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Abstract
Radiotherapy (RT) is considered as a standard in the treatment of most solid cancers, including glioblastoma, lung, breast, 
rectal, prostate, colorectal, cervical, esophageal, and head and neck cancers. The main challenge in RT is tumor cell radiore-
sistance associated with a high risk of locoregional relapse and distant metastasis. Despite significant progress in understand-
ing mechanisms of radioresistance, its prediction and overcoming remain unresolved. This review presents the state-of-the-art 
for the potential universal biomarkers correlated to the radioresistance and poor outcome in different cancers. We describe 
radioresistance biomarkers functionally attributed to DNA repair, signal transduction, hypoxia, and angiogenesis. We also 
focus on high throughput genetic and proteomic studies, which revealed a set of molecular biomarkers related to radioresist-
ance. In conclusion, we discuss biomarkers which are overlapped in most several cancers.
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Introduction

Radiation therapy (RT) is the most effective method of 
cytotoxic treatment based on ionizing radiation (Baskar and 
Itahana 2017). RT plays a key role in the treatment of many 
cancers, and approximately 50% of cancer patients are esti-
mated to receive RT (Harrington et al. 2011). Indications 
for the appointment of RT include (a) radical treatment, (b) 
adjuvant therapy after surgery to eliminate residual disease, 
and (c) palliative care (Harrington et al. 2011). As an inde-
pendent treatment strategy, RT can be used at earlier stages 
of the disease if surgical intervention is impossible (Das 
et al. 2010; Swanton et al. 2021). The primary purpose of 
radical RT is to achieve complete eradication of tumor cells 

by delivering sufficient doses of radiation. The levels of radi-
cal doses depend on the histological type of tumor, mitotic 
activity, and the degree of cell differentiation.

Tumor-specific radioresistance is a critical factor for RT 
failure and the development of locoregional relapse and dis-
tant metastases (Huang and Zhou 2020). The frequency of 
relapses after RT or chemoradiation therapy (CRT) varies 
between different cancers. It is 5.2% in head and neck cancer 
(Lindegaard et al. 2020), 16–20% in prostate cancer (Grün 
et al. 2020), 55% in cervical cancer (Ning et al. 2018), 8.63% 
and 4.31% (local recurrence and regional recurrence after 
RT) in breast cancer, and 6.5% in rectal cancer (Yu et al. 
2008; Couch and Hemingway 2016; Huang et al. 2017).

The search for effective clinical, morphological, and 
molecular criteria for predicting the success of the treat-
ment at the initial and follow-up steps is one of the key 
tasks in oncology. Despite the main and common molecular 
mechanisms of radioresistance being clear, the establishment 
of effective biomarkers is still a significant challenge. The 
antigen of squamous cell carcinoma (SCC-Ag) was recently 
established for determining a residual disease after treat-
ment and the effectiveness of prescribed therapy, but it is 
not related to radioresistance (Yagi et al. 1987; Petrelli et al. 
1988; Yoshimura et al. 1990). The development of novel 
radioresistance biomarkers universal for all cancers seems 
relevant and demanded.
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Radiation induces different alterations related to DNA 
damage and repair, cell cycle regulation, reactive oxygen 
species (ROS), hypoxia, tumor microenvironment (TME), 
angiogenesis, and epigenetic regulation (Willers et al. 2013; 
Tang et al. 2018). Plenty of existing studies investigates the 
radiation effects in vitro and in vivo. An increasing number 
of studies have also been trying to establish prognostic and 
predictive biomarkers of radioresistance in cancer patients.

In the present review, we analyze the available data on the 
potential biomarkers of radioresistance in different cancers 
defined as an unfavorable outcome in most cases. In par-
ticular, we focus on clinical studies demonstrating molecu-
lar factors associated with radioresistance. We also review 
genomic, transcriptomic, and proteomic studies that revealed 
the sets of molecular factors prognostic for cancer after RT. 
In conclusion, we discuss the complications in the search 
for a single biomarker and explain which attempts should 
be made in the future to overcome cancer radioresistance.

DNA damage and repair

In general, the success or failure of RT is determined by five 
R radiobiology: repair of DNA damage, cell redistribution 
in the cell cycle, repopulation, reoxygenation of hypoxic 
tumor areas, and radiosensitivity (Pajonk et al. 2010; Goe-
degebuure et al. 2019). A common feature of ionizing radia-
tion is the induction of DNA damage directly leading to 
cancer cell death. Critical mechanisms of DNA damage 
include cleavage at the sugar-phosphate linkage region of 
a DNA polynucleotide chain (single-strand break, SSB), 
breaks on both DNA chains in adjacent or nearly adjacent 
sugar-phosphate-binding sites (double-strand break, DSB), 
intramolecular and intermolecular linkage between DNA or 
DNA-protein, degradation of organic bases, loss of a purine 
or pyrimidine base, and breaking of hydrogen bonds result-
ing in permanent deformation of DNA structure (Liu et al. 
2020b). Among them, DSBs are the most lethal lesions 
which trigger a series of cellular DNA damage responses 
(DDRs), including the activation of DNA damage sensing 
and early transduction pathways, cell cycle arrest, and DNA 
repair (Huang and Zhou 2020). DSBs can be repaired either 
by homologous recombination (HR) or via nonhomologous 
end joining (NHEJ). HR is a crucial pathway for the accurate 
repair of DSBs and maintaining genomic stability (Shrivas-
tav et al. 2008).

Several factors responsible for DNA repair are associ-
ated with radioresistance in several clinical studies (Table 1). 
Pretreatment protein expression of XRCC2, involved in 
NHEJ-based repair of DSBs, negatively correlates with 
3-year overall survival (OS) after RT in patients with locally 
advanced rectal cancer (Qin et al. 2015). Among patients 
who achieved a pathological response, 66.7% of cases were 
negative for XRCC2 expression, and 33.3% were positive for 

XRCC2 expression (Qin et al. 2015). In NSCLC patients, 
XRCC2 SNPs were associated with RT response and OS 
(Yin et al. 2011; Yang and Liu 2020). The protein expression 
of BRCC3 and YB-1, which are involved in DNA repair, 
was upregulated in pretreatment biopsies of patients with 
nasopharyngeal carcinoma (NPC) who had worse OS and 
a higher risk of recurrence (Tay et al. 2009; Tu et al. 2015). 
Increased protein expression of Ku80 (XRCC5), a key medi-
ator of DSB repair, correlates with locoregional recurrence 
in post-RT specimens of patients with HPV-negative head 
and neck squamous cell carcinoma (HNSCC) (Moeller et al. 
2011).

In NPC patients treated with conventional RT, the radi-
oresistance-associated biomarkers belonging to the hetero-
trimeric replication protein A (RPA) complex were dem-
onstrated. The expression of DNA repair marker RPA3 in 
post-treatment specimens was higher in radioresistant NPC 
patients who experienced local recurrence. Analysis of 
TCGA data indicated that high pretreatment RPA3 expres-
sion also correlates with poor OS and a high recurrence rate 
in patients with HNSCC after RT (Qu et al. 2017).

The impact of copy number alterations in DDR genes on 
clinical outcome based on biochemical recurrence (defined 
as a rise in PSA level) was examined in patients with pros-
tate cancer (PC) receiving radical RT (Berlin et al. 2014). 
Evaluation of pre-RT biopsies by a comparative genomic 
hybridization revealed CNAs predominantly in DDR-sens-
ing genes: NBN (15.1%), ATR​ (8.6%), PRKDC (7.9%), and 
ATM (5.8%). In addition, NBN gain was an independent 
prognostic factor for 5-year biochemical recurrence (Berlin 
et al. 2014).

The molecular mechanisms of DDR are well known, and 
many in vitro studies have established them as first-line pro-
cesses to protect tumors from irradiation inducing radiore-
sistance. Above mentioned evidence indicates that increased 
pre-and post-treatment expression of DDR-associated factors 
correlates to poor prognosis; however, this correlation is not 
specific to cancer type. Only XRCC2 expression was predic-
tive for radioresistance in several cancers (Fig. 1, Table 1). 
As far as DNA repair is complex, clinical investigation of 
other DDR-associated factors can help search for sensitive 
and effective biomarkers or signatures for tumor response 
to RT.

Tyrosine kinases and cell cycle control

Tyrosine kinases (TKs) are enzymes that regulate cell 
survival and cell proliferation in response to stress (Bhat-
tacharya et  al. 2018). TKs are primarily classified into 
receptor tyrosine kinases (RTKs) (e.g., EGFR, PDGFR, 
HER-2, FGFR, and IGF-1R) and non-receptor tyrosine 
kinases (NRTK): SRC, ABL, FAK, AKT, and Janus kinase 
(Paul and Mukhopadhyay 2004). They play a crucial role 
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Table 1   Common radioresistance biomarkers in various cancers

Marker Method of detection Cancer type (N) Treatment Prognostic significance References

DNA damage and repair
 XRCC2 IHC RC (N = 67) RT Poor 3-year OS Qin et al. (2015)

Genotyping NSCLC (N = 261) RT Poor 100-months OS Yin et al. (2011)
Genotyping NSCLC (N = 486) 3D-CRT​ Lower RT efficacy Yang and Liu 2020)

Tyrosine kinases
 IGF-1R IHC RC (N = 87) RT Poor response Wu et al. (2014)

RT-PCR RC (N = 87) RT Poor response
IHC PC (N = 136) RT Post-RT recurrence Aleksic et al. (2017)
IHC BC (N = 25) RT Early breast tumor relapse Turner et al. (1997)

 pAKT IHC BC (N = 1004) RT Lower incidence of 
ipsilateral breast tumour 
recurrence

Sjöström et al. (2020)

IHC RC (N = 25) CRT​ Poor RT response Koyama et al. (2018)
IHC RC (N = 70) CRT​ Better RT response Davies et al. (2011)
IHC HNSCC (N = 120) RT poor OS/PFS Freudlsperger et al. (2015)
IHC SCC (N = 119) RT poor OS/PFS Kim et al. (2006)

Metabolic factors
 HIF-1α IHC SCC (N = 43) CRT​ Lower chance of complete 

response
Zhu et al. (2016)

SCC (N = 179) Concurrent CRT​ Poor 5-year DFS and OS Kim et al. (2013)
IHC HNSCC (N = 941) CRT​ Worse prognosis in oro-

pharyngeal cancer and 
laryngeal cancer and better 
in oral cancer

Swartz et al. (2021)

IHC NPC (N = 129) RT Poor OS and DMFS Chen et al. (2014)
IHC NPC (N = 90) CRT​ Poor OS Hui et al. (2002)
Meta-analysis ESCC (N = 1261) CRT​ Poor response to CRT​ Sun et al. (2013)

 NRF2 IHC ESCC (N = 164) Concurrent CRT​ Poor response to therapy and 
poor 8-year PFS and OS

Wang et al. (2020)

IHC NPC (N = 97) RT Reduced 8-year OS Huang et al. (2020)
mRNA profiling RC (N = 127) RT Incomplete response to 

neoadjuvant RT
O’Cathail et al. (2021)

 COX-2 IHC SCC (N = 75) CRT​ Decreased 5‐year OS and 
DFS

Kim et al. (2002)

IHC SCC (N = 167) RT Decreased 5‐year OS and 
DFS

Chen et al. (2005)

RC (N = 2095) CRT​ Poor RT response, local 
recurrence

Berbecka et al. (2021)

IHC ESCC (N = 76) RT Worse RT response Zhang et al. (2017b)
Angiogenic regulators
 VEGF ELISA NSCLC (N = 1602) RT Poor response and 10-year 

OS
Fu et al. (2014)

IHC PC (N = 201) RT Higher risk of 12-year bio-
chemical failure

Vergis et al. (2008)

IHC RC (N = 10) RT Lower rate of pCR Zlobec et al. (2008)
ELISA BC (N = 268) RT Lower 5-year RFS Manders et al. (2003)
IHC SCC (N = 100) RT Reduced OS and metastatic-

free survival
Loncaster et al. (2000)

IHC SCC (N = 20) RT Post-RT relapse Yoshida et al. (2018)
cDNA microarray HNSCC (N = 86) RT Poor response to RT Akervall et al. (2014)
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in radiation-activated DNA repair and cell survival (Bhat-
tacharya et al. 2018) (Table 1).

HER-2 overexpression is related to distant metasta-
sis of rectal cancer after neoadjuvant RT, especially in 
patients with poor response to treatment (Yao et al. 2014). 
Rectal, breast, and prostate cancer patients with low 

pretreatment protein and negative mRNA expression of 
IGF-1R display improved sensitivity to RT and decreased 
post-RT recurrence rate (Turner et al. 1997; Wu et al. 
2014; Aleksic et al. 2017). High protein expression of 
Pim-1 and gene expression of FAK/PTK2 in post-treat-
ment samples is associated with poor prognosis and worse 

Table 1   (continued)

Marker Method of detection Cancer type (N) Treatment Prognostic significance References

 OPN ELISA NSCLC  (N = 55) RT/CRT​ Poor OS Ostheimer et al. (2014)

ELISA NSCLC (N = 106) CRT​ Poor 6-year survival Dehing-Oberije et al. (2011)

IHC PC (N = 201) RT Higher risk of 12-year bio-
chemical failure

Vergis et al. (2008)

ELISA HNSCC (N = 320) RT Poor RT response Overgaard et al. (2005)

IHC HNSCC (N = 50) RT Increase in local recurrence Etiz et al. (2013)

ELISA NPC (N = 44) RT Poor RT response Hui et al. (2008)

IHC SCC (N = 111) RT Worse RT response and 
lower 5-year PFS rate

Huang et al. (2015)

IHC ESCC (N = 80) RT Poor pCR, worse OS and 
DFS

Chiu et al. (2018)

 IL-6 IHC ESCC (N = 173) CRT​ Development of loco-
regional failure or distant 
metastasis

Chen et al. (2013)

ELISA NPC (N = 314) RT Worse 2-year survival Chow et al. (2003)
TCGA data HNC (N = 785) RT Worse radiotherapeutic 

outcome
You et al. (2019)

ELISA NSCLC (N = 322) RT/CRT​ Poor OS Dehing-Oberije et al. (2011)

BC breast cancer, CRT​ chemoradiotherapy, DFS disease-free survival, ELISA enzyme-linked immunosorbent assay, ESCC esophageal squamous 
cell carcinoma, HNSCC head and neck squamous cell carcinoma, IHC immunohistochemistry, NPC nasopharyngeal cancer, NSCLC non-small-
cell lung carcinoma, OS overall survival, pCR pathological complete response, PC prostate cancer, RC rectal cancer, RT radiotherapy, SCC squa-
mous cervical carcinoma

Fig. 1   Overlapping radiore-
sistance biomarkers between 
different human cancers. Nine 
common biomarkers are shown 
in the seven most representative 
cancer types treated with RT. 
BC breast cancer, CC cervical 
cancer, ESCC esophageal squa-
mous cell carcinoma, HNSCC 
head and neck squamous cell 
carcinoma, NSCLC non-small 
cell lung carcinoma, PC pros-
tate cancer, RC rectal cancer
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DFS in patients with HNSCC treated with RT (Peltola 
et al. 2009; Skinner et al. 2016). A high level of phos-
phorylated AKT (pAKT), regulating DDR, in samples 
obtained after RT correlates with poor OS/PFS in patients 
with squamous cell cervical carcinoma, glioblastoma, and 
advanced HNSCC (Kim et al. 2006; Suzuki et al. 2007; 
Freudlsperger et al. 2015). Oppositely, a high pretreat-
ment level of pAKT is associated with a lower incidence 
of recurrence and better RT response in breast and rectal 
cancers (Davies et al. 2011; Sjöström et al. 2020).

The outcome of irradiation depends on the regulation 
of the cell cycle (Otani et al. 2016). Cells in the G2/M 
phase are more vulnerable to irradiation than cells in G1 
or S phases, where rapid DNA repair can successfully 
result in radioresistance (Pawlik and Keyomarsi 2004). 
Tumors with high expression of checkpoint serine/threo-
nine kinase 1 (Chk1), a key cell cycle mediator involved 
in DNA repair, display radioresistant phenotype. DNA 
damage induces the activation of Chk1, facilitating the 
DDR and initiation of the cell cycle checkpoints (Patil 
et al. 2013). High expression of Chk1 in pretreatment 
samples is significantly associated with shorter progres-
sion-free survival (PFS) and shorter time to local recur-
rence in patients with gastric cancer and breast cancer 
treated with CRT and RT, respectively (Alsubhi et al. 
2016; Bargiela-Iparraguirre et al. 2016). High protein 
expression of P16INK4A, a cyclin-dependent kinase 
(CDK) inhibitor belonging to tumor suppressors, in pre-
RT samples is prognostic for the improved 5-year OS 
and DFS rates in patients with cervical cancer receiving 
adjuvant RT or concurrent CRT (Fu et al. 2018). CDKs 
are essential for cell cycle progression through the G1-S 
phases and initiation of DNA repair. CDK inhibition com-
bined with RT is proposed to diminish the radioresistance 
development (Johnson and Shapiro 2010). In cervical 
cancer, high expression of KLF4 (cell cycle regulator in 
G1–S phases) after treatment is found in radiation-resist-
ant patients and associated with increased rates of local 
recurrence and distant metastases (Liu et al. 2017a; Hou 
et al. 2017; Yang et al. 2020; Köster et al. 2020).

Thus, IGF-1R, belonging to RTKs, and pAKT, a non-
receptor tyrosine kinase, possess predictive RT value in 
several cancers (Fig. 1, Table 1). However, it is question-
able whether TKs can be effective biomarkers as they reg-
ulate multiple signaling pathways. Nevertheless, due to 
the involvement of RTKs and cell cycle control proteins 
in DNA repair, combining RT with TK inhibitors can be 
a promising approach to increase RT efficacy. Recent 
studies showed that RTKs and CDK inhibitors display 
remarkable anti-tumor efficacy in lung, colorectal, hepa-
tocellular, renal, and breast cancers, as well as leukemia 
and melanoma (Pottier et al. 2020; Zhang et al. 2021).

Hypoxia and metabolism

Hypoxia is a common feature of solid tumors resulting from 
the imbalance between oxygen availability and consumption 
(Wang et al. 2019b). Hypoxia generates an intratumoral oxy-
gen gradient that contributes to tumor plasticity and hetero-
geneity and activates the DDR pathways (Jing et al. 2019). 
Thus, hypoxic cancer cells acquire a more aggressive and 
metastatic phenotype and become resistant to any cytotoxic 
treatment, including RT and CRT (Zhu et al. 2016). On 
the contrary, molecular oxygen may react with radiation-
induced DNA radicals to generate DNA damage. Therefore, 
well-oxygenated cancer cells are more sensitive to irradia-
tion than hypoxic ones (Willers et al. 2013).

Hypoxia-inducible factor-1α (HIF-1α) is an important 
transcription factor, which is increased in hypoxic condi-
tions. RT promotes HIF-1 activation by vascular damage or 
reactive oxygen species (ROS) (Huang and Zhou 2020). In 
cervical cancer, HIF-1α expression after CRT is absent in 
cases with complete response (CR) and is found in 63% of 
patients with partial response (Zhu et al. 2016). High HIF-1α 
expression before CRT is considered a predictive biomarker 
for poor response to preoperative CRT in squamous cervi-
cal, oropharyngeal, esophageal, and laryngeal cancers, but 
for better prognosis in oral squamous carcinoma (Sun et al. 
2013; Zhu et al. 2016; Swartz et al. 2021). Increased level 
of HIF-1α in pre-CRT/RT samples is a poor prognostic bio-
marker for OS and metastasis-free survival in patients with 
cervical cancer and NPC (Hui et al. 2002; Kim et al. 2013; 
Chen et al. 2014).

ROS, such as superoxide anion (O2−), hydroxyl radicals 
(OH−), and hydrogen peroxide (H2O2), are generated by 
water radiolysis in extracellular environments and are toxic 
to cancer cells and adjacent normal tissues (Zou et al. 2017). 
ROS can induce genetic instability (Perillo et al. 2020) (Fig-
ure 2). The high expression of ROS modulator 1 (ROMO1) 
after RT is associated with worse PFS and OS and shorter 
locoregional recurrence in NSCLC patients treated with 
definitive RT (Kong et al. 2019). Expression of coenzyme 
A synthase (COASY) measured after RT is associated with 
radioresistance in rectal cancer patients. Patients with no 
response to CRT have significantly higher COASY expres-
sion than other patients (Ferrandon et al. 2020). Low expres-
sion of pH2AX, a damage-associated protein, and MAP17, 
a ROS-related protein, is associated with better OS (Rivero 
et al. 2018). In pretreatment biopsy samples, protein expres-
sion of oxidative stress-associated factor RKIP is signifi-
cantly downregulated, while the level of NRF2 and NQO1 
is upregulated in radioresistant NPC. A low level of RKIP 
and a high level of NRF2 and NQO1 correlate to reduced OS 
(Huang et al. 2020). In patients with locally advanced esoph-
ageal squamous-cell carcinoma (ESCC) and rectal cancer, 
high NRF2 expression indicates a poor response to RT/CRT 
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and unfavorable survival (Wang et al. 2020; O’Cathail et al. 
2021).

Analysis of TCGA data revealed that HNSCC patients 
with high ACLY (ATP citrate lyase) expression experience 
poor OS (Göttgens et al. 2019). Expression of IGF-1 and 
GLUT1 in post-treatment samples correlates with poor OS 
in patients with cervical cancer who underwent RT/CRT 
(Moreno-Acosta et al. 2017). In breast cancer, expression of 
p-S6K1, a critical downstream effector of the mTOR path-
way, before treatment correlates with decreased locoregional 
recurrence-free survival (Choi et al. 2020b).

Expression of COX-2, regulating oxidative phospho-
rylation, is a poor prognostic factor for patients with 
cervical cancer. Five‐year OS and DFS are decreased 

in COX-2-positive patients (Kim et al. 2002; Chen et al. 
2005). CC patients with the double expression of iNOS- 
and COX-2 after RT have the poorest survival rates (Chen 
et al. 2005). COX-2 expression negatively correlates with 
complete response to RT and local recurrence in rectal 
cancer and ESCC (Zhang et al. 2017b; Berbecka et al. 
2021).

Thus, tumor metabolic status determines radiothera-
peutic sensitivity through tumor oxygenation and ROS 
production. Since ROS is non-specifically induced by 
radiation, it is challenging to use ROS level as a predictive 
biomarker. Oppositely, hypoxia-associated factors, such as 
HIF-1α and COX-2, and NRF2, a transcriptional activator 
of antioxidant genes, could be used to predict failed RT 
response in several human cancers (Figure 1, Table 1).

Fig. 2   Overlapping radioresistance biomarkers among the key pro-
cesses related to radioresistance. Irradiation results in ROS gen-
eration and DNA damage. In response to irradiation, DNA repair is 
activated, accompanied by increased tyrosine kinase activity via mul-
tiple signal transduction pathways. The effects of ionizing radiation 
depend on the oxygenation/hypoxia metabolic balance in the tumor. 
Oxygenation induces ROS generation, which triggers DNA damage, 
but can activate the expression of pro-angiogenic genes. In contrast, 
hypoxia interferes with the effect of RT and can also stimulate the 
upregulation of angiogenic factors and immunosuppressive immune 

responses. The suppression of anti-tumor immune response is fol-
lowed by the RT-induced metabolic and transcriptional changes in 
the pro-tumor phenotypes of tumor-associated macrophages (TAMs), 
cancer-associated fibroblasts (CAFs), and Tregs. TAMs and Tregs 
additionally promote angiogenesis. Boxes in blue reflect intracellu-
lar processes, boxes in grey demonstrate extracellular components, 
which trigger radioresistance in tumor cells. Common radioresistance 
biomarkers are given in the corresponding boxes and highlighted in 
red
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Tumor microenvironment

Radiation affects not only cancer cells but also the tumor 
microenvironment (TME) (Barker et al. 2015) (Fig. 2). The 
TME comprises diverse cell types, including cancer-associ-
ated fibroblasts (CAFs), endothelial cells, tumor-associated 
macrophages (TAMs), and other immune cells (Balkwill 
et al. 2012; Fridman et al. 2017). Complex crosstalk between 
cancer cells and components of TME facilitates tumor 
growth, angiogenesis, invasion, and metastasis (Stakheyeva 
et al. 2017; Larionova et al. 2019).

CAFs, a significant component of tumor stroma, promote 
cancer cell recovery and tumor relapse after radiotherapy 
(Wang et al. 2017). CAFs are responsible for the synthesis 
of extracellular matrix (ECM) proteins, including matrix 
metallopeptidases (MMPs), and secretion of cytokines 
and growth factors that regulate tumor proliferation, inva-
sion, and metastasis (Wang et al. 2019b; Ansems and Span 
2020). CAFs can recruit macrophages and potentiate their 
biological functions by modifying the ECM. The interaction 
of CAFs and TAMs establishes immunosuppressive condi-
tions in TME (Ansems and Span 2020). Radiation-treated 
fibroblasts display increased expression of factors involved 
in cell cycle arrest, DNA repair, ROS scavenging, ECM 
remodeling, and Wnt and IGF signaling pathways (Rød-
ningen et al. 2005; Wang et al. 2019b). Different factors 
expressed by CAFs after RT mediate subsequent fibrosis, 
EMT/invasion, and treatment resistance. Fibrosis, in turn, 
supplies proliferation and invasion signals to cancer cells, 
leading to radioresistance and tumor progression (Ansems 
and Span 2020).

CAF-secreted factors are associated with the prognosis 
of different human cancers (Ham et al. 2021). High gene 
expression of stromal CXCL12 and FAP, essential for the 
fibrotic process, correlates with poor OS in rectal cancer 
with preoperative CRT (Saigusa et al. 2010, 2011). High 
protein expression of TGF-β in CAFs is associated with 
poor OS in ESCC patients treated with CRT (Zhang et al. 
2017a). High post-treatment expression of PLOD3 (procol-
lagen-lysine, 2-oxoglutarate 5-dioxygenase 3), involved in 
fibrotic processes and tissue remodeling, is associated with 
poor 5-year survival in lung cancer patients treated with RT 
(Baek et al. 2019).

TAMs are a crucial component of innate immunity in 
TME, promoting tumor growth, angiogenesis, metastasis, 
and tumor regrowth after chemo- and radiotherapy (Lari-
onova et al. 2019, 2020). Numerous tumor models demon-
strate that irradiation induces monocyte/macrophage infiltra-
tion via CXCL12, CCL2, and CSF1-dependent mechanisms, 
and accumulation of M2-like TAMs promotes tumor vas-
culogenesis and immunosuppression that limits RT effi-
cacy (Xu et al. 2013; Genard et al. 2017; Wu et al. 2017). 
Increased CD68+ macrophage infiltration is associated with 

poor OS and DFS in OSCC patients who received radiation 
(Ai et al. 2021). High expression of pro-tumor M2 mac-
rophage markers indicates poor survival and metastasis (Lar-
ionova et al. 2020). Cervical cancer and HNSCC patients 
with increased M2 marker CD163 show unfavorable disease 
outcomes after RT/CRT (Balermpas et al. 2014; Lippens 
et al. 2020). High expression of HIF-2α in TAMs corre-
lates to low DFS rates and increased risk of local recurrence 
(Kawanaka et al. 2008).

CD8+ cytotoxic T lymphocytes (CTLs) are the essen-
tial immune cells for killing cancer cells presenting MHC 
I molecules (Farhood et al. 2019). In NSCLC, increased 
CD8+ T-cell counts, CD4/Treg ratio, and higher CD103+ 
cell infiltration after RT/CRT are observed in responsive 
patients (complete and partial response vs. stable disease) 
and associated with better OS and DFS (Komdeur et al. 
2017; Liu et al. 2019; Boulle et al. 2020). The cervical 
cancer‐specific survival is significantly higher in patients 
with increased CD8 post-treatment scores, high CD8/CD4 
and CD163/CD68 ratios, or PD-L1 expression in more than 
5% of immune cells (Lippens et al. 2020). Contradictory 
results are obtained for the PD-L1 expression in NSCLC. 
Programmed cell death-1 (PD-1) is a co-stimulatory recep-
tor of the CD28 family that plays a crucial role in tumor cell 
tolerance (Keir et al. 2006). PD-1/PD-L1 interaction inhibits 
T-lymphocyte proliferation, survival, and effector functions, 
induces apoptosis of antigen-presenting T cells, promotes 
differentiation of CD4+ T cells into FoxP3+ regulatory 
cells, and provides resistance of tumor cells to a cytotoxic 
response (Iwai et al. 2002; Wang et al. 2008). In patients 
with NSCLC who received RT/CRT, lower baseline soluble 
PD-L1 level correlates to the most prolonged OS and objec-
tive response to treatment (Zhao et al. 2017; Sui et al. 2021). 
Oppositely, high post-treatment PD-L1 expression in lung 
cancer tissue predicts a greater radiosensitivity and better 
outcome (Fiedler et al. 2018).

Other immune molecules belonging to different function 
classes were found to be associated with prognosis and to 
predict the response to RT. NF-κB is a transcriptional fac-
tor that regulates multiple aspects of innate and adaptive 
immune functions and serves as a pivotal mediator of the 
inflammatory response (Liu et al. 2017b). The expression of 
NF-κB positively correlates with increased rates of distant 
metastases, locoregional failure, and overall (local and dis-
tant) relapse in cervical cancer patients (Garg et al. 2010). 
Increased pretreatment expression of CCR6, an inflamma-
tory CC chemokine receptor, is observed in the non-pCR 
patients with rectal cancer who received CRT (Chang et al. 
2018). Negative expression of ICAM-3, an adhesion mol-
ecule for leukocytes, was found in normal tissue compared 
to tumor tissue, and in 65% of radiosensitive cervical can-
cer cases. In comparison, ICAM-3 was detected in 83% of 
radioresistant tumors and associated with poor 5-year PFS 
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(Chung et al. 2005). High pretreatment protein expression of 
CD59, a membrane-bound complement regulatory protein, 
indicates poor OS and DFS in ESCC patients who received 
RT (Zhou et al. 2018). The possible mechanism of CD59-
mediated radioresistance can be related to induced DDR in 
cancer cells (Zhou et al. 2018). The level of secreted protein 
CD166, belonging to the immunoglobulin superfamily, was 
detected in the serum of NPC patients before treatment. The 
concentration of CD166 is higher in the radioresistant cases 
possessing local recurrent disease after RT (Lin et al. 2017). 
The expression of annexin A1 (ANXA1), a glucocorticoid-
induced anti-inflammatory protein, after treatment, oppo-
sitely, is significantly decreased in radioresistant NPC com-
pared to radiosensitive tumors (Liao et al. 2018).

RT induces tissue damage and triggers activation of 
stromal components that can synergistically function along 
with therapy to kill cancer cells or support tumors. The bal-
ance shift to the tumor-supportive activity can be crucial 
for radioresistance development. However, there are still not 
enough data to address whether diverse factors produced by 
key players of TME—CAFs, TAMs, and T-lymphocytes—
modulate RT response (Fig. 2). Further studies should focus 
on the detailed investigation of changes in the expression of 
growth factors, cytokines, soluble mediators, and surface 
receptors during RT and their role in radioresistance.

Pro‑angiogenic factors

Effects of ionizing radiation strongly depend on the oxy-
genation of the tumor. As mentioned above, the well-vascu-
larized and perfused tumors are more sensitive to RT due to 
the enhanced generation of ROS. Vice versa, hypoxic tumors 
with a lack of blood vessels prevent treatment efficiency 
(Overgaard 2007; Goedegebuure et al. 2019). Irradiation 
with different doses leads to varying effects on the vascular 
system. High dose irradiation (above 10 Gy) induces acute 
vascular damage caused by endothelial cell apoptosis (Park 
et al. 2012). It can lead to hypoxia and in the switch to the 
pro-angiogenic pathways. Fractionated low dose radiother-
apy (per 2 Gy daily) positively affects the tumor vasculature 
and tissue perfusion due to decreased oxygen consumption 
(Park et al. 2012; Goedegebuure et al. 2019).

The critical factor regulating tumor angiogenesis is 
VEGF (Larionova et al. 2021) (Fig. 2). Angiogenesis is also 
associated with metalloproteinases (MMP-2, MMP-9, and 
MMP-14), tissue inhibitors of metalloproteinases (TIMP-1 
and TIMP-2), thymidine phosphorylase (TP), urokinase 
plasminogen activator (uPA), osteopontin (OPN), and other 
molecules (Shih et al. 2002; DuBois and Demetri 2007; Lar-
ionova et al. 2021). Most of them are also crucial regulators 
of cancer invasion and metastasis.

Here, we collected the studies demonstrating that pro-
angiogenic factors may serve as markers for radioresistance. 

Pretreatment VEGF serum level and tumor expression nega-
tively correlate with the RT efficacy and recurrence-free, 
metastasis-free, and overall survival in NSCLC, cervical, 
and breast cancer patients (Manders et al. 2003; Fu et al. 
2014). The contradictory results were shown in ESCC, 
where high pretreatment VEGF expression significantly cor-
relates with a complete response to CRT (Yoon et al. 2011).

High plasma levels of hypoxic and angiogenic bio-
markers OPN, VEGF, CEA, IL-6, CYFRA 21-1, and CA 
IX before CRT/RT are independent predictors for poor 
OS in patients with NSCLC (Dehing-Oberije et al. 2011; 
Ostheimer et al. 2014, 2018; Fu et al. 2014). Elevated pre-
RT serum IL-6 level is associated with worse 2-year survival 
in NPC patients (Chow et al. 2003). In ESCC, IL-6 tumor 
overexpression correlates to poor CRT response, locore-
gional failure, and distant metastasis (Chen et al. 2013). 
In patients with inoperable or metastasized NSCLC who 
received RT/CRT, a low level of urokinase plasminogen 
activator PAI-1 before treatment is associated with signifi-
cantly reduced OS and PFS. Combined low level of PAI-1 
and high level of OPN demonstrate an additive prognostic 
impact on unfavorable NSCLC prognosis with increased risk 
of death (Ostheimer et al. 2018). In prostate cancer patients, 
increased pretreatment protein expression of HIF-1α, VEGF, 
and OPN is significantly associated with a higher risk of 
biochemical failure after RT (Vergis et al. 2008). Elevated 
pretreatment plasma and tumor OPN levels indicate poor RT 
response and higher locoregional and disease-specific mor-
tality in HNSCC, NPC, ESCC, and cervical cancer (Over-
gaard et al. 2005; Hui et al. 2008; Snitcovsky et al. 2009; 
Etiz et al. 2013; Chiu et al. 2018).

In cervical cancer patients treated with CRT, high pre-
treatment protein expression of MMP-2 and TIMP-2 in 
tumor stroma and MMP-9 in tumor nest and stroma are sig-
nificantly associated with poorer 12-year survival (Azevedo 
Martins et al. 2020). Increased pretreatment expression of 
pro-angiogenic chitinase-like protein YKL-40 is signifi-
cantly associated with resistance to RT in glioblastoma 
patients (Pelloski et al. 2005).

Anti-angiogenic drugs (e.g., anti-VEGF agent bevaci-
zumab) are widely used in first- and second-line therapy to 
improve cancer treatment efficacy (Larionova et al. 2021). 
Anti-angiogenic treatment is also proposed to increase RT 
efficiency (Goedegebuure et al. 2019). The accumulating 
data demonstrate that at least three pro-angiogenic factors, 
VEGF, IL-6, and OPN, are strongly related to RT failure in 
numerous solid tumors, making them promising universal 
biomarkers (Figs. 1 and 2, Table 1).

Cancer stem cells

Cancer stem cell (CSC) repopulation is considered an adap-
tive response to the cytotoxic effects of radiation (Willers 
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et al. 2013). CSCs exhibit self-renewal, differentiation, and 
proliferation capacities similar to normal hematopoietic stem 
cells (Aponte and Caicedo 2017; Peitzsch et al. 2017). Self-
renewal and metastatic potential of CSCs, which are crucial 
mechanisms of tumorigenesis, are regulated by multiple 
cytokines and growth factors produced by TME. Hypoxia 
protects CSCs from radiation, preventing the detrimental 
effect of ROS by upregulation of ROS scavengers (Peitzsch 
et al. 2014; Najafi et al. 2019). Key activities of CSCs are 
regulated by Wnt/β-catenin, Notch, Sonic Hedgehog, PTEN, 
TGF-ß, and other signaling pathways (Olivares-Urbano et al. 
2020). Activation of Notch signaling by irradiation results 
in entering breast CSCs into the cell cycle and acquiring 
EMT and self-renewal properties (Venkatesh et al. 2018). In 
cervical cancer, posttreatment high expression of delta-like 
ligand 4 (DLL4), a transmembrane Notch ligand, is found 
in radiation-resistant patients (Liu et al. 2017a; Venkatesh 
et al. 2018; Wang et al. 2019c).

The findings of the CSC role in radioresistance are 
scarce, and further studies are warranted. Moreover, CSCs 
are highly heterogeneous and represented by different cell 
populations with specific phenotypical and functional fea-
tures. Nevertheless, the question remains open whether the 
radioresistance degree varies between CSC subsets.

Epigenetic mechanisms

DNA methylation

Epigenetic mechanisms control diverse processes in tumors 
and have a crucial role in developing radiation resistance 
(Fardi et al. 2018). Radiotherapy changes the epigenetic 
landscape of cancer cells towards radioresistance and disease 
progression. DNA methylation, histone post-translational 
modifications, and chromatin remodeling are implicated in 
the control of gene expression related to DNA repair, cell 
survival and proliferation, evasion of apoptosis, and EMT 
regulation, thus protecting cancer cells from the cytotoxic 
effect of radiation (Cabrera-Licona et al. 2021).

DNA methyltransferases (DNMTs) regulate the chromo-
some stability and genome integrity, while overexpression 
of DNMTs in various tumors results in hypermethylation 
and oncogenic activation (Zhang and Xu 2017). High gene 
expression of DNMT3B predicts shorter OS in patients with 
NPC and HNSCC (Wu et al. 2020). In pretreatment samples, 
the nuclear protein expression of RUNX3, a downstream tar-
get of the TGF-β signaling pathway, is associated with com-
plete or partial response to RT in ESCC patients. The hyper-
methylation and transcriptional repression of RUNX3 are 
found in 96.7% of irradiated ESCCs patients and are asso-
ciated with low survival (Sakakura et al. 2007). Promoter 
methylation of tumor suppressor genes RASSF1/RASSF2A 
and the consequent activation of Ras/PI3K/Akt signaling are 

significantly related to poorer DFS in OSCC patients who 
underwent RT after surgery (Huang et al. 2009). The panel 
of eight hypermethylated genes, controlling cell proliferation 
and adhesion and associated with metastasis development, 
was found for determining complete response after RT in 
oropharyngeal cancer patients (Kurokawa et al. 2020). Pre-
treatment methylation of ROBO1, ULK4P3, MYOD1, LBX1, 
CACNA1A, IRX4, DPYSL3, and ELAVL2 genes distinguishes 
patients with a long time of DFS and OS and patients with 
tumor recurrence or progression after RT (Kurokawa et al. 
2020).

Histone modification

Histones, central chromatin components, acquire diverse 
post-translational modifications, including acetylation/dea-
cetylation, methylation, and phosphorylation, to form the 
epigenetic patterns underlying transcriptional processes 
(Cabrera-Licona et al. 2021).

The expression of histone deacetylases HDAC4 and 
HDAC6 negatively correlates with OS in patients with 
glioblastoma treated with RT (Marampon et  al. 2017). 
H3K4me3 demethylase KDM5B, playing an essential role 
in repairing DSB, correlates with poor response to radiation 
in patients with lung cancer (Bayo et al. 2018). Hypoxia-
induced KDM3A overexpression results in radioresistance 
in vitro and can indicate RT failure in ESCC patients (Mac-
edo-Silva et al. 2020). Impaired gene expression of NuRD 
complex (the nucleosome remodeling and deacetylase) 
subunits (CHD4, CHD3, HDAC1, HDAC2, MTA2, MBD3, 
RBBP4, and RBBP7), involved in chromatin remodeling and 
histone deacetylase activity, is identified in patients with 
rectal cancer treated with CRT (Wang et al. 2019a). Post-
treatment expression of CHD3 and CHD4 is higher in non-
responding rectal cancer patients than in responders. CHD4 
overexpression is also an independent prognostic factor for 
metastasis-free survival (Wang et al. 2019a).

A recent study indicated that HDAC activity significantly 
varies between different cancers (Sharda et al. 2020). There-
fore, identifying histone code in each cancer type is essential 
to predict response to RT. Moreover, discovering epigenetic 
targets is needed to counteract RT in refractory cancers.

MicroRNAs and lncRNAs

Non-coding RNAs, including long non-coding RNAs (lncR-
NAs) and microRNAs (miRNAs), have been identified as 
key molecules in radiotherapy failure in many cancer types 
(Podralska et al. 2020). Recent studies emphasized extracel-
lular miRNAs as potential liquid biomarkers of radioresist-
ance (Nowicka et al. 2019).

The current data indicates the involvement of both 
serum and intratumor miRNAs in RT response and tumor 
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progression in patients with lung, rectal, cervical, head and 
neck, and esophageal cancers. Post-treatment expression 
levels of miR-96, miR-130a, miR-25, miR-196a, and miR-
191* are increased in the serum of patients with RT-treated 
NSCLC compared to healthy controls and associated with 
recurrence and low survival rate (Suh et al. 2015; Lv et al. 
2020; Zheng et al. 2021). MiR-622 is upregulated in rectal 
cancer patients without tumor regression before CRT (Ma 
et al. 2015). In cervical cancer, the expression of oncogenic 
miR-21 after CRT is higher in resistant patients (Liu et al. 
2020c). ESCC patients with high pretreatment miR-205 
expression have a poorer OS (Pan et al. 2017). The serum 
level of miR-504 is upregulated during RT and higher in 
radioresistant NPC patients (Zhao et al. 2015).

More evidence shows the involvement of miRNA over-
expression in high RT efficacy in lung cancer. The post-
treatment plasma level of miR‐18a‐5p, hsa-miR-98-5p, 
hsa-miR-302e, hsa-miR-495-3p, and hsa-miR-613 is signifi-
cantly higher in patients with unresectable stage III and IV 
NSCLC demonstrating complete or partial response than in 
cases with refractory tumors (Chen et al. 2016, 2018). The 
low miR-29c level correlates with shorter RFS of NSCLC 
patients treated with RT (Arechaga-Ocampo et al. 2017). 
The high expression of miR-148b before RT and baseline 
serum level of let-7 significantly correlate with better sur-
vival in patients with lung cancer (Wang et al. 2016; Xie 
et al. 2016). At the same time, the post-treatment level of 
let-7 is significantly lower in serum of RT-sensitive lung 
cancer patients with brain metastasis (Liu et al. 2018).

The same findings were found in other cancers. The low 
miR-203 expression in pretreatment biopsies correlates with 
local larynx cancer recurrence after RT (de Jong et al. 2015). 
The low miR-339-5p level is significantly associated with 
poor OS and DFS in ESCC patients treated with RT (Luo 
et al. 2019). The positive response to RT is associated with 
high expression of hsa-miR-1281 and hsa-miR-6732-3p in 
NPC, miR-339-5p in ESCC, and miR-125a in cervical car-
cinoma (Pedroza-Torres et al. 2018; Luo et al. 2019; Li et al. 
2020).

Thus, no data demonstrate common epigenetic radiore-
sistance biomarkers in different cancers. It can be explained 
by high epigenetic instability and variability of cancer cells, 
and insufficient findings. Further studies should indicate 
whether radioresistance of various cancers can be related to 
universal molecular mechanisms.

Gene and protein signatures

As multiple processes are associated with RT response, the 
panels of biomarkers with diverse functional activity can 
predict radioresistance and determine the cancer progno-
sis. Recent studies reporting the prognostic value of gene 
signatures for different cancers have attracted widespread 

interest (Cantini et al. 2017). Gene signatures are developed 
to predict therapy response and disease outcome based on 
the expression of a relatively small number of genes. The 
sensitivity and specificity of multiple gene models are sig-
nificantly higher than single biomarkers. Additionally, gene 
signatures can be used for identifying molecular targets 
(Gönen 2009).

Several prognostic gene signatures were established 
in cervical cancer. The eight-gene signature (CCDC136, 
ABCG2, CYP26A1, TNNI3, CXCL5, SYT13 FOXC2, ITGB3, 
and TMEM233) predicts OS in cervical cancer patients fol-
lowing RT (Xie et al. 2019). Improved OS is associated with 
hypermethylation of the CCDC136, ABCG2, CYP26A1, and 
TNNI3 genes, while poor OS correlates with hypomethyla-
tion of the SYT13, FOXC2, CXCL5, and TMEM233 genes 
(Xie et al. 2019). The seven gene signature (UBE2C, MMP3, 
DCUN1D5, SDCCAG8, IGF2BP2, CCL18, and FST) pre-
dicts the risk of poor DFS in cervical cancer patients follow-
ing RT with 64% sensitivity and 100% specificity (Rajkumar 
et al. 2009). A proteomic panel of ERCC1, CD133, HER2, 
BCL2, and CAIX predicts DFS and OS in cervical cancer 
patients treated with CRT (Choi et al. 2020a).

Numerous predictive models have been revealed for head 
and neck cancers. The gene panel of VEGF, BCL-2, CLAU-
DIN-4, YAP-1, and c-MET was developed to predict no 
response/partial response to RT in HNSCC. High YAP-1 and 
BCL-2 and low CLAUDIN-4 expression before RT signifi-
cantly predict poor recurrence-free survival. YAP-1, BCL-2, 
and VEGF overexpression correlates to poor cause-specific 
survival (Akervall et al. 2014). Another predictive panel 
includes nine genes: CHAC2, CLEC9A, GNG10, JCHAIN, 
KLRB1, NOG, OLR1, PRELID2, SYT1, VWCE, ZNF443. 
The high expression of CHAC2, GNG10, JCHAIN, OLR1, 
KLRB1, PRELID2, SYT1, and ZNF443 in peripheral blood 
mononuclear cells is related to poor survival, while the 
upregulation of CLEC9A, NOG, and VWCE—with improved 
survival in HNSCC patients (Liu et al. 2020a). Combined 
expression of IGF1R, LAMC2, ITGB1, and IL-6 genes pre-
dicts worse radiotherapeutic outcome in HNSCC (You et al. 
2019). The analysis of the CHIT1, PDGFB, PNKD, RP2, 
SERPINC1, SLC4A, STIM1, and THPO proteins expression 
together with the VEGFA gene variant rs69947 in post-treat-
ment samples predict HNSCC radiosensitivity (Drobin et al. 
2020). Post-treatment serum levels of SPARC, SERPIND1, 
C4B, PPBP, PODXL, SRGN, PPIB, S100A4, and CTSF are 
significantly higher in the radioresistant patients with NPC. 
The ERAP1, GC, ITIH1, NRP1, MINPP1, F13A1, C1QB, 
ITIH2, IGFBP6, and FAM173A proteins are significantly 
downregulated in the radioresistant cases. The panel based 
on the SPARC, SERPIND1, C4B, PPIB, and FAM173A 
proteins predicts the RT response in NPC patients with the 
sensitivity of 94% and the specificity of 92.6% (Zhang et al. 
2019).
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Thus, different gene and protein panels have been devel-
oped to predict RT response and prognosis in cervical and 
HNSCC patients. Further studies are needed to determine 
whether these panels are valid in other cancers or propose 
some new ones that are universal for different malignan-
cies. Nevertheless, gene and protein panels are generally 
expensive and time-consuming and thus are challenging to 
translate to clinical practice.

Conclusion

Based on the above findings, we summarize that no uni-
versal radioresistance biomarkers exist. Some biomarkers, 
mainly VEGF, OPN, and pAKT, are described as associated 
with RT efficacy simultaneously in breast, rectal, prostate, 
head and neck, lung, cervical, and esophageal cancers. The 
involvement of these proteins in radioresistance is confirmed 
by the studies showing that blood vessel normalization and 
TK inhibition enhance the clinical benefit of radiotherapy 
(Goedegebuure et al. 2019; Pottier et al. 2020; Zhang et al. 
2021). Further research should be directed toward elucidat-
ing the involvement of these biomarkers in radioresistance 
in other cancers.
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