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Abstract
Purpose  NRAS plays a pivotal role in progression of various kinds of somatic malignancies; however, the correlation 
between NRAS and lung adenocarcinoma is less known. We aim to analyze the prognostic value of NRAS expression in 
lung adenocarcinoma, and explore the relationship between NRAS and tumor immune microenvironment.
Methods  We obtained the transcriptome profiles and clinical data of LUAD from The Cancer Genome Atlas database and 
three Genome Expression Omnibus datasets. Specimens from 325 patients with completely resected lung adenocarcinoma 
were collected for immunohistochemical assays of NRAS, PD-L1, PD-1 and TIM-3. Then, we performed gene set enrich-
ment analysis to investigate cancer-related and immune-related signaling pathways. TIMER algorithms were performed to 
evaluate tumor immune infiltrating cells and immune-related biomarkers.
Results  Compared with adjacent non-tumor tissue, NRAS expression was significantly upregulated in LUAD tissue. NRAS 
expression was significantly correlated with more advanced stage and positive lymph nodes. Kaplan–Meier curves and Cox 
analysis suggested that high NRAS expression led to a poor prognosis, and could be an independent prognostic factor in 
LUAD patients. Besides, NRAS expression was positively correlated with CD8+ T cells, macrophages, and neutrophils, and 
negatively correlated with B cells and CD4+ T cells. The expression level of NRAS was positively correlated with PD-L1, 
PD-1, and TIM-3 both at RNA and protein level.
Conclusions  To conclude, we found NRAS is a novel prognostic biomarker in LUAD. Besides, the expression level of NRAS 
may influence the prognosis of LUAD via various kinds of cancer-related pathways and remodeling TIM.
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Introduction

Lung cancer remains the leading cause of cancer-related 
death and has the highest incidence rate worldwide (Bray 
et al. 2018). Among all the histological subtypes of lung 
cancer, lung adenocarcinoma (LUAD) is the one which 
dominant, with an average 5-year survival rate of 15% 
(Siegel et al. 2017). Over the past decades, advances in 
high-throughput sequencing techniques have expanded 
our knowledge about gene expression and genetic altera-
tions at the pan-genomic level in various somatic malignan-
cies. Numerous large-scale studies have demonstrated that 
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different genetic subtypes have distinctive survival rates in 
malignancies (Liloglou et al. 2014) (Vogelstein et al. 2013). 
Therefore, identifying genetic biomarkers were in great need 
to predict prognosis of LUAD.

Neuroblastoma rat sarcoma viral oncogene homolog 
(NRAS) was originally identified as the third RAS family 
member following KRAS and HRAS in human neuroblas-
toma and fibrosarcoma cell lines (Shimizu et al. 1983). Akin 
to KRAS, NRAS encodes small GTP enzymes which regu-
late cell cycle, proliferation, maturation and differentiation by 
transducing signals from membrane-localized receptor tyros-
ine kinases to the nucleus. The mutation of RAS gene family 
occurs in nearly 30% of human cancers (Downward 2003). 
NRAS plays an important role in EGFR mediating RAS/RAF/
MEK/ERK and PI3K/AKT/mTOR signaling pathways (Whit-
wam et al. 2007). The mutation of NRAS leads to continuous 
activation of Ras-GTP, which promotes tumorigenesis and 
metastasis. It has been proved that NRAS acts as a negative 
prognosis predictor in numerous somatic malignancies, such 
as melanoma, colorectal cancer and hepatocellular carcinoma 
(Banys-Paluchowski et al. 2020; Bertoli et al. 2019; Dietrich 
et al. 2019; Hu et al. 2018).

Besides, NRAS, as a proto-oncogene, is also proved to be 
associated with tumor immune microenvironment (TIM) both 
in vivo and in vitro. Pérez de Castro et al. (2003) has found that 
NRAS GTPase is related to T-cell proliferation and immune 
response. Thomas et al. (2015) indicates that NRAS mutation 
in advanced melanoma is correlated with increased benefit 
from immunotherapy. TIM has already been recognized as 
an essential factor in cancer progression. Its prognostic value 
has been proven in LUAD (Brambilla et al. 2016; Suzuki 
et al. 2011). For instance, Brambilla et al. (2016) demonstrate 
that higher CD4+/CD8+ ratio conferred a better survival of 
patients suffering from lung cancer. Besides, tumor muta-
tion burden and expression level of PD-L1 have been widely 
used to predict outcomes in lung cancer patients receiving 
immunotherapy.

Till now, there is only one multi-institutional study, which 
has initially explored the relationship between NRAS muta-
tions and lung cancer. This report indicates that LUAD patients 
with NRAS mutations may have potential sensitivity to MEK 
inhibitors (Ohashi et al. 2013). Unfortunately, the correlation 
between NRAS and LUAD is still unclear. Therefore, NRAS 
seems to be a logic alternative to investigate for potential novel 
biomarkers in LUAD.

In this study, we analyzed the prognostic value of NRAS 
in LUAD based on public databases and tumor microarrays 
of 325 patients with LUAD. In addition, we explored the rela-
tionship between NRAS and tumor immune microenviron-
ment both at RNA and protein level, together with potential 
molecular mechanisms underlying NRAS function in LUAD.

Methods

Tissue samples

LUAD patient datasets, with transcriptome profile and 
clinical information, were obtained from the public online 
datasets TCGA LUAD (http://​portal.​gdc.​cancer.​gov/), 
including 497 LUAD tumor tissues and 54 adjacent non-
malignant lung tissues. Furthermore, three lung cancer chips 
GSE50081 (including 181 NSCLC tumor samples, GPL570 
[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 
2.0 Array), GSE42127 (176 lung cancer samples, GPL6884 
Illumina HumanWG-6 v3.0 expression beadchip), and 
GSE30219 (293 lung cancer samples and 14 non-tumor lung 
samples, GPL570 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array) were downloaded from Gene 
Expression Omnibus (GEO) database (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) for a valid confirmation.

The cohort to perform immunohistochemical (IHC) tis-
sue microarray (TMA) consisted of 325 LUAD patients 
from Fudan University Shanghai Cancer Center (FDUSCC) 
diagnosed between 2009 and 2015. All these samples were 
obtained after surgical resection from patients who had 
never received neoadjuvant therapy.

IHC expression achieved from the Human Protein 
Atlas

IHC staining images were achieved from the Human Protein 
Atlas (HPA) (http://​www.​prote​inatl​as.​org/) to validate the 
expression of NRAS in LUAD and adjacent non-tumor tis-
sues (Uhlén et al. 2015). Both the tumor tissues and normal 
tissues were stained by Antibody CAB010157. The staining 
location was cytoplasmic and membranous. The direct links 
to these images are as follows:

LUAD tissue: https://​www.​prote​inatl​as.​org/​ENSG0​00002​
13281-​NRAS/​patho​logy/​lung+​cancer#​img

Normal lung: https://​www.​prote​inatl​as.​org/​ENSG0​00002​
13281-​NRAS/​tissue/​lung#​img

IHC staining and evaluation of IHC intensity

Formalin-fixed paraffin-embedded primary specimens of 
patients with LUAD were obtained to construct 4-μm-thick 
sections. IHC staining was performed as previously 
described (Fu et al. 2021). Immunostaining analysis was 
independently evaluated by Yan and Gao who were to the 
experimental groups using immunoreactive score (IRS). 
The staining intensity was graded 4 levels (no staining = 0, 
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weak staining = 1, moderate staining = 2, and strong 
staining = 3) and the staining extent was graded 5 levels 
(no = 0, < 10% = 1, 10–50% = 2, 51–80% = 3, and > 80% = 4). 
The scores of the staining intensity and extent were mul-
tiplied to give a final staining score of 0–12. The cutoff 
for IRS of NRAS was 6. Antibodies against the NRAS 
(ab77392, 1:500, Abcam), PD-L1 (E1L3N, 1:1000, Cell 
Signaling Technology), TIM-3(D5D5R, 1:1000, Cell Sign-
aling Technology), and PD-1 (DW42J, 1:500, Cell Signaling 
Technology) were used.

Correlation analysis between NRAS expression 
and immune cell infiltration in LUAD

Tumor immune estimation resource (TIMER 2.0) (http://​
timer.​cistr​ome.​org/), a useful online tool for comprehensive 
analysis of tumor-infiltrating immune cells (TIICs) (Li et al. 
2020), was used to evaluate the relationship between NRAS 
expression and TIICs in LUAD. The level of TIICs is an 
essential indicator reflecting TIM. In addition, we analyze 
the correlation between immune-related functional molecu-
lar and NRAS via TIMER website. The TIIC and immune-
related molecular levels of LUAD patients from TCGA data-
sets were derived from TIMER website.

Gene sets enrichment analysis (GSEA)

A computational method that determines the statistical sig-
nificance of a priori defined set of genes and the existence 
of concordant differences between two biological states is 
known as the GSEA (Subramanian et al. 2007). In this study, 
GSEA 4.0.3 generated an initial gene list on the classifi-
cation of the genes according to their correlation with the 
NRAS expression. For each analysis, we performed 1000 
repetitions of gene set permutations. The phenotype label 
that we put forth was the expression level of NRAS. In addi-
tion, to sort the enriched pathways in each phenotype, we 
utilized the nominal p value and normalized enrichment 
score (NES) (Subramanian et al. 2005). Gene sets with false-
discovery rate (FDR) < 0.25 and nominal p value < 0.05 were 
considered to be significantly enriched. The gene sets were 
enriched and analyzed by Hallmark (h.all.v6.2.symbols.gmt) 
and Go (c5.bp.v6.2.symbols.gmt) Collection.

Statistical analysis

Statistical analysis was performed using R-3.6.1. (R Foun-
dation for Statistical Computing, Vienna, Austria) Group 
comparison analyses with continuous variables were evalu-
ated by Wilcox T test. The correlation between expression 
of NRAS and clinical features was performed with logistic 
analysis. Kaplan–Meier survival curves and log-rank test 

were applied to compare survival outcomes. Finally, uni-
variate and multivariable Cox analyses were used to identify 
independent prognostic predictors. A statistical difference 
was taken as two-sided p value < 0.05.

Results

Demographics of population in TCGA LUAD datasets

Four hundred and ninety-seven LUAD patients with both 
clinical and transcriptome profiling were downloaded from 
TCGA LUAD datasets. After excluding those with missing 
or insufficient data on age, gender or stage, we included 316 
patients to further examine the prognostic role by Cox analy-
sis and Logistic regression. We also included 325 LUAD 
patients from FDUSCC diagnosed between 2009 and 2015 
to perform IHC microarrays. The baseline characteristics 
of these two cohorts are presented in Table 1. Except for 
one patient with NRAS synonymous mutations, three people 
have NRAS mutations in TCGA cohort. The genetic status 

Table 1   Demographics of including patients in TCGA cohort and 
FDUSCC cohort

TCGA​ The Cancer Genome Atlas
FDUSCC Fudan University Shanghai Cancer Center

Clinical characteristics TCGA cohort (n = 316) FDUSCC 
cohort 
(n = 325)

Age 64.58 ± 10.35 60.65 ± 10.25
Gender
 Female 162 (51.27%) 185 (56.92%)
 Male 154 (48.73%) 140 (43.08%)

Pack years smoked 30.39 ± 30.70 8.61 ± 19.47
Stage
 I 164 (51.90%) 251 (77.23%)
 II 75 (23.73%) 56 (17.23%)
 III 56 (17.72%) 15 (4.62%)
 IV 21 (6.65%) 3 (0.92%)

T
 T1 96 (30.38%) 251 (77.23%)
 T2 177 (56.01%) 56 (17.23%)
 T3 25 (7.91%) 15 (4.62%)
 T4 18 (5.70%) 3 (0.92%)

N
 N0 201 (63.61%) 225 (69.23%)
 N1 65 (20.57%) 21 (6.46%)
 N2 48 (15.19%) 79 (24.31%)
 N3 2 (0.63%) 0

M
 M0 295 (93.35%) 325 (100%)
 M1 21 (6.65%) 0

http://timer.cistrome.org/
http://timer.cistrome.org/
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of NRAS for these patients is described in Table S1. As 
shown in Fig. S1, we found that patients with NRAS muta-
tions expressed higher levels of NRAS than those without 
NRAS mutations (p = 0.027).

Correlations between the clinical information and NRAS 
were analyzed by logistic analyses in TCGA cohort. The 
categorical dependent value is based on the median value 
NRAS expression. As shown in Table 2, high expression of 
NRAS in LUAD was significantly associated with advanced 
stage (stage I vs stage III, OR = 1.90 (1.14–3.21), p = 0.0059) 
and positive lymph nodes (positive vs negative, OR = 2.00 
(1.26–3.20), p = 0.0037).

NRAS expression is upregulated in LUAD specimens

Wilcox T test was performed to estimate the relationship 
between NRAS expression and disease status of LUAD 
based on TCGA datasets. As shown in Fig. 1A, the expres-
sion of NRAS was significantly upregulated in LUAD sam-
ples compared with normal samples (p = 3.85e−04). Mean-
while, we paired the tumor tissue and adjacent tumor tissue 
of the same patient from TCGA LUAD datasets. The pair 
analysis shown in Fig. 1B indicated the same results as the 
former (p = 5.19e−05). 11 LUAD tissue and 3 normal tissue 
IHC images were obtained from the HPA website. The stain-
ing intensity of LUAD tissue was medium-strong (2 of 11 
were strong), while that of normal pneumocytes was weak. 
As shown in Fig. 1C and E (intensity: strong, staining: high, 
quantity > 75%), the tumor cells were intensely stained. As 
shown in Fig. 1D and F (Macrophage: intensity: medium, 
staining: moderate, quantity: > 75%; pneumocyte: intensity: 
weak, staining: low, quantity: 75–25%), the intensity of mac-
rophage staining is moderate, and that of pneumocytes is 
weak in normal tissues. This indicates that NRAS acts as a 
pivotal role in LUAD progression.

NRAS expression predicted survival and could be 
used as an independent prognostic biomarker 
in LUAD patients

Patients were divided into high expression group and low 
expression group according to the median value of NRAS 
expression. As shown in Fig. 2A, Kaplan–Meier survival 
analysis shows that high NRAS expression group has a 
significantly poorer overall survival (OS) compared with 
low expression group. The univariable analysis shown in 
Table 3a reveals that NRAS expression correlated signifi-
cantly with a poor OS. Besides, clinical stage, tumor size 
and lymph nodes are significantly associated with OS. 
According to multivariable analysis (Fig. 2B and Table 3b), 
the expression level of NRAS remains independently asso-
ciated with OS (p = 0.012). Besides, we verified the prog-
nostic value of NRAS at the protein level. We evaluated the 
protein level of NRAS in completely resected tissues using 
TMA. A total of 325 LUAD patients, undergoing surgical 
resection in Fudan University Shanghai Cancer Center, were 
enrolled in this study. According to the IRS of IHC staining, 
we defined 0–6 as weak staining group, and 7–12 as high 
staining group. The representative IHC images of NRAS are 
shown in Fig. 2D. As shown in Fig. 2C, higher expression 
of NRAS is also associated with worse OS at the protein 
level (p = 0.0072).

The prognostic value of NRAS in LUAD was also veri-
fied by three GEO datasets GSE50081 (including 181 LUAD 
samples), GSE42127 (176 LUAD samples), and GSE30219 
(293 LUAD samples). Since each dataset used different 
genetic chips and algorithms, the cutoff value to divide 
patients into high or low expression group was based on the 
median value of NRAS expression in each dataset. As shown 
in Fig. S2 (GSE50081: p = 0.028, GSE42127: p = 0.0078, 
GSE30219: p = 0.0026), we performed Kaplan–Meier sur-
vival analyses as a validation. Hence, NRAS expression 
level could be an independent prognostic factor for patients 
with LUAD.

Table 2   NRAS expression 
associated with clinical 
pathological characteristics 
(Logistic regression)

p-value is less than 0.05, this indicator is statistically significant
**p value is less than 0.01 andgreater than 0.001

Clinical characters Total (N) Odds ratio in NRAS 
expression

p value

Cigarette status 316 1.17 (0.75–1.81) 0.442
Gender 316 1.16 (0.75–1.81) 0.500
Age 316 0.99 (0.97–1.01) 0.215
Clinical stage (stage I vs. stage III) 220 1.90 (1.14–3.21) 0.0059**
Tumor size (T1 vs. T2) 273 1.46 (0.88–2.41) 0.141
Lymph nodes (positive vs. negative) 316 2.00 (1.26–3.20) 0.0037**
Metastasis (M0 vs M1) 316 0.90 (0.37–2.20) 0.821
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GSEA identified NRAS‑related signaling pathways

To further study the signaling pathways that NRAS might 
be involved in, we performed a GSEA between high and low 
NRAS expression phenotypes. The gene sets were enriched 
and analyzed by Hallmark (h.all.v6.2.symbols.gmt) and Go 
(c5.bp.v6.2.symbols.gmt) Collection.

Eleven Hallmark items (Fig. 3A) including G2M check-
point, E2F targets, DNA repair, P13K AKT MTOR sign-
aling, MTORC1 signaling pathways were significantly 
enriched in NRAS high expression phenotype. According 
to the enrichment of Go Collection (Fig. 3B and C), high 
NRAS expression gene sets were significantly correlated 
with 12 immune-related signaling pathways such as acti-
vation of innate immune response, negative regulation of 

B-cell proliferation and T-cell regulation signaling pathway. 
There is no signal pathways with low expression in NRAS 
enriched in neither GO nor Hallmark Collection based on 
NES, NOM P value, and FDR q value.

Correlation analysis between NRAS and TIM in LUAD

We estimated the relationship between the abundance 
of TIICs and NRAS expression via the TIMER algo-
rithm. The results shown in Fig.  4A indicates that the 
expression of NRAS was positively correlated with 
CD8+ T cells (cor = 0.27, p = 1.06e−09), macrophages 
(cor = 0.331, p = 4.06e−14), and neutrophils (cor = 0.373, 
p = 8.81e−18), while it was negatively correlated with 
B cells (cor = − 0.216, p = 1.31e−0.6) and CD4+ T cells 

Fig. 1   Lung adenocarcinoma 
(LUAD) highly expressing 
NRAS. A The expression 
of NRAS was significantly 
upregulated in LUAD compared 
with normal cells. B The pair 
analysis indicated that NRAS 
expression was significantly 
upregulated in LUAD. C Repre-
sentative Immunohistochemical 
(IHC) staining for NRAS in 
LUAD tissue was performed. D 
Representative IHC staining for 
NRAS in normal tissue was per-
formed. E IHC (200 ×) staining 
for NRAS in LUAD tissue. F 
IHC (200 ×) staining for NRAS 
in normal tissue
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(cor = − 0.108, p = 1.65e−02). In addition, we analyzed 
the correlation between immune-related biomarkers and 
NRAS expression. As shown in Fig. 4B, NRAS expres-
sion was positively correlated with CD274 (rho = 0.333, 
p = 8.59e−15), HAVCR2 (rho = 0.239, p = 4.01e−08), 
PDCD1 (rho = 0.101, p = 2.16e−02), CD47 (rho = 0.189, 
p = 1.64e−05) and CD24 (rho = 0.227, p = 1.82e−07). The 
results shown in Fig. 4C–E validated the correlation between 
NRAS and immune-related biomarkers at the protein level 
via IHC staining of TMAs. Analyzing the IRS score of these 
immune-related molecules between the NRAS strong stain-
ing group and weak staining group, we found that the IRS 
of PD-L1 (p = 6.24e−3), PD-1 (p = 1.37e−04), and TIM-3 
(p = 2.47e−10) were significantly higher in NRAS strong 

staining group than weak group. The representative stainings 
are performed in Fig. S3.

Discussion

NRAS, a gene identified in neuroblastoma and fibrosarcoma 
cell lines, encodes GTPases involved in cell cycle, prolifera-
tion, and differentiation (Shimizu et al. 1983). As a mem-
ber of the RAS gene family, similar with KRAS, NRAS 
plays an essential role in tumorigenesis and progression in 
various kinds of neoplasms. At present, KRAS has been 
proved strongly as a significant biomarker in the prognosis 
of NSCLC, (Ma et al. 2020) while the relationship between 
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Fig. 2   NRAS is associated with poor prognosis in LUAD patients at 
RNA and protein level. A Kaplan–Meier curve to compare the over-
all survival of LUAD patients between high and low NRAS expres-
sion group based on TCGA databases. B Multivariable Cox analysis 
of NRAS expression and other clinicopathological factors for LUAD 

patients. C Kaplan–Meier Curve of overall survival according to pro-
tein expression of NRAS in patients with LUAD. D Representative 
images of IHC for strong and weak staining of NRAS in LUAD spec-
imens. The cutoff for the IRS score of NRAS was 6
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NRAS and lung cancer remains unclear. Thus far, only one 
multi-institutional study has initially explored the correlation 
between NRAS mutation and NSCLC (Ohashi et al. 2013). 
The potential prognostic value of NRAS for LUAD had 
not been evaluated due to lack of NRAS-mutated patients. 
Hence, we performed a first-ever analysis on the NRAS 
expression in a large cohort of LUAD based on bioinfor-
matics analysis and real world data. We sought to determine 
the relationship between NRAS and LUAD, especially as a 
prognostic biomarker in LUAD. Besides, we tried to screen 
NRAS-related signaling pathways, TIIC levels and immune 
biomarkers to seek out the potential molecular mechanisms 
involved in the regulation of LUAD progression and TIM 
by NRAS.

Based on the transcriptome profiles of TCGA cohort, 
we found patients with NRAS mutations expressed higher 
levels of NRAS than those without NRAS mutations. Acti-
vated mutation of NRAS might probably upregulate its own 
expression level. However, there were only three LUAD 
patients with NRAS non-synonymous mutation in the TCGA 
cohort. Hence, other independent patient cohorts with larger 
sample size will still be needed for a further validation in 
the future. At present, several studies have shown that the 
NRAS expression level is associated with the progression of 
lung cancer via in vivo and in vitro experiments. Giannou 
et al. (2017) performed RNA interference and RNA overex-
pression to modulate NRAS expression level in LUAD cell 

lines and mouse models, and found that NRAS expression 
was closely related to LUAD metastasis. Liu et al. (2018) 
found targeting NRAS was associated with cisplatin sensi-
tivity in the treatment of lung cancer cell lines. In this study, 
we provided clinicopathological evidence supporting the 
role of NRAS expression in development and progression 
of LUAD. We discovered NRAS expression upregulated in 
LUAD tissues. High NRAS expression group was positively 
correlated with advanced clinical stage and positive lymph 
nodes, and caused a worse prognosis both at RNA level and 
protein level.

Exploring the molecular mechanisms of NRAS in LUAD 
is beneficial for further investigation of the novel targeted 
therapy approach. The enrichment analysis of Hallmark col-
lection showed protein secretion, PI3K/Akt/mTOR signal-
ing, MYC targets, mTORC1 signaling, G2/M checkpoint, 
E2F targets and DNA repairing pathways were significantly 
enriched in high expression phenotype. G2/M checkpoint, 
E2F transcription factor and DNA repairing pathways were 
closely related to the cell cycle, proliferation and apoptosis. 
The gene imbalance in these pathways might induce chemo-
therapy resistance and influence drug sensitivity. Numer-
ous studies reported the potential advantages of cell cycle 
inhibitors as a group of effective anticancer agents in lung 
cancer. Whether NRAS could be used as a biomarker for 
the application of cell cycle inhibitors required more experi-
ments to validate. PI3K/Akt/mTOR, MYC, and mTORC1 
signaling pathways were closely related to RAS/RAF cas-
cade. Whitwam et al. (2007) reported that NRAS prevented 
phosphorylation of MYC through PI3K/AKT/mTOR sign-
aling pathway, leading to enhanced activity of endogenous 
MYC protein. Song et al. (2017) found that targeting NRAS-
regulated MAPK cascade, including RAF, MEK, and ERK, 
by MEK inhibitors could delay tumor growth and angiogen-
esis in lung cancer. Thus, the enrichment of cancer-related 
pathways indicated that NRAS might be a potential target 
for personalized therapy of LUAD.

According to the enrichment of GO collection, we dis-
covered that NRAS expression is associated with TIM. 
High expression level of NRAS is significantly correlated 
with 12 immune-related signaling pathways. To further 
study the relationship between NRAS expression and TIM, 
we estimated the abundance of TIIC level via the TIMER 
algorithm. NRAS expression was negatively correlated 
with the infiltration level of B cell and CD4+ T cell and 
positively related that of CD8+ T cell, macrophage and 
neutrophil in LUAD. The GSEA performed on GO collec-
tions indicated that high NRAS expression was enriched 
in activation of innate immune response, negative regu-
lation of B-cell proliferation and T-cell regulation sign-
aling pathway, which was consistent with the results of 
TIIC analysis. Brambilla et al. (2016) found lower CD4+/
CD8+ ratio conferred a worse survival in non-small cell 

Table 3   Associations with overall survival and clinicopathologic 
characteristics in TCGA patients using: (A) univariable Cox regres-
sion; (B) multivariable Cox regression

HR hazard ratio
*p is less than 0.05 and greater than 0.01
**p value is less than 0.01 and greater than 0.001

Clinical characters HR HR.95L HR.95H p value

A
 Age 1.002 0.984 1.020 0.823
 Gender 1.10 0.782 1.56 0.574
 Pack years smoked 0.999 0.993 1.01 0.664
 T 1.58 1.30 1.93 4.51E−06***
 N 1.70 1.40 2.06 9.40E−08***
 M 1.87 1.06 3.34 0.0317*
 NRAS 1.40 1.07 1.83 0.0129*

B
 Age 1.014 0.99 1.03 0.19
 Gender 0.891 0.61 1.31 0.56
 Pack years smoked 0.997 0.99 1.00 0.40
 T 1.39 1.09 1.77 0.0077**
 N 1.47 1.15 1.87 0.0019**
 M 1.68 0.88 3.19 0.11
 NRAS 1.38 1.01 1.87 0.043*
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lung cancer. In addition, multiple studies had proven that 
CD 20+ B cell was associated with improved survival 
(Al-Shibli et al. 2008; Pelletier et al. 2001). Prognostic 
role of tumor-associated macrophages in lung cancer had 
still been controversial (Chen et al. 2003; Ho et al. 2008; 
Kim et al. 2008; Zeni et al. 2007). Besides, by compar-
ing the relationship between NRAS and immune-related 
functional molecules, we found NRAS expression was 
positively correlated with CD274, HAVCR2, PDCD1, 
CD47 and CD24. CD274 encodes PD-L1, HAVCR2 
encodes TIM-3, and PDCD1 encodes PD-1 (Dong et al. 
1999; Ishida et al. 1992; McIntire et al. 2001). We also 
performed IHC staining in primary LUAD tissues from 
325 patients to validate the correlation between NRAS and 
these immune-related biomarkers. The close relationship 

between NRAS expression and the immunosuppressive 
molecules indicated that NRAS might be involved in 
immune evasion and suppression of immune function in 
LUAD. Both CD47 and CD24 have been proven as ‘don’t 
eat me’ signals, which are expressed by tumor-associated 
macrophages. Cancer cells are expertise in evading clear-
ance by macrophages via the overexpression of such anti-
phagocytic molecular as CD47 and CD24 (Barkal et al. 
2019; Willingham et al. 2012). Thus, the positive correla-
tion between NRAS and ‘don’t eat me’ signals indicates 
that NRAS might influence phagocytosis of tumor-associ-
ated macrophages. From the above results, we found that 
the expression level of NRAS might indeed cause a poor 
prognosis of LUAD patients by remodeling the immune 
microenvironment of a tumor.
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Fig. 3   A 11 signaling pathways including G2M checkpoint, E2F tar-
gets, MTORC1 signaling, PI3K-AKT-MTOR signaling, MYC Targets 
V1, and DNA repair were enriched in Hallmark collection. B 12 sign-
aling pathways including activation of innate immune response, nega-

tive regulation of B-cell proliferation and T-cell regulation signaling 
pathway were significantly enriched in GO collection. C A merged 
enrichment plot from gene set enrichment analysis including enrich-
ment score and gene sets based on GO collection
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There are still several limitations in our study. First, this 
study is based on the specimens from one institution and 
bioinformatic analysis from public RNA-seq databases. 
By the virtue of its retrospective design, our study has a 
bias by the virtue of potential heterogeneity. Thus, more 
prospective large-scale clinical studies are required for 
us to further study the relationship between NRAS and 
LUAD. In addition, the clinicopathological information is 
not intact from public databases. For instance, tumor size, 
pathological subtype of LUAD and treatment details are 
not provided from TCGA and GEO databases.

Conclusions

To conclude, we have found NRAS expression as a novel 
prognostic biomarker in LUAD. Higher expression of 
NRAS was associated with worse OS at both RNA and 
protein level. Besides, we have shown that the expres-
sion level of NRAS may influence the prognosis of 
LUAD via a variety of cancer-related pathways and TIM 
remodeling.
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Fig. 4   NRAS expression is associated with tumor immune micro-
environment. A NRAS expression level has significant negative 
correlations with infiltrating levels of CD8+ T cells (cor = 0.27, 
p = 1.06e−09), macrophages (cor = 0.331, p = 4.06e−14), and neu-
trophils (cor = 0.373, p = 8.81e−18), while it was negatively cor-
related with B cells (cor = -0.216, p = 1.31e−0.6) and CD4+ T cells 
(cor = -0.108, p = 1.65e−02). B NRAS expression was positively 
correlated with CD274 (rho = 0.333, p = 8.59e−15), HAVCR2 

(rho = 0.239, p = 4.01e−08), PDCD1 (rho = 0.101, p = 2.16e−02), 
CD47 (rho = 0.189, p = 1.64e−05) and CD24 (rho = 0.227, 
p = 1.82e− 07). C IRS of PD-L1 was significantly higher in high 
NRAS expression group at protein level (p = 6.24e−3). D IRS of 
PD-1 was significantly higher in high NRAS expression group at pro-
tein level (p = 1.37e−04). E IRS of TIM-3 was significantly higher in 
high NRAS expression group at protein level (p = 2.47e−10)
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