMATEScore) of 
the risk score (Fig. 8N–P). Based on Gene Set Enrichment 
Analysis, we found that the main active immune-related 
pathways of the low_risk group are KEGG_B_CELL_
RECEPTOR_SIGNALING_PATHWAY, KEGG_
CHEMOKINE_SIGNALING_PATHWAY, KEGG_NAT-
URAL_KILLER_CELL_MEDIATED_CYTOTOXICITY, 
EGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY, 
and KEGG_TGF_BETA_SIGNALING_PATHWAY; On 
other hand, the main active pathways of the high_risk 
group are KEGG_CELL_CYCLE, and KEGG_DNA_
REPLICATION (Fig. 8Q). 

Therapeutic responses for NSCLC

We next explored the correlations between the immune 
checkpoint-linked LncRNA model and immunotherapeutic 
markers. Compared with the high-risk group, the expression 
of PD1, PD-L1 and CTLA4 were dramatically higher in the 
low-risk group (Fig. 9A–C).

We also discovered that some immune cells conferred a 
expressively high infiltration density in the low-risk group, 
including T cells CD8 (P < 0.002), T cells CD4 memory 
resting (P < 0.007, T cells regulatory (Tregs) (P < 0.001), 
Dendritic cells resting (P < 0.001); on the other hand, mac-
rophages M0 (P < 0.001), have a high infiltration density in 
the high-risk group (Fig. 9D). The correlation between risk 
score and immune cell infiltration is shown in supplement 
Fig. 1.

Unsurprisingly, we discovered that the low-risk groups 
could be further possible to reply to immunotherapy than 

Fig. 6   The prognostic value of the risk model of the ten immune 
checkpoints-related LncRNAs in TCGA testing and entire cohorts. A 
Kaplan–Meier survival curves of patients’ OS in the low- and high-
risk groups for the testing cohort. B The ROC analyses of this model 
in the testing cohort. C The distribution of risk scores based on the 
immune checkpoints related LncRNAs, survival status of NSCLC 
patients sorted by risk score and the ten-LncRNAs expression heat-

map in the testing cohort. D Kaplan–Meier survival curves of patients 
OS in the low- and high-risk groups for the entire cohort. E The ROC 
analyses of this model in the entire cohort. F The distribution of risk 
scores based on the immune checkpoints related LncRNAs, survival 
status of NSCLC patients sorted by risk score and the ten-LncRNAs 
expression heatmap in the entire cohort

Table 3   Univariate and 
multivariate Cox regression 
analysis of overall survival in 
the training cohort

Univariate analysis Multivariate analysis

Variables HR 95% CI of HR P value HR 95% CI of HR P value

Age 1.001 0.985–1.018 0.880 1.002 0.985–1.019 0.821
Gender 1.111 0.812–1.519 0.512 1.040 0.758–1.425 0.809
Stage 1.520 1.308–1.767 0.000 1.493 1.280–1.741 0.000
Risk score 1.587 1.375–1.832 0.000 1.540 1.316–1.801 0.000
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Fig. 7   Building and assessment of the prognostic nomogram. A Nomogram predicts the probability of 1, 3, and 5 year OS of NSCLC patients. 
B Concordance indexes of risk grade and clinical features. C–E The nomogram’s calibration plot predicts the probability of 1, 3, and 5 year OS

Fig. 8   Estimation of tumor immune microenvironment and clinical 
characteristics with the immune checkpoints linked LncRNAs model 
in the entire cohort. A–F Kaplan–Meier curves of differences in 
overall survival classified by gender, age, or stage between the high-
risk and low-risk groups in the entire cohort. G–M The relationship 

between risk score and clinical characteristics. N–P Differences of 
risk scores in high and low tumor microenvironment score groups 
(ImmuneScore, StromalScore, and ESTIMATEScore). Q Kegg Path-
way analysis between the high- and low-risk groups
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high-risk groups, indicating that this immune checkpoint-
related LncRNAs classifier index might be a marker for 
predicting TIDE (Fig. 9E).

At the same time, we compared the survival of four 
groups of patients with high/low-risk scores and stratified 
gene expression levels at immune checkpoints. As shown 
in Fig. 9F, the survival rate of patients with low-risk 
scores and low PD-1 was significantly better than that 
of patients with other stratification (P < 0.001). Patients 
with low-risk scores and high PD1 expression had more 
prolonged survival than patients with high-risk scores and 
low PD1 expression (P < 0.001) (Fig. 9F). Patients with 
high-risk scores and high PD1 expression had the short-
est survival time. When we repeated a similar analysis 
using risk score and PD-L1 expression or CTLA-4 expres-
sion, we found that patients with a risk score and PD-L1 
expression or CTLA-4 expression stratification showed a 
similar survival pattern to PD-1 (Fig. 9G, H).

We also uncovered that 44 drugs had significant vari-
ances in assessed IC50 between low-risk and high-groups; 
especially, patients in the low-risk group had lower 
IC50 values (P < 0.05; Fig. 10 and supplement Fig. 2). 
Together, these results supported that the immune check-
points related LncRNAs risk model may play a critical 
role in predicting therapeutic drug response. 

Discussion

NSCLC, at present, as the most ordinary subtype of lung 
cancer globally, has been paid more attention by many 
medical researchers to study the occurrence, develop-
ment and treatment of NSCLC during the past years 
(Ramalingam et al. 2011; Herbst et al. 2018). Accumulat-
ing studies show that various lung tumor subtypes had 
diverse clinical features and outcomes, thus, more and 
more effective biomarkers have been found to predict 
survival in NSCLC nowadays (Rodríguez et  al. 2021; 
Pradhan et al. 2021; Tang et al. 2021). PD1/PD-L1and 
CTLA4 were the most intensely studied immune check-
point at present, and related immune checkpoint inhibitors 
have been widely used in the treatment of advanced can-
cer, especially in melanoma (Liu et al. 2019), non-small 
cell lung cancer (Yang et  al. 2018; Chen et  al. 2020). 
Traditional immune checkpoint inhibitors, such as pem-
brolizumab and nivolumab have been used in all kinds 
of solid tumors, which have produced an exciting results 
(Llovet et al. 2021; Morad et al. 2021; Carlino et al. 2021). 
While new drugs such as M7824 and YM101 (Grote et al. 
2020; Cheng et al. 2022; Paz-Ares et al. 2020) in NSCLC 
have showed good results. M7824 (Lind et al. 2020) and 

Fig. 9   Estimation of immune checkpoint gene expression, cancer 
immunotherapy response with the model in the entire cohort. A–C 
Boxplot showed the difference of PD1, PD-L1, CTLA4 expression 
between high and low-risk groups. D Immune cells infiltration den-

sity between high- and low-risk patients. E TIDE prediction score 
between high- and low-risk patients. F–H Kaplan–Meier survival 
curves of OS among four patient groups stratified by the risk score 
and PD-1 (F), PD-L1 (G), CTLA-4 (H)
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YM101 (Yi et al. 2021a) can simultaneously targeting 
TGF-β and PD-L1, provides a new choice for immuno-
therapy. The researchers found that M7824 and YM101 
(Yi et al. 2021b) can overcome immunotherapy resistance, 
It provides a new choice for clinical decision-making. 
Immunotherapy combined with other targeted therapy 
will become a choice for more patients in the future. At 
the same time, drugs with immune checkpoint inhibition 
and a variety of targeted functions will also become a new 
direction for researchers.

However, the expression level of these three immune 
checkpoint genes in cancer is not directly related to the 
effect of immunotherapy and overall survival (Goodman 
et al. 2018).LncRNAs, a recently recognized vital player of 
the genome regulatory network, have also been discovered 
to act key roles in the growth and motivation of immune 
cells, may serve as peculiar molecular markers for infiltrat-
ing immune cells in TME (Hong et al. 2020; Zhang et al. 
2020; Xu et al. 2019; Huang et al. 2018; Jiang et al. 2018). 
However, genome-wide screening of definite immune check-
point-related LncRNA and their value in evaluating immune 
cell infiltrate of tumor, tumor microenvironment, therapeutic 
responses and clinical outcome has barely been explored. In 
this study, we first reannotated immune checkpoint-related 
LncRNA of NSCLC from the TCGA dataset. 164 LncRNAs 
were discerned as immune checkpoint-linked LncRNAs. 
Moreover the TCGA NSCLC dataset approved the prog-
nostic value of 22 immune checkpoint-related LncRNAs, 
which were applied to NMF to divide NSCLC samples into 
two different clusters (cluster 1 and cluster 2). There was 
a significant difference in overall survival between cluster 
1 and cluster 2. There were significant differences in gene 
expression of immune checkpoint genes, immune cell infil-
tration, tumor microenvironment score (ImmuneScore, Stro-
malScore, and ESTIMATEScore) and active Kegg pathway 
between the two clusters. However, no significant differ-
ence in the TIDE_score used to evaluate immunotherapy 
response between the two clusters. This may be related to 
the small sample size of cluster2. Ten immune checkpoint-
linked LncRNAs (including MMP2-AS1, HLA-DQB1-AS1, 
AC099343.3, AC006369.1, AC104971.3, LINC01281, 
LINC02084, AL035530.2, LINC00944, AC243960.3) were 
applied to construct an immune checkpoint-linked LncRNA 
model to foresee the OS of NSCLC patients. Except for 
LINC00944, others are protective factors to the patient with 
NSCLC. Generally speaking, there are few studies on non-
coding RNA related to immune checkpoints.

Some researchers reported that HLA-DQB1-AS1 is an 
immune-related non-coding RNA associated with the prog-
nosis of patients with lung cancer (Jin et al. 2020). The 

researchers found that HLA-DQB1-AS1 is related to the 
occurrence and development of chronic obstructive pulmo-
nary disease (Qian et al. 2018). Recent research has found 
LINC01281 is related to the prognosis of patients with laryn-
geal carcinoma (Zhang et al. 2019). Through bioinformatics 
analysis, the researchers found that LINC02084 is associated 
with the prognosis of liver cancer (Lv et al. 2018) and renal 
clear cell carcinoma (Sun et al. 2020). LINC00944 is asso-
ciated with breast cancer prognosis (Santiago et al. 2021). 
The research on these non-coding RNAs (AC099343.3, 
MMP2-AS1, AC006369.1, AC104971.3, AL035530.2, 
AC243960.3) has not been reported. The mechanism of the 
role of these non-coding RNAs in cancer is worthy of further 
study.

According to the above ten immune checkpoint-related 
LncRNAs mode, patients with NSCLC were separated into 
high-risk and low-risk groups. We found that the high-risk 
set had an outwardly poor clinical result. Multivariate Cox 
regression analyses displayed that the immune checkpoints 
associated LncRNAs model was an independent risk factors 
of OS. We also constructed a nomogram displaying wonder-
ful consistency between the surveyed and forecast rates for 
1, 3 and 5 year OS of NSCLC patients. Lastly, the observed 
1, 3 and 5 year OS predicting rates presented excellent 
consistency. Based on the model, we found that there were 
some differences and correlations in risk score between the 
two cluster, clinical stages, tumor microenvironment score, 
gene expression of the immune checkpoint, TIDE_score 
and immune cell infiltration. Above all, the model based on 
ten immune checkpoint-related LncRNAs, which are self-
reliantly associated with OS is equally accurate. Calcula-
tion of the TIDE score suggested that patients with low-risk 
subgroup have a better response to immunotherapy. Giving 
the above consequences, we suppose that this forecast model 
may have the capacity to provide dependable immune bio-
markers for cancer therapy. In the meantime, it could give 
us a new mind in exploring the molecular biological mecha-
nism of the immune checkpoint-related LncRNA in NSCLC. 
We know that the stage is the critical feature of the prognosis 
of NSCLC. But, patients with NSCLC at the similar stage 
constantly have diverse clinical outcomes, signifying that the 
existing periodization classifications in providing depend-
able forecasts and revealing the heterogeneity of NSCLC 
are imprecise. Thus, the underlying predictive and therapeu-
tic markers should be discovered. The established immune 
checkpoint-related LncRNA model delivers us a new tech-
nique for prognostic expectation in NSCLC patients. The 
outcomes also afford thinking for future investigations on the 
procedure and mechanism of immune checkpoints modifica-
tion of LncRNAs.

In addition, the function of LncRNAs and possible inter-
action with the immune checkpoints gene need to be dem-
onstrated by in vivo and in vitro experiments.

Fig. 10   Different chemotherapy responses in low- and high- risk 
NSCLC patients. (P < 0.05)

◂
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In conclusion, we performed an integrative analysis of 
LncRNAs related to immune checkpoints and emphasized 
the significance and value of NSCLC subtypes identifica-
tion, immune checkpoints related LncRNAs in estimating 
the Tumor microenvironment score, immune cell infiltration 
of the tumor, immunotherapy, and chemotherapy response. 
Additionally, for the first time, our research identified and 
validated an immune checkpoints-related LncRNA signature 
based on ten LncRNAs, which has self-governing prognostic 
implication for NSCLC patients. Finally, we suggested the 
potential of immune checkpoints-related LncRNA signature 
as a valuable predictive markers of immunotherapy response 
to allow a more precise selection of patients with NSCLC 
who will take advantage of immune checkpoint inhibitor 
immunotherapy, which need more immunotherapy data sets 
to further validating.
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