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Abstract
Purpose This study aimed to investigate the efficacy of digital mammography (DM), digital breast tomosynthesis (DBT), 
diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI separately and combined in the prediction of molecular 
subtypes of breast cancer.
Methods A total of 241 patients were enrolled and underwent breast MD, DBT, DW and DCE scans. Radiomics features 
were calculated from intra- and peritumoral regions, and selected with least absolute shrinkage and selection operator 
(LASSO) regression to develop radiomics signatures (RSs). Prediction performance of intra- and peritumoral regions in 
the four modalities were evaluated and compared with area under the receiver-operating characteristic (ROC) curve (AUC), 
specificity and sensitivity as comparison metrics.
Results The RSs derived from combined intra- and peritumoral regions improved prediction AUCs compared with those from 
intra- or peritumoral regions alone. DM plus DBT generated better AUCs than the DW plus DCE on predicting Luminal A 
and Luminal B in the training (Luminal A: 0.859 and 0.805; Luminal B: 0.773 and 0.747) and validation (Luminal A: 0.906 
and 0.853; Luminal B: 0.807 and 0.784) cohort. For the prediction of HER2-enriched and TN, the DW plus DCE yielded 
better AUCs than the DM plus DBT in the training (HER2-enriched: 0.954 and 0.857; TN: 0.877 and 0.802) and validation 
(HER2-enriched: 0.974 and 0.907; TN: 0.938 and 0.874) cohort.
Conclusions Peritumoral regions can provide complementary information to intratumoral regions for the prediction of 
molecular subtypes. Compared with MRI, the mammography showed higher AUCs for the prediction of Luminal A and B, 
but lower AUCs for the prediction of HER2-enriched and TN.
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Introduction

Breast cancer, as a heterogeneous disease at clinical levels, 
can be classified into four main intrinsic molecular sub-
types: Luminal A, Luminal B, human epidermal growth 
factor receptor 2 (HER2) -enriched, and triple negative 
(TN) based on hormone status by immunohistochemical 
(IHC) analyses (Koboldt et al. 2012; Perou et al. 2000). 
Histologically similar tumors with different molecular 
subtypes may have substantial differences in phenotype 
and prognoses, and responds differently to chemotherapy 
and radiation therapy (Goldstein et  al. 2007; Rouzier 
et al. 2005; Wang et al. 2011). Generally, luminal tumors 
are considered as good candidates for endocrine therapy 
(Ma et al. 2019). While, the HER2-enriched patients are 
often responders to targeted antibody therapy (Lam et al. 
2014). The triple-negative tumors, generally considered as 
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having the worst prognosis, may respond to chemotherapy 
(Huber et al. 2009). Therefore, preoperative assessments 
of molecular subtypes of breast cancer have been involved 
in individual treatment planning (Ye et al. 2020).

Routine clinical tests on subtypes of breast cancer rely 
on invasive tissue sampling and genetic profiling, which 
have inherent limitations since the biopsy performed at 
a single time point cannot reflect genetic heterogeneity 
within the breast tumor (Zardavas et al. 2015; Orlando 
et al. 2016). As an alternate, clinical imaging is a non-
invasive and efficient approach for clinical evaluations 
on breast cancer (Waks et  al. 2019). Previous studies 
have revealed associations between molecular subtypes 
with some imaging characteristics visually assessed with 
mammography and MRI (Luck et  al. 2008; Uematsu 
et al. 2009). Recent radiomics-based evaluations of the 
four main intrinsic molecular subtypes in breast cancer 
have also been proposed by extraction and analysis of 
quantitative features from medical images. However, the 
published findings are limited due to the use of single 
modality and lack of comparison among different modali-
ties (Fan et al. 2017; Monti et al. 2018). Although MRI 
has advantages in breast tissue characterization, it is not 
suitable for every patient, and has disadvantages such as 
high examination fees and relatively low specificity (Orel 
and Schnall 2001). Mammography, on the other hand, is 
widely used for breast screening and highly accessible for 
all patients. The digital breast tomosynthesis (DBT) gen-
erates 3D tomographic images reconstructed from multi-
ple scanned images by rotating the X-ray tubes, and can 
decrease recall rates and increase cancer detection rates 
compared with full-field digital mammography (FFDM) 
(Fischer et al. 2002). While, to our knowledge, direct and 
quantified comparisons between mammography and MRI 
on the prediction of molecular subtypes of breast cancer 
have not been investigated.

In addition, previous works related to the evaluation of 
four intrinsic molecular subtypes all focused on intratumoral 
regions, which was inadequate to consider areas surrounding 
the breast tumor. While, increasing evidences have high-
lighted that peripheral breast tissues may also hold great bio-
logical information related to lymphatics and blood vessels 
and immune responses (Braman et al. 2019). Some recent 
attempts have suggested associations between features hid-
den in the peritumoral regions with breast tumor character-
istics and gene status (Braman et al. 2017). While, to our 
knowledge, power of peritumoral regions on the prediction 
of the four intrinsic molecular subtypes in breast cancer has 
yet to be studied. Therefore, this study aims to widen the 
understanding of assessment for molecular subtypes by ana-
lyzing intratumoral and peritumoral radiomics, and directly 
and quantitatively compare the prediction efficacy of breast 
mammography and MRI individually and in combination.

Materials and methods

Patients

The retrospective research was approved by the ethics com-
mittee of our hospital, and the informed requirement was 
waived. A total of 583 patients were enrolled between Janu-
ary 2016 and Match 2021. The inclusion criteria were: (1) 
patients pathology-proven breast cancer; and (2) underwent 
breast mammography and MRI examinations before treat-
ment. Exclusion criteria were: (1) patients with incomplete 
pathological data; (2) combined with other tumor diseases; 
(3) received radiotherapy or chemotherapy before mammog-
raphy or MRI examinations; and (4) during pregnancy or lac-
tation periods. According to the criteria, 241 patients were 
finally included, 162 were used as a training group and 79 as 
a validation group. Among the patients, 54 were Luminal A, 
96 were Luminal B, 47 were HER2-enriched, and 44 were tri-
ple negative (TN). Clinical factors including age, menopausal 
status and family history were retrieved from the electronic 
medical recodes system (EMRS) of our hospital. Pathologi-
cal data include estrogen receptor (ER), progesterone recep-
tor (PR), antigen identified by monoclonal antibody (Ki-67), 
human epidermal growth factor receptor 2 (HER2), and lymph 
node metastatic (LNM) status. Figure 1 shows the process for 
recruitment patients.

Pathological assessment

Pathology reports for each patient that included the expres-
sion levels of ER, PR, and antigen identified by monoclonal 
antibody Ki-67/HER2 were based on postoperative tissue sam-
ples. Molecular subtypes that included Luminal A, Luminal 
B, HER2-enriched and TN were determined according to a 
previous report (Goldhirsch et al. 2011). ER and/or PR posi-
tive, HER2 negative and low Ki-67 cases were classified as 
the Luminal A subtype. ER and/or PR positive, HER2 nega-
tive and high expression of Ki-67 or PR negative cases were 
classified as the Luminal B- (HER2 negative) subtype. ER 
and/or PR positive, and HER2 positive cases were classified 
as the Luminal B + (HER2 positive) subtype. ER negative, 
PR negative and HER2 positive cases were classified as the 
HER2-enriched subtype. ER negative, PR negative and HER2 
negative cases were classified as the TN subtype. The fluo-
rescence in situ hybridization (FISH) analysis (Fehrenbacher 
et al. 2020) was performed to further determine the HER2 
status for HER2 (2+) with the result of 2.0 or higher indicated 
positivity.
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Data acquisition

Breast mammography screenings were performed using a 
Hologic scanner (Hologic Selenia Dimensions, HOLGIC, 
USA). The mammography images were reconstructed with 
1-mm intersection spacing to generate a three-dimensional 
view of the breast tissues and inserted on a Hologic breast 
computer-aided diagnosis (CAD) workstation (Secure-
ViewDx; Holo gic) equipped with two 5-megapixel mon-
itors. The voltage on the X-ray tubes ranges from 20.0 
to 49.0 kV (step: 1.0 kV), reconstruction time: 2.0–5.0 s, 
nominal power: 3.0 kW, current time range: 300–400 m 
As, scanning time < 4.0 s, and pixel size: 70 μm.

Breast MR screenings were performed using a 1.5-T 
MR scanner (HDx, GE Healthcare), using an 8-channel 
breast dedicated coil in prone position. Parameters for the 
MR scans were as follows: DWI MRI, b-value: 800 s/mm2, 
TR: 5000 ms, TE: 64 ms, slice thickness: 6 mm. DCE 
MRI, TR: 6.2 ms, TE: 3.0 ms; slice thickness: 3.2 mm; 48 
slices per volume. The contrast agent was injected intra-
venously (0.1 mmoL/kg of Gd-DTPA-MBA, Omniscan, 
GE Healthcare), followed by a 20 mL saline flush, both at 
rates of 3 mL/s. After intravenous injection, continuous 
non-interval scans were performed in eight phases, with a 
scan time of 43 s for each phase. All scanned images were 
stored in the Picture Archiving and Communication Sys-
tem (PACS) in our hospital in Digital Imaging and Com-
munications in Medicine (DICOM) format.

Tumor segmentation and mask dilation

The region of interests (ROIs) were drawn by a senior radi-
ologists with 10 years of work experience in the DM, DBT 
and MRI image using the ITK-SNAP software (version 
3.6.0) to generate masks of intratumoral ROIs, and stored 
in a .NII format. The radiologist was blinded to the patho-
logic results. To explore predictive values of peritumoral 
regions, the original mask of the intratumoral ROI was 
radially dilated with a distance of 4 mm outside the tumor. 
Then, the intratumoral ROI was subtracted from the dilated 
ROI to generate the peritumoral ROI. The masks of intratu-
moral and peritumoral ROIs were used to extract radiomics 
features from intra- and peritumoral regions, respectively. 
Figure 2 shows an example of the ROI segmentation and 
mask dilation process.

Radiomics feature extraction and selection

Three categories of radiomics features were extracted from 
DM, DBT, DW and DCE MRI: first-order, shape-based 
and texture features. All features were extracted using the 
“Pyradiomics” package in Python v.3.6. The texture fea-
tures consist of gray level cooccurrence matrix (GLCM), 
gray level run length matrix (GLRLM), gray level size zone 
matrix (GLSZM), neighboring gray tone difference matrix 
(NGTDM), and gray level-dependence matrix (GLDM). The 
original images were transformed by eight filters (Wavelet, 

Fig. 1  Flow chart showing the process for recruitment patients
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LoG, Square, SquareRoot, Logarithm, Exponential, Gradi-
ent and LocalBinaryPattern2D) to generate eight filtered 
image types, from which the first-order and texture features 
were also derived. The feature extraction methodology, fea-
ture types, filters and parameter settings were described in 
the Pyradiomics documentation (https:// pyrad iomics. readt 
hedocs. io/).

The intraclass correlation coefficient (ICC) analysis was 
performed with 40 randomly selected patients to evaluate the 
reproducibility of the features. Feature with ICC > 0.80 was 
considered to have good reproducibility and remained. Then, 
the Mann–Whitney U test was used to select the features, 
with P < 0.05 were considered significantly different. After-
wards, the least absolute shrinkage and selection operator 
(LASSO) was applied to select the most predictive features 
with tenfold cross-validation for selecting the parameter 
lambda using the 1 standard error of the minimum criteria 
(1-SE criteria). Finally, the features were selected with the 
logistic regression model using Akaike information criterion 
(AIC) as the stopping rule (Sauerbrei et al. 2007).

Construction of the radiomics signatures

Radiomics signatures (RSs) were constructed separately 
to predict the four molecular subtypes (Luminal A vs. non-
Luminal A, Luminal B vs. non-Luminal B, HER2-enriched 

vs. non-HER2-enriched and TN vs. non-TN) based on the 
selected features and their corresponding LASSO coefficients. 
RSs derived from the intra- and peritumoral regions and their 
combination were developed and named as intra-RS, peri-RS 
and com-RS, respectively.

Statistical analysis

Categorical variables were compared with the Chi-Square test 
and Fisher’s exact test. Continuous values were evaluated with 
the Student’s t-test and Mann–Whitney U test. The normality 
test for continuous variables was verified by the Shapiro–Wilk 
test. All hypothesis tests were two-sided, with P < 0.05 consid-
ered to indicate statistically significant differences. Prediction 
performance of the RSs were evaluated based on receiver-
operating characteristic (ROC) analysis with the maximum 
Youden index (Ruopp et al. 2008) for obtaining the optimal 
cutoff values using the “pROC” package in R v.3.6.

Results

Clinical characteristics

Clinical and pathologic characteristics of each patient are 
shown in Table 1. Median ages of the patients were 48, 

Fig. 2  Examples of the breast cancer images and ROIs used in this 
study. DM (a and e), DBT (b and f), DWI (c and g) and DCE (d and 
h) images of a 41-year-old female TN breast cancer patient. The 
above row represents original images, whereas the bottom row repre-

sents intra- and peritumoral ROIs. Blue regions represent the manu-
ally delineated intratumoral ROIs covering the whole tumor, whereas 
red regions indicate peritumoral ROIs

https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/
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54, 53 and 50 years for the Luminal A, Luminal B, HER2-
enriched and TN, respectively. There was no significant 
difference in the mean age, menopausal status, family his-
tory and LNM status among the patients (P > 0.05) in train-
ing and validation cohorts, except for the LMN status with 
P = 0.043 on Luminal B in the validation cohort.

Prediction performance of intratumoral, 
peritumoral regions, and their combination

Prediction performance of Intra-RS, Peri-RS and Com-RS 
in DM, DBT, DWI and DCE are shown in Table 2. The 
Intra-RS and Peri-RS derived from the intratumoral and 
peritumoral regions, respectively, generated similar predic-
tion capabilities in terms of AUC, sensitivity and specific-
ity. While, by combing information from intratumoral and 
peritumoral regions, the Com-RS significantly improved 

AUCs compared with the Intra-RS on predicting the four 
molecular subtypes.

Comparison of prediction performance 
of mammography and MRI

Predictive performance of Com-RSs derived from mam-
mography and MRI techniques is evaluated and listed in 
Table 3. Figure 3 shows ROC curves of the Com-RSs. For 
the prediction of Luminal A and Luminal B, the DM plus 
DBT yielded better AUCs than DM or DBT alone. The DM 
plus DBT generated better AUCs and sensitivities than the 
DW plus DCE. For the prediction of HER2-enriched or TN, 
the DCE plus DW generated better AUCs than DCE or DW 
used alone (compare Table 3 with Table 2). The DW plus 
DCE outperformed DM plus DBT yielded in terms of AUCs, 
sensitivities and specificities.

Table 2  Diagnostic performance of the intra-, peri- and Com-RSs on four molecular subtypes

AUC  area under the ROC curve, CI confidence interval

Subtype Cohort DM DBT DW DCE

AUC SEN SPE AUC SEN SPE AUC SEN SPE AUC SEN SPE

Luminal A
 Intra-RS Training 0.679 0.778 0.579 0.726 0.757 0.600 0.686 0.632 0.750 0.729 0.692 0.772

Validation 0.686 0.790 0.617 0.679 0.706 0.661 0.684 0.647 0.742 0.705 0.875 0.571
 Peri-RS Training 0.684 0.611 0.730 0.700 0.784 0.592 0.742 0.790 0.677 0.703 0.667 0.691

Validation 0.718 0.842 0.567 0.613 0.722 0.557 0.677 0.706 0.661 0.684 0.938 0.556
 Com-RS Training 0.771 0.694 0.786 0.807 0.725 0.812 0.785 0.816 0.629 0.769 0.641 0.821

Validation 0.762 0.632 0.817 0.757 0.643 0.908 0.729 0.824 0.629 0.759 0.875 0.603
Luminal B
 Intra-RS Training 0.685 0.507 0.828 0.816 0.794 0.713 0.753 0.857 0.576 0.712 0.676 0.713

Validation 0.613 0.556 0.769 0.749 0.821 0.706 0.669 0.654 0.698 0.754 0.857 0.569
 Peri-RS Training 0.753 0.594 0.860 0.749 0.721 0.713 0.711 0.629 0.674 0.683 0.632 0.745

Validation 0.684 0.704 0.635 0.723 0.679 0.686 0.652 0.692 0.642 0.604 0.679 0.588
 Com-RS Training 0.788 0.739 0.753 0.872 0.809 0/787 0.807 0.643 0.804 0.834 0.772 0.803

Validation 0.757 0.630 0.865 0.793 0.750 0.824 0.746 0.692 0.736 0.761 0.860 0.586
HER2-enriched
 Intra-RS Training 0.679 0.849 0.535 0.779 0.629 0.874 0.702 0.618 0.703 0.708 0.656 0.741

Validation 0.728 0.786 0.646 0.697 0.750 0.672 0.673 0.462 0.985 0.660 0.733 0.651
 Peri-RS Training 0.639 0.606 0.721 0.683 0.571 0.819 0.783 0.706 0.789 0.746 0.656 0.763

Validation 0.675 0.714 0.708 0.685 0.667 0.746 0.688 0.846 0.561 0.689 0.844 0.695
 Com-RS Training 0.716 0.546 0.822 0.857 0.829 0.835 0.812 0.735 0.773 0.812 0.844 0.695

Validation 0.756 0.714 0.785 0.802 0.750 0.791 0.795 0.538 0.955 0.778 0.867 0.683
TN
 Intra-RS Training 0.690 0.774 0.580 0.845 0.786 0.799 0.817 0.677 0.824 0.814 0.807 0.698

Validation 0.690 0.917 0.537 0.764 0.786 0.708 0.813 0.750 0.866 0.816 0.917 0.746
 Peri-RS Training 0.692 0.677 0.802 0.705 0.679 0.769 0.872 0.807 0.847 0.908 0.774 0.878

Validation 0.713 0.833 0.597 0.739 0.667 0.813 0.790 0.917 0.672 0.838 0.667 0.915
 Com-RS Training 0.827 0.742 0.794 0.855 0.893 0.776 0.883 0.903 0.771 0.939 0.774 0.964

Validation 0.771 0.917 0.642 0.790 0.786 0.769 0.833 0.750 0.806 0.881 0.917 0.831
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Prediction performance of the most important features 
selected from mammography and MRI are listed in Tables 
S1, S2, respectively. A total of 5, 6, 4 and 5 features were 
selected from DM and DBT for predicting Luminal A, 
Luminal B, HER2-enriched and TN, respectively. While, 
a total of 4, 6, 6 and 7 features were selected from DW and 
DCE for predicting Luminal A, Luminal B, HER2-enriched 
and TN, respectively. Most of the features represent accept-
able AUCs and P values.

Discussion

Our study performed comprehensive radiomics analyses to 
quantitatively evaluate predictive efficiencies of four com-
monly used breast cancer-screening modalities on molecular 

subtypes. Previous studies related to our work focused solely 
within the extent of the tumor itself (Fan et al. 2017; Sutton 
et al. 2016), ignoring information from areas surrounding 
the tumor. We found that the intra- and peritumoral regions 
can provide complementary information since combinations 
of the two regions efficiently improved prediction capabili-
ties in terms of AUC, for predicting the four molecular sub-
types. This was partially consistent with previous reports 
which also demonstrated that peritumoral areas of breast 
cancer may hold diagnostic and predictive information (Bra-
man et al. 2019, 2017; Penn et al. 2020; Zhou et al. 2020).

Most of previous studies on the prediction of molecular 
subtypes in breast cancer focused on the MRI data (Fan et al. 
2017; Sutton et al. 2016). However, the MRI is an expensive 
modality, and not suitable for all patients (Orel and Schnall 
2001). While, the mammography is more widely used for 

Table 3  Comparison of DM 
plus DBT and DW plus DCE 
for the prediction of molecular 
subtypes

AUC  area under the ROC curve, CI confidence interval, ACC  accuracy

Subtype Cohort DM plus DBT DW plus DCE

AUC (95% CI) SEN SPE AUC (95% CI) SEN SPE

Luminal A Training 0.859 (0.785–0.933) 0.694 0.881 0.805 (0.720–0.889) 0.634 0.876
Validation 0.773 (0.650–0.895) 0.790 0.683 0.747 (0.578–0.917) 0.643 0.815

Luminal B Training 0.906 (0.861–0.952) 0.783 0.914 0.853 (0.792–0.915) 0.771 0.792
Validation 0.807 (0.706–0.908) 0.815 0.712 0.784 (0.675–0.894) 0.743 0.818

HER2 Training 0.857 (0.784–0.929) 0.829 0.835 0.954 (0.916–0.992) 0.865 0.944
Validation 0.802 (0.658–0.946) 0.750 0.791 0.877 (0.795–0.959) 0.900 0.812

TN Training 0.907 (0.846–0.968) 0.811 0.896 0.974 (0.949–0.998) 0.939 0.915
Validation 0.874 (0.759–0.990) 0.833 0.863 0.938 (0.883–0.992) 1.000 0.884

Fig. 3  ROC curves of Com-RSs derived from breast mammography 
and MRI for predicting Luminal A (a, e), Luminal B (b, f), HER2-
enriched (e, g) and TN (d, h). The row above represents ROC curves 

in the training cohort, whereas the bottom row represents ROC curves 
in the validation cohort
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breast screening and more accessible for patients. We per-
formed direct and quantitative comparisons of the predic-
tion effects between mammography and MRI, and found that 
for the prediction of Luminal A and B, the mammography 
(DM plus DBT) always outperformed MRI (DCE plus DW) 
in terms of AUC and sensitivity. This may be explainable 
since the X-ray was more sensitive to structural distortion 
and calcification, which were common in the Luminal A and 
B breast cancers (Cen et al. 2017; Zhang et al. 2019). The 
DBT showed higher AUCs for the prediction of HER2 com-
pared with the DCE or DW alone, which may be because the 
HER2-enriched breast cancer also exist calcified lesions that 
can be detected by X-ray (Zhang et al. 2019). While, the DM 
plus DBT generated lower AUC, sensitivity and specificity 
than the DCE plus DW. This was partially in line with a 
previous study that also demonstrated great power of MRI 
on the prediction of HER2-enriched breast cancer because of 
the quantitative enhancement parameters of DCE can reflect 
the blood flow and vascular permeability, which had the cor-
relation with HER2 breast cancers (Mazurowski et al. 2014). 
For the prediction of TN, the DM generated similar predic-
tion performance compared with DBT. While, the DM plus 
DBT showed lower AUC, sensitivity and specificity than 
the DW plus DCE. This may be explainable considering 
the TN breast cancer are more likely to present as a non-
calcified masses with a relatively circumscribed margin and 
this type breast cancers are rich in neovascularization, and 
negatively correlated with structural distortion (Son et al. 
2020; Clauser et al. 2015). While, the DW can reflect tissue 
microenvironment and membrane integrity through depict-
ing the diffusivity of the tissues meanwhile, the quantitative 
enhancement parameters of DCE can reflect the blood flow 
and vascular permeability, which had the correlation with 
TN breast cancers (Koo et al. 2012), and thus, compared 
with X-ray, MRI can better predict TN breast cancers. Prior 
study also pointed out the fact that the predominance of the 
presentation of the mass type on MRI is observed even more 
than with mammogram (Dogan et al. 2010), which was in 
line with the results of our research.

We identified the most important features for the prediction 
of each molecular subtype from the four modalities. For pre-
dicting Luminal A, the selected strength feature that was cal-
culated from mammogram measures the primitives and quan-
tifies the complicate textures of the tumor and unclear edges. 
Our results showed that values of the strength feature were 
higher in the Luminal A group than those in the non-Luminal 
A group, which indicated that the tumor with Luminal A may 
be associated with unclear margins (Boisserie-Lacroix et al. 
2013). For predicting Luminal B, we identified the kurtosis 
feature from mammogram, which measures whether the data 
are heavy-tailed or light-tailed relative to a normal distribu-
tion. This feature has been considered as a biomarker reflecting 
tumor heterogeneity (Hempel et al. 2018). Our results showed 

that values of this feature were greater in the Luminal B group 
than those in the non-Luminal B group, which indicates that 
the Luminal B tumor may represent more heterogeneous tis-
sue architectures. This was in line with a previous report that 
also found the Luminal B tumor was associated with architec-
tural distortions (Taneja et al. 2008). For predicting HER2, 
the selected glszm_ZoneVariance feature was computed from 
MRI. This feature describes the roughness of the tumoral edge, 
with a higher value indicates the rougher edge. We found that 
the values of this feature were higher in the HER2-enriched 
group than the non-HER2-enriched group, which suggests that 
the margins of HER2-enriched tumor tends to be unclear. Our 
finding was accordant with a previous research that showed the 
HER2-enriched tumor represents indistinct margins (Taneja 
et al. 2008). For predicting TN, the selected Elongation and 
MinorAxisLength features were calculated from MRI. These 
features describe shapes of the ROIs, with higher values indi-
cate rounder shapes. Our findings revealed that the values of 
these features were higher in the TN group than the non-TN 
group, which indicated that the TN tumor may tend to be 
rounder. The gldm_DependenceNonUniformityNormalized 
feature from MRI measures the similarity of the tumoral mar-
gin, with a lower value indicates a clearer margin. The value 
of this feature was lower in the TN group, which suggests the 
TN tumor may tend to be clearer margin. This was accordant 
with a recent effort that showed the TN tumor was associated 
with the round or oval mass and circumscribed margin (Kim 
and Choi 2013).

Limitations

There are certain limitations. First, this is a retrospective 
study with all samples enrolled from a single institution. 
We planned to enlarge the sample size and adopt a multi-
center study design to overcome the limitation of the cur-
rent study. Second, all radiomics features were extracted 
based on the manually drawn ROIs that may be subjective. 
To address this limitation, features with low ICCs were 
excluded to ensure the robustness of the features. While, 
our future work will employ deep learning-based automatic 
algorithms to improve the segmentation accuracy. Third, we 
did not evaluate other commonly used breast scanning tech-
nologies, such as ultrasonography or computed tomography 
(CT). We believe these would be warranted attentions and 
may be assessed in our future work.

Conclusion

Peritumoral regions can provide complementary information 
to intratumoral regions in breast mammography and MRI for 
the prediction of molecular subtypes. Compared with MRI, 
mammography performed better than MRI in the prediction 
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of Luminal A and B, but worse than MRI in the prediction 
of HER2 or TN. Our findings may widen the understanding 
of intra- and peritumoral regions in different modalities and 
have the potential to predict the molecular subtypes.
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