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Abstract
Purpose  Stem cells are characterized by the capability of self-renewal and multi-differentiation. Normal stem cells, which 
are important for tissue repair and tissue regeneration, can be divided into embryonic stem cells (ESCs) and somatic stem 
cells (SSCs) depending on their origin. As a subpopulation of cells within cancer, cancer stem cells (CSCs) are at the root 
of therapeutic resistance. Tumor-initiating cells (TICs) are necessary for tumor initiation. Caveolin1 (Cav1), a membrane 
protein located at the caveolae, participates in cell lipid transport, cell migration, cell proliferation, and cell signal transduc-
tion. The purpose of this review was to explore the relationship between Cav1 and stem cells.
Results  In ESCs, Cav1 is beneficial for self-renewal, proliferation, and migration. In SSCs, Cav1 exhibits positive or/and 
negative effects on stem cell self-renewal, differentiation, proliferation, migration, and angiogenic capacity. Cav1 deficiency 
impairs normal stem cell-based tissue repair. In CSCs, Cav1 inhibits or/and promotes CSC self-renewal, differentiation, 
invasion, migration, tumorigenicity ability, and CSC formation. And suppressing Cav1 promotes chemo-sensitivity in CSCs 
and TICs.
Conclusion  Cav1 shows dual roles in stem cell biology. Targeting the Cav1-stem cell axis would be a new way for tissue 
repair and cancer drug resistance.

Keywords  Caveolin 1 · Stem cells · Cancer · Self-renewal · Differentiation

Introduction

Stem cells are characterized by the capacities to self-renew 
and produce multiple differentiated progenies (Rigaud et al. 
2020). There are two main types of normal stem cells based 
on their origin, embryonic stem cells (ESCs), which can 
be isolated from the inner cell mass of early mammalian 

blastocysts (Harvey et al. 2019), and somatic stem cells 
(SSCs), which can be isolated from developed tissues and 
organs (Ly et al. 2020). Recognized as pluripotent stem 
cells, ESCs cannot create extra-embryonic tissues. Never-
theless, ESCs can produce somatic cell types, like hepato-
cytes, endothelial cells, hematopoietic cells, etc. (Semba 
et al. 2020). SSCs include hematopoietic stem cells (HSCs), 
mesenchymal stem cells (MSCs), neural stem cells (NSCs), 
adipose-derived stem cells (ADSCs), epidermal stem cells 
(EpiSCs), mammary stem cells (MaSCs), and intestinal stem 
cells (ISCs) (Wang et al. 2020a; Tweedell 2017). Besides, 
progenitor cells are also considered to be SSCs (Rebuzzini 
et al. 2015). SSCs are known as multipotent stem cells and 
possess more limited differentiation potential than ESCs. 
SSCs can create several terminally differentiated cells that 
maintain tissue homeostasis (Semba et al. 2020). Recently, 
scientists can reprogram somatic cells to create pluripotent 
stem cells in a state similar to ESCs. These cells are called 
induced pluripotent stem cells (iPSCs) and can be used for 
regenerative medicine, disease modeling, and drug testing 
(Takahashi and Yamanaka 2006; Soman and Vijayavenka-
taraman 2020).
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Nowadays, despite advances in cancer diagnosis and 
treatment, cancer is still considered to be the second lead-
ing cause of death in the world (Ahmed et al. 2020). Cancer 
stem cells (CSCs), a rare subset of cancer cells within the 
tumor bulk, were first launched in the researches about pri-
mary human acute myeloid leukemia (Lapidot et al. 1994). 
Accumulative studies demonstrate that CSCs can come 
from normal stem cells, progenitor cells, differentiated tis-
sue cells, or tumor cells (Chiodi and Mondello 2020). It is 
determined that, based on the surface markers CD44, CD24, 
CD133, etc., CSCs can be collected from several malignant 
cancers (e.g., breast, lung, liver, prostate, pancreatic, colo-
rectal, gastric, etc.) through the techniques of flow cytometry 
and Fluorescence-Activated Cell Sorting (FACS) (Thanka-
mony et al. 2020). CSCs can form three-dimensional spheres 
that are also called tumorspheres. The tumorsphere forma-
tion assay can be used for CSC isolation and identification 
in vitro (Zhu et al. 2017). In addition to the stemness proper-
ties (i.e., self-renewal and differentiation), CSCs also have 
stemness-related signal pathways similar to normal stem 
cells. In normal stem cells, the signal pathways maintain-
ing stemness are strictly controlled without the mutation. 
While in CSCs, due to genetic and epigenetic mutations, the 
signals are usually dysfunctional (Nimmakayala et al. 2019). 
CSCs are involved in tumor initiation, metastasis, relapse, 
and therapeutic resistance (Clara et al. 2020). At present, 
the significance of CSC-based anti-cancer treatment cannot 
be underestimated.

Caveolae, which are defined as flask-shaped membrane 
invaginations located at the plasma membrane, are rich in 
cholesterol and sphingolipids (Skotland et al. 2020). Caveo-
lin 1 (Cav1), a 21 kDa membrane protein composed of 178 
amino acids, is one of the basic components in caveolae 
and is pivotal for the formation of caveolae. The encoding 
gene CAV1 is located on human chromosome 7q31.1 (Yan 
et al. 2020). Cav1 highly exists in adipocytes, fibroblasts, 
endothelial cells, muscle cells, and epithelial cells (Wil-
liams and Lisanti 2004). Cav1 has the N-terminal domain, 
the caveolin scaffolding domain (CSD), the intramembrane 
domain (IMD), and the C-terminal spanning domain (Root 
et al. 2015). Many studies emphasize that the CSD region 
can modulate the interaction between Cav1 and other signal-
ing proteins, such as adenylyl cyclase, phosphatidylinositol-
3-kinase (PI3K), endothelial nitric oxide synthase (eNOS), 
mitogen-activated protein kinase (MAPK), protein kinase 
A and C (Patel et al. 2008). It is proved that Cav1 can regu-
late stem cell biology, tissue repair, and tissue regeneration 
(Baker and Tuan 2013). Besides, Cav1 also displays both 
suppressive and oncogenic effects on cancer aggressive 
behaviors according to tumor type and environment (Singh 
and Lamaze 2020). And it is suggested that Cav1 correlates 
with tumor cell proliferation, migration, invasion, metasta-
sis, stemness, and drug resistance (Qian et al. 2019).

In this review, we collected the evidence to discuss 
the interaction between Cav1 and stem cells, altogether 
describing the roles of Cav1 in stem cell self-renewal, dif-
ferentiation, proliferation, and migration. We also found 
that Cav1 has a role in modulating CSC formation and 
chemoresistance.

Caveolae and Cav1

Described as small (50–80 nm) invaginations, caveolae play 
vital roles in endocytosis, cell signal transduction, mem-
brane trafficking, and dynamics (Filippini and D’Alessio 
2020). The Cavs and cavins are the main components of 
the caveolae. Cavs are composed of three isoforms: Cav1, 
Cav2, and Cav3. Cav1 and Cav2 are expressed in non-
muscle cells. Cav3 mainly exists in muscle cells (Chidlow 
and Sessa 2010). And the cavin family includes cavin-1 
(polymerase I and transcript release factor, PTRF), cavin-2 
(serum deprivation response protein, SDPR), cavin-3 (serum 
deprivation response factor-related gene product that binds 
to C-kinase, SRBC), cavin-4 (muscle-restricted coiled-coil 
protein, MURC). Cavin-1 is expressed in all tissues and is 
essential for caveolae formation (Kovtun et al. 2015). It is 
proved that cavin-1 can interact with Cav1 to prevent Cav1 
degradation, thus, to shape caveolae structure (Hansen and 
Nichols 2010; Yamaguchi et al. 2016).

It is indicated that Cav1 has two isoforms: Cav1α and 
Cav1β. Cav1α contains 178 amino acids and Cav1β con-
tains residues 32–178. Both Cav1β and Cav1α can be phos-
phorylated on serine 80 (Lajoie and Nabi 2010). One study 
suggested that Cav1α has additional two phosphorylation 
sites, tyrosine 14 and serine 37. And Cav1β can also undergo 
phosphorylation on serine 5 (Vainonen et al. 2004). The 
tyrosine 14 in Cav1 is the target of non-receptor tyrosine 
kinases Src, Fyn, and c-Abl in response to certain stimuli. 
The Cav1 phosphorylation on tyrosine 14 can promote cell 
migration, invasion, and metastasis (Wong et al. 2020). 
And the Cav1 phosphorylation on serine 80 is implicated in 
cholesterol transport, protein retention in the endoplasmic 
reticulum, and protein secretion (Campos et al. 2019). It 
is shown that mechanical stress can come from the cell’s 
cytoskeleton or external loads applied to the cell surface. 
And mechanical stress is implicated in gene expression, cell 
division, cell migration, cell differentiation, cell adhesion, 
etc. (Belaadi et al. 2016; Nogueira et al. 2015). Accumula-
tive evidence reveals that under mechanical stress, caveolae 
open and flatten, thereby, to prevent cell membrane rupture 
(Cheng and Nichols 2016). The Cav1–cavin-1 interaction is 
impaired by mechanical stress. When the mechanical stress 
is disappeared, Cav1 and cavin-1 are reassembled in the 
plasma membrane and promote caveolae formation (Sinha 
et al. 2011; Nassoy and Lamaze 2012). Teo et al. reported 
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that Cav1 depletion recruits the formin FMNL2 to stabilize 
filamentous actin (F-actin), which can elevate epithelial con-
tractile tension to reduce oncogenic cell extrusion. Finally, 
Cav1 absence represses the elimination of tumor cells from 
the epithelium monolayer (2020). Cav1 phosphorylation 
can be stimulated via periodic mechanical stress, leading to 
the activation of insulin-like growth factor-1 receptor (IGF-
1R) and extracellular signal-regulated kinase 1/2 (ERK1/2). 
Cav1 phosphorylation eventually potentiates chondrocyte 
proliferation through the IGF-1R/ERK1/2 pathway in 
response to periodic mechanical stress (Ren et al. 2018).

Cav1 and embryonic stem cells

Found in the early blastocysts, ESCs are capable of multi-
directional differentiation, self-renewal, and proliferation 
properties (Wang et  al. 2019a). ESCs can create all of 
the ectodermal, mesodermal, and endodermal cell layers 
(Soleimani et al. 2020). ESC self-renewal and pluripotency 
are involved in both proliferation and maintaining an undif-
ferentiated state. And the ESC self-renewal potential is 
unlimited (Romeo et al. 2012).

Self‑renewal

Down-regulated Cav1 can attenuate ESC proliferation and 
diminish messenger RNAs (mRNAs) of pluripotent effec-
tors like octamer-binding transcription factor 4 (Oct4), 
Sox2, FoxD3, and Rex1. These suggest a positive relation-
ship between Cav1 and ESC self-renewal (Lee et al. 2010). 
LacdiNAc (GalNAcβ1-4GlcNAc) is a cell surface glycan 
involved in ESC self-renewal. Cav1 can interact with the 
LacdiNAc-expressed leukemia inhibitory factor (LIF) 
receptor (LIFR) and glycoprotein 130 (gp130), leading to 
strong transduction of LIF/signal transducer and activator 
of transcription 3 (STAT3) signaling pathway. Eventually, 
the improved LIF/STAT3 signal transduction can promote 
mouse ESC self-renewal (Sasaki et al. 2011).

Proliferation

Estradiol-17β (E2), one of the female sex steroid hormones, 
has been found to stimulate mouse ESC migration (Yun et al. 
2012). One study shows that Cav1 is a downstream mediator 
of E2 in mouse ESC cells. E2 can increase Cav1 expression 
via activating PI3K/protein kinase B (AKT) and ERK1/2 
pathways. Inhibiting Cav1 can repress proto-oncogene (c-
fos, c-Myc, and c-jun) transcription and decrease cell cycle 
regulator (cyclin D1, cyclin E, cyclin-dependent kinase 4 
(CDK4), and CDK2) expressions. As a result, Cav1 can 
contribute to E2-modulated ESC proliferation (Park et al. 
2009). Galectin-1 is an animal lectin that can enhance stem 

cell proliferation (Yanagisawa and Yu 2007). Src kinase 
can phosphorylate Cav1 on tyrosine 14 (Cao et al. 2002). 
It is shown that Galectin-1 can activate Src to induce Cav1 
activation. Activated Cav1 can promote mouse ESC prolif-
eration through activating AKT and mammalian target of 
rapamycin (mTOR) (Lee et al. 2009). Cav1 expression can 
also be up-regulated by high glucose through p38 MAPK 
phosphorylation. Cav1 can stimulate F-actin reorganiza-
tion through β1 integrin/focal adhesion kinase (FAK)/PIP 
complex (PINCH1/2, integrin-linked kinase (ILK), and 
α-parvin) signaling pathway, ultimately, leading to potenti-
ating ESC proliferation under high glucose (Lee et al. 2011). 
Fibronectin, one of the extracellular matrix (ECM) com-
ponents, can promote cell proliferation and migration. One 
report observed that Cav1 phosphorylation can be induced 
by fibronectin through Src/FAK signal pathway in mouse 
ESCs. Subsequently, Cav1 can activate Rho-associated pro-
tein kinase (ROCK) and RhoA, which can contribute to ESC 
proliferation through PI3K/AKT and ERK1/2 signals (Park 
et al. 2011).

Migration

Park et al. proved that fibronectin-induced Cav1 can aug-
ment MMP-2 and F-actin expressions via RhoA/ROCK/
ERK1/2 signal, resulting in increased migration in mouse 
ESCs (Park et al. 2012). Epidermal growth factor (EGF), a 
well-known mitogen, can bind to the EGF receptor (EGFR) 
to activate the MAPK pathway, which plays a critical role in 
intercellular communication in mouse ESC colonies (Fong 
et al. 2014). Cav1 in mouse ESCs is phosphorylated by the 
EGF/Src signal. And Cav1 can improve mouse ESC prolifer-
ation and migration via the PI3K/AKT/ERK1/2/matrix met-
alloproteinase-2 (MMP-2) pathway (Park and Han 2009).

From these studies, we found that Cav1 can improve 
proto-oncogene transcription, pluripotent effector expres-
sions, cell cycle regulator expressions, and F-actin reorgani-
zation in ESCs. Taking as a whole, Cav1 can promote ESC 
self-renewal, proliferation, and migration (Fig. 1).

Somatic stem cells

Hematopoietic stem cells

HSCs, a very rare cell population with self-renewal and 
multi-potency, are critical for hematopoiesis. HSCs can be 
detected in bone marrow (BM), peripheral blood, umbilical 
cord blood (UCB), and placenta (Yadav et al. 2020). Young 
HSCs can remain balanced in myeloid and lymphoid dif-
ferentiation. While elderly HSCs are capable of enhanced 
myeloid-biased differentiation and declined lymphoid-
biased differentiation (Akunuru and Geiger 2016). The HSC 
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transplantation can reconstitute the whole-blood system 
and maintain long-term hematopoiesis in a recipient, which 
can be a therapy for hematological diseases (Khaddour 
et al. 2020). Cav1 deletion can not only impair HSC self-
renewal, but also abolish the differentiation of HSCs into 
mature blood cells. Cav1 deficiency can also accelerate cel-
lular senescence in HSCs. Besides, Cav1 silence in mice can 
decrease the percentage of HSCs in BM. And the transplan-
tation of HSCs from Cav1-deficient mice can’t reconstitute 
hematopoiesis in irradiated mice (Bai et al. 2014). PTRF, 
one putative caveolar coat protein, plays a vital role in cave-
olae formation at the plasma membrane (Hill et al. 2008). 
In addition to destroying self-renewal, over-expressed PTRF 
can also induce cellular senescence and skewed myeloid dif-
ferentiation in HSCs. Cav1 levels in HSCs are increased by 
PTRF. Knocking out Cav1 in HSCs can restore self-renewal 
and inhibit cell senescence in response to up-regulated PTRF 
(Bai et al. 2020). In sum, these studies indicate that Cav1 
is necessary to maintain HSC physiological functions. And 
the interaction of Cav1 with caveolar protein PTRF impairs 
self-renewal and stimulates cell senescence in HSCs.

Mesenchymal stem cells

MSCs can exist in BM, adipose tissue, UCB, placenta, 
peripheral blood, and gingiva (Fan et al. 2020; Jayaramayya 
et al. 2020). Notably, MSCs can differentiate into several 
tissue-specific cell lineages, including osteocytes, chondro-
cytes, cardiomyocytes, adipocytes, neurocytes, and endothe-
lial cells (Ramazzotti et al. 2019; Ma et al. 2020).

Motility

In human UCB-derived MSCs, Cav1 can be activated via 
galectin-1 through c-Src. The Smad2/3 phosphorylation can 
be reduced by galectin-1 through Cav1, resulting in down-
regulating collagen III and V. Eventually, decreased collagen 
III and V can increase MSC motility (Yun et al. 2014).

Differentiation

In human BM-derived MSCs (BMSCs), Cav1 is up-regu-
lated during osteogenesis progression. Cav1 can dampen the 
PI3K/AKT signaling pathway in lipid rafts to inhibit BMSC 
osteogenesis (Baker et al. 2015). Decreased Cav1 expres-
sion can facilitate BMSC proliferation. And Cav1 deple-
tion can also improve BMSC matrix mineralization and the 
expressions of osteogenic regulators (e.g., osteocalcin, bone 
sialoprotein 2, Col1a2, and Runx2). Cav1 can function as an 
antagonist of BMSC proliferation and osteogenic differen-
tiation (Baker et al. 2012). Further, one study demonstrated 
that Cav1 absence is failed to express bone sialoprotein or 
form mineralized nodules of murine BMSCs, which suggests 
that Cav1 knockout can lead to dysfunctional osteogenic dif-
ferentiation (Case et al. 2010). Cav1 is highly expressed in 
rat BMSCs undergoing cardiomyocyte differentiation. Cav1 
silence can potentiate BMSC differentiation into cardiomyo-
cytes by reducing the STAT3 pathway (Chen et al. 2017). 
Cav1 up-regulation can attenuate insulin signaling and 
decline peroxisome proliferator-activated receptor gamma 
2 (PPARγ2, one positive effector for adipocyte development) 
expression. Up-regulated Cav1 eventually represses the adi-
pogenic differentiation of human BMSCs (Park et al. 2005). 

Fig. 1   The positive role of Cav1 in stem cells and tumor-initiating 
cells (TICs). Cav1 can regulate related signaling pathways to pro-
mote: a self-renewal, proliferation, and migration in ESCs; b migra-
tion, differentiation, motility, and proliferation in SSCs, and stem 

cell-based wound healing and angiogenesis; c CSC subpopulation, 
CSC formation, self-renewal, and aggressive behaviors in CSCs; d 
invasion and chemo-resistance in TICs
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Cav1 is decreased during neuronal differentiation in human 
adipose-derived MSCs. Cav1 down-regulation can poten-
tiate MSC differentiation into dopaminergic-like neurons 
through increasing dopamine levels and dopaminergic neu-
ronal marker (e.g., tyrosine hydroxylase, Lmx1a, and Nurr1) 
expressions (Han et al. 2021). Additionally, the combination 
of reduced Cav1 with increased ATP6AP2 (a key compo-
nent of the renin-angiotensin system) in lipid raft micro-
domains can facilitate MSC neurogenesis (Makdissy et al. 
2018). Once cleaved after interacting with Notch ligands 
(Delta and Jagged), Notch can release Notch intracellular 
domain (NICD) into the cell nucleus, thereby, to induce 
the transcription of its target genes, for example, the hairy 
enhancer of split (Hes) family (Zanotti and Canalis 2016). 
In rat BMSCs, silencing Cav1 can abrogate the Notch-1, 
NICD, and Hes5 expressions. The impaired Notch signaling 
pathway ultimately stimulates BMSC neuronal differentia-
tion (Wang et al. 2013).

Therapy

Wound healing is a complex process in humans and abnor-
mal wound healing leads to high healthcare costs (Rodrigues 
et al. 2019). Extracellular vesicles (EVs) are cargo-carrying 
vesicles that can affect cell communication (Teng and Fuss-
enegger 2020). The gingiva-derived MSCs (GMSCs) can 
produce and secrete small EVs (sEVs) expressing interleu-
kin-1 receptor antagonist (IL-1RA). Cav1 membrane trans-
location in GMSCs can be increased via tumor necrosis 
factor-alpha (TNF-α) through up-regulating Fas and Fas-
associated phosphatase-1 (Fap-1). Increased membrane 
translocation of Cav1 can promote IL-RA-sEVs release in 
GMSCs, which can ultimately accelerate cutaneous wound 
healing in mouse gingiva (Kou et al. 2018).

Taken together, activated Cav1 promotes MSC motility, 
while increased Cav1 inhibits osteogenic differentiation, car-
diomyocyte differentiation, adipogenic differentiation, and 
neuronal differentiation in MSCs. And enhanced Cav1 mem-
brane translocation in MSCs enhances skin wound healing.

Neural stem cells

NSCs can proliferate, self-renew and give rise to neurons 
and glial cells (e.g., astrocytes and oligodendrocytes) (Kob-
ayashi and Kageyama 2020). In the adult brain, NSCs reside 
in the subventricular zone (SVZ) and subgranular zone 
(SGZ). When the brain gets injured, the endogenous quies-
cent NSCs become active and migrate to the damaged area, 
subsequently, repair the brain (Othman and Tan 2020). In the 
ischemic brain of rats, Cav1 and vascular endothelial growth 
factor (VEGF) protein levels are significantly increased 
by treadmill exercise. Down-regulated Cav1 can reduce 
VEGF expression, thereby, to abolish exercise-induced 

NSC migration and neural differentiation in the ischemic 
brain. Cav1/VEGF pathway can contribute to the exercise-
promoted recovery of brain function after middle cerebral 
artery occlusion through improving neurogenesis (Zhao 
et al. 2017). In short, there is a positive relationship between 
Cav1 and NSC neurogenesis, which are beneficial for func-
tional recovery in the ischemic brain.

Adipose‑derived stem cells

ADSCs, which are abundant in adipose tissues, display 
multi-potency and have the potential to differentiate into 
hepatocytes, osteocytes, adipocytes, and so on (Mega-
loikonomos et al. 2018). Cav1 protein expression and phos-
phorylated MAPK are increased during human ADSC hepat-
ocyte differentiation. Cav1 suppression can abrogate the 
MAPK pathway to decrease the levels of hepatic marker pro-
teins, including albumin and hepatocyte nuclear factor‑1‑α, 
resulting in repressing ADSC hepatic differentiation (Guan 
et al. 2016). The phenylalanine at position 92 (F92) in the 
Cav1 scaffolding region is responsible for eNOS suppres-
sion. The mutation of F92 to alanine can result in mutant 
Cav1 (F92A-Cav1), which reverses the impact on eNOS and 
thereby increases nitric oxide (NO) synthesis (Bernatchez 
et al. 2011). In equine ADSCs, the interaction of F92A-Cav1 
with eNOS can augment NO production, which can promote 
the activation of the Wnt3a/β-catenin signaling pathway. 
Finally, the activated Wnt3a/β-catenin signal can facilitate 
osteogenesis of equine ADSCs (Bandara et al. 2016). In 
summary, in ADSCs, Cav1 positively regulates hepatic dif-
ferentiation and the mutation in Cav1 at position 92 reduces 
Cav1 inhibition on osteogenesis differentiation.

Epidermal stem cells

EpiSCs preserve self-renewal and proliferative properties. 
And they are enriched in hair follicles, sebaceous glands, 
and inter-follicular epidermis. Importantly, EpiSCs can 
migrate to wound sites and promote wound healing (Yang 
et al. 2019a). It is showed that Cav1 can potentiate EpiSC 
proliferation. And the treatment of EpiSCs over-expressing 
Cav1 can accelerate angiogenesis and skin wound healing 
in rats. Additionally, the conditioned medium of EpiSCs 
with over-expressed Cav1 can increase endothelial cell 
tube formation in human umbilical vein endothelial cells 
(HUVECs) (Yang et al. 2019b). Curcumin isolated from 
turmeric belongs to traditional Chinese medicine and it 
can act as treatment methods for skin diseases, obesity, and 
cancer (Kocaadam and Şanlier 2017). Cav1 can be elevated 
via curcumin in mouse EpiSCs. And suppressing Cav1 can 
attenuate EpiSC proliferation, HUVEC tube formation, 
and EpiSC-based wound healing under curcumin (Yang 
et al. 2019c). As mentioned above, Cav1 improves EpiSC 
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proliferation and is necessary for EpiSC-related HUVEC 
tube formation and wound healing.

Mammary stem cells

MaSCs mainly reside in mammary glands and normally 
keep quiescent. Upon certain stimuli, for example, the 
steroid hormones, multipotent MaSCs become active and 
then give rise to both luminal and basal progenitor cells, 
which can promote mammary gland development (Lee et al. 
2019). It is indicated that Cav1 deficiency can enhance the 
expressions of MaSC markers stem cell antigen-1 (Sca-1), 
keratin 5 (K5), and K6 in mammary glands. Cav1 deletion 
can also significantly increase β-catenin expression. Sotgia 
et al. suggested that Cav1 silence can increase MaSC popu-
lations through activating the β-catenin pathway (Sotgia 
et al. 2005). As mentioned above, it can be seen that Cav1 
can be considered to be an inhibitor for MaSC populations.

Intestinal stem cells

ISCs are highly proliferative cell populations mainly 
located at the intestinal crypts. They are beneficial for epi-
thelial renewal and injury-related regeneration in the intes-
tine (Bankaitis et al. 2018). Cav1 attenuation can enhance 
proliferation via promoting the Wnt/β-catenin pathway in 
intestinal crypt stem cells. Moreover, Cav1 abrogation can 
increase apoptosis of crypt stem cells in response to radia-
tion, indicating the increased sensitivity to radiation (Li et al. 
2005). In summary, Cav1 displays negative effects on ISC 
proliferation and radiation sensitivity.

Neural progenitor cells

Neural progenitor cells (NPCs) can be produced by NSCs 
and have the potential to differentiate into neurons, astro-
cytes, and oligodendrocytes (Beattie and Hippenmeyer 
2017). Besides, NPCs can also be generated by ESCs or 
iPSCs (Martínez-Cerdeño and Noctor 2018). In rat NPCs, 
Cav1 can accelerate astroglial differentiation via up-regulat-
ing NICD and Hes1 expressions (Li et al. 2011a). Another 
study proved that Cav1 can attenuate oligodendroglial dif-
ferentiation of rat NPCs through increasing β-catenin expres-
sion (Li et al. 2011b). The Ras and Rho GTPases (i.e., cell 
division cycle 42 (Cdc42), Rac1, etc.) can improve axonal 
growth and guidance. And it is said that appropriate axonal 
growth and guidance are essential for functional neuronal 
network development (Hall and Lalli 2010). In NPCs 
derived from human iPSCs, both Cav1 expression and its 
phosphorylation levels are elevated by constitutively active 
Cdc42 and Rac1. Phosphorylated Cav1 can facilitate axonal 
growth during neuronal differentiation in NPCs (Wang et al. 
2019b). In normoxic conditions, Cav1 is increased. Cav1 can 

abrogate VEGF signals, which can reduce neuronal differ-
entiation in NPCs. However, when exposed to hypoxia, the 
Cav1 expression is decreased, resulting in enhancing NPC 
differentiation into neurons. These results can explain the 
reason why hypoxia can promote neuronal differentiation (Li 
et al. 2011c). Exosomes, a kind of extracellular vesicles with 
a diameter of ~ 40 to 160 nm, can deliver many cell constitu-
ents (DNA, RNA, proteins, etc.) and mediate intercellular 
communication (Kalluri and LeBleu 2020). Cav1 is rich in 
exosomes originated from brain microvascular endothelial 
cells. Exosomal Cav1 can repress NeuroD1 expression and 
VEGF signal, leading to inhibiting neuronal differentiation 
of NPCs in post-ischemic brains (Li et al. 2020). It is can 
be seen that Cav1 promotes astroglial differentiation and 
suppresses oligodendroglial differentiation and neuronal dif-
ferentiation in NPCs.

Endothelial progenitor cells

Endothelial progenitor cells (EPCs) are undifferentiated 
cells with the potential to proliferate and differentiate into 
endothelial cells. EPCs can be discovered in peripheral 
blood, BM, UCB, and adipose tissues (Kaushik and Das 
2019). In response to several stimuli (e.g., hypoxia, injury, 
etc.), EPCs can migrate to the peripheral circulation from 
BM, therefore, to form or repair blood vessels. EPCs are 
critical for vascularization and angiogenesis, and EPC-asso-
ciated therapies are helpful for diabetes and diabetes‑related 
diseases (Ambasta et al. 2017). Cav1 expression is increased 
by aerobic and resistance training in EPCs obtained from 
the mice with type 2 diabetes mellitus. Aerobic and resist-
ance training can improve EPC proliferation, migration, and 
angiogenesis (Dai et al. 2020). Cav1 knockdown can impair 
EPC proliferation and adherent ability upon aerobic and 
resistance training (Zhai et al. 2020). In rat BM EPCs, Cav1 
expression can be up-regulated via estrogen through sup-
pressing the lysosomal degradation pathway. And increased 
Cav1 can contribute to EPC proliferation (Tan et al. 2012). 
Under high glucose stimuli, Cav1 mRNA and protein lev-
els are increased, while the eNOS protein expression is 
declined. Impaired Cav1–eNOS complex can decrease NO 
synthesis, resulting in reduced EPC proliferation, migra-
tion, and angiogenesis (Cao et al. 2012). The urokinase-
type plasminogen activator receptor (uPAR) is linked to the 
caveolae organization. In UCB-derived EPCs, Cav1 deple-
tion can cause the absence of full-length uPAR in the cave-
olae, which can abrogate EPC angiogenesis (Margheri et al. 
2011). Taken together, Cav1 can promote EPC prolifera-
tion, migration, and angiogenesis. However, the impaired 
Cav1–eNOS complex reverses Cav1 effects on EPC biology.

As mentioned above, in addition to showing positive roles 
in SSCs, Cav1 also displays negative effects. The realization 
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of these influences mostly depends on the Cav1-related sign-
aling pathway (Figs. 1 and 2).

Cav1 and cancer stem cells

Breast cancer stem cells

Breast cancer is the most frequently diagnosed malig-
nancy and the second leading cause of cancer-related 
death among female populations (Siegel et  al. 2020). 
According to the protein expression of estrogen receptor 
(ER), progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2), breast cancer can be 
divided into luminal A (ER+, PR+, HER2−), luminal B 
(ER+, PR+, HER2+), basal-like (triple-negative breast 
cancer) (ER−, PR−, HER2−), and HER2-enriched (ER−, 
PR−, HER2+) subtypes (Testa et al. 2020). Breast cancer 
stem cells (BCSCs), a subpopulation of cells within the 
breast tumor bulk, are more frequently observed in luminal 
and triple-negative breast cancer tissues than in HER2-
enriched ones. BCSCs possess self-renewal properties and 
can repopulate the entire tumor through differentiation 
(Urueña et al. 2020). The mutations of breast tumor cells, 
mammary stem cells, mammary progenitor cells, or differ-
entiated breast tissue cells can contribute to BCSC forma-
tion. Importantly, CD24, CD44, CD133, aldehyde dehy-
drogenase (ALDH), ATP-binding cassette subfamily G 
member 2 (ABCG2), and epithelial cell adhesion molecule 

(EpCAM) are commonly considered to be surface mark-
ers to identify BCSCs (Bai et al. 2018). Cav1 levels are 
lower in BCSCs than those in normal breast stem cells. 
Cav1 up-regulation can reduce BCSC subpopulation. Cav1 
can accelerate c-Myc ubiquitination and degradation via 
the proteasome pathway. When Cav1 is lost, c-Myc is up-
regulated. c-Myc destroys mitochondrial respiration and 
elevates aerobic glycolysis activity, leading to promoted 
BCSC self-renewal and mammary tumor formation. As a 
result, Cav1 can attenuate c-Myc-induced BCSC metabolic 
reprogramming and self-renewal. And low Cav1 levels 
can predict poor overall survival in breast cancer patients 
(Wang et al. 2020b). In BCSCs sorted from MDA-MB-231 
and MCF-7 cells, Cav1 can improve self-renewal but limit 
their differentiation into basal-like and luminal-like breast 
cancer cells. Additionally, Cav1 depletion can suppress 
the β-catenin/ABCG2 signaling pathway via activating 
glycogen synthase kinase 3 beta (GSK3β) and repressing 
AKT phosphorylation. Removing Cav1 can inhibit drug 
efflux ability via β-catenin/ABCG2 signal, which can con-
tribute to enhanced chemo-sensitivity in BCSCs (Wang 
et al. 2014a). Hsu et al. revealed that Cav1 knockdown can 
reduce γ-secretase activity. The interaction of Cav1 with 
γ-secretase can be potentiated by the interleukin-6/ILK 
signal, resulting in Notch-1 cleavage to release NICD into 
the cell nucleus. NICD can increase CSC-related marker 
(Hes1, c-Myc, Nestin, and ABCG2) expressions. Eventu-
ally, BCSC subpopulations are increased (Hsu et al. 2015). 
As mentioned above, Cav1 plays dual roles in BCSC 

Fig. 2   The negative roles of Cav1 in SSCs and CSCs. Cav1 modulates relevant pathways to repress a self-renewal, differentiation, and prolifera-
tion in SSCs; b self-renewal, chemo-sensitivity, CSC formation in CSCs
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self-renewal and BCSC subpopulations. Cav1 acts as a 
suppressor for BCSC differentiation and chemo-sensitivity.

Lung cancer stem cells

Lung cancer is the most common malignancy around the 
world and is histologically classified as small cell lung 
cancer (SCLC) and non-small cell lung cancer (NSCLC). 
NSCLC includes adenocarcinoma, squamous cell carci-
noma, and large cell carcinoma (Olbromski et al. 2020). 
Increasing evidence reported that lung CSCs can arise 
from differentiated lung tissue cells, normal lung stem 
cells, or lung progenitor cells. And lung CSCs can form 
tumorspheres and possess multipotent differentiation and 
tumorigenic potential (Rivera et al. 2011). Recently, several 
biomarkers can be used to label lung CSCs for further exper-
iments, such as CD44, CD24, CD133, ABCG2, and ALDH 
(Wang et al. 2014b). Cav1 is strongly up-regulated under 
ciprofloxacin stimuli in lung CSC populations. Activated 
Cav1 can phosphorylate ERK and AKT to increase CSC 
marker (CD44, CD133, ABCG2, and ALDH) expressions. 
Activated Cav1 finally promotes the induction of lung CSCs 
(Phiboonchaiyanan et al. 2016). Carbon nanotubes are nano-
materials that are known to be attributed to inflammation, 
fibrosis, and cancer under certain conditions (Dong and Ma 
2019). Cav1 expression is increased in lung CSCs induced 
by the exposure of chronic single-walled carbon nanotubes. 
Cav1 can promote lung CSC induction via reducing p53 
(Luanpitpong et al. 2014). One study reported that Cav1 
can be up-regulated by NO. Increased Cav1 can stimulate 
aggressive behaviors of lung CSCs, including migration, 
colony-forming activity, and resistance to anoikis (Yong-
sanguanchai et al. 2015). When NO is absent, Cav1 down-
regulates Oct4 expression through ubiquitin-proteasomal 
degradation, resulting in diminishing CSC formation. In the 
existence of NO, the phosphorylation of Cav1 on the tyros-
ine14 is induced by the NO/AKT signal, which can facilitate 
Oct4 dissociation from the Cav1-Oct4 degradation complex. 
Oct4 accumulation in the cell nucleus increases stemness-
related gene expressions. Ultimately, lung CSC formation is 
enhanced (Maiuthed et al. 2018). Taken together, in response 
to certain conditions, Cav1 enhances or reduces lung CSC 
formation. And the Cav1 phosphorylation on tyrosine 14 can 
inhibit the negative effects of Cav1 on lung CSC formation.

Liver cancer stem cells

Liver cancer, a malignant tumor with high incidence and 
mortality, can be divided into primary liver cancer (i.e., 
hepatocellular carcinoma (HCC, major type), liver angio-
sarcoma, and hepatoblastoma) and secondary liver cancer 
(Liu et al. 2020a). Liver CSCs are a subpopulation of cancer 
cells within liver cancer. On the one hand, liver CSCs can 

promote tumor growth in primary liver cancers. On the other 
hand, liver CSCs can also enhance distant metastasis, which 
can cause liver cancer recurrence (Fan et al. 2011). Micro-
RNAs (miRNAs), a class of small non-coding RNAs with 
18 – 25 nucleotides in length, can bind to mRNA 3’ untrans-
lated regions (3’UTRs) of their targets and reduce target 
gene expressions (de Sousa et al. 2019). Cav1 is increased 
in liver CSCs derived from primary HCC patients. MiR-124 
is down-regulated in liver CSCs and can suppress liver CSC 
expansion. As a target miR-124, Cav1 can be inhibited by 
miR-124. In the presence of up-regulated miR-124, over-
expressed Cav1 can suppress miR-124 effects on liver CSCs 
and promote liver CSC self-renewal and tumorigenic ability 
(Feng et al. 2020). As mentioned above, it can be seen that 
Cav1 can be repressed by miRNAs. And Cav1 serves as a 
promoter of liver CSC properties.

Prostate cancer stem cells

Prostate cancer (PCa), the second-most common cancer and 
the sixth in cancer mortality among men globally (Bray et al. 
2018), develops from the prostate gland due to many risk 
factors (e.g., age, high-fat diet, family history, and obesity) 
(Kaler et al. 2020). Prostate CSCs can come from normal 
prostate stem cells, differentiated prostate tissue cells, or 
PCa cells. Further, prostate CSCs are responsible for pros-
tate tumor initiation, metastasis, colonization, and therapeu-
tic resistance (Qin et al. 2017). Cav1 mRNA and protein 
expression levels are elevated in prostate CSCs. Exogenous 
Cav1 protein can stimulate prostate sphere formation. Addi-
tionally, Cav1 can be delivered into PCa cells by tumor-
derived exosomes. Exosomal Cav1 can promote prostate 
CSC formation via activating the nuclear factor kappa B 
(NF-κB) signaling pathway (Lin et al. 2019). Altogether, 
exosomal Cav1 can regulate the cell–cell communication 
between PCa cells and prostate CSCs. Cav1 plays a positive 
role in prostate CSC formation.

As mentioned above, Cav1 serves as a promoter or inhibi-
tor in CSC self-renewal and CSC formation (Figs. 1 and 2). 
Cav1 can improve CSC aggressive behaviors (Fig. 1) and 
suppress chemo-sensitivity (Fig. 2).

Cav1 and tumor‑initiating cells

TICs can exist in various solid cancers, like breast, colon, 
liver, lung, pancreas, prostate, etc. Similar to ESCs and 
HSCs, TICs possess the capacity to survive under the stimuli 
of genotoxic stress and injury. TICs can also self-renew and 
produce differentiated tumor cells (Mathews et al. 2011). 
It is said that the cell of origin is the normal cell with the 
first cancer-promoting mutations. And the cell of origin is 
distinct from the CSC. While the TIC can be referred to as 
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the cell of origin (Visvader 2011). The tumor transplanta-
tion assay and lineage-tracing assay are commonly used to 
identify CSCs and determine the cell of origin, respectively 
(Rycaj and Tang 2015). It is proved that CSCs can derive 
from TICs. TICs and CSCs have distinct markers. TICs are 
related to tumor initiation. CSCs are responsible for tumor 
maintenance and tumor growth (Chatterji et al. 2018). Pan-
creatic cancer is one of the most aggressive malignancies 
with a poor prognosis and a low five-year survival rate 
despite decades of unremitting efforts. Among pancreatic 
cancer cases, pancreatic ductal adenocarcinoma accounts for 
more than 90% (Paternoster and Falasca 2020). Character-
ized by the capacity to self-renew, differentiate and form 
colonies, pancreatic TICs can be separated from pancreatic 
cancer tissues and cell lines based on the expression of sur-
face markers CD44, CD24, CD133, and EpCAM (Cabarcas 
et al. 2013; Shimizu et al. 2013). Cav1 is higher in CD133-
positive pancreatic TICs compared with human pancreatic 
cancer cell lines. Cav1 depletion abolishes the activation 
of FAK and NF-κB to suppress the invasion of pancreatic 
TICs. Besides, diminishing Cav1 reduces drug transporter 
(ABCG2 and ATP-binding cassette subfamily C member 4 
(ABCC4)) activity and therefore destroys chemo-resistance 
in pancreatic TICs. Additionally, high Cav1 levels can also 
indicate poor survival in pancreatic cancer patients (Gupta 
et al. 2018). Taken together, Cav1 plays a positive role in 
pancreatic TIC invasion and drug resistance (Fig. 1).

Discussion and conclusion

Both normal stem cells and CSCs possess two basic 
stemness signatures (self-renewal and differentiation) and 
use common stemness-associated signaling pathways. Nor-
mal stem cells are essential for tissue repair and regenera-
tion. CSCs are related to tumor initiation, metastasis, and 
therapy resistance. Cav1, a scaffolding protein in the cave-
olae, can regulate cell lipid transport, cell migration, cell 
proliferation, cell signal transduction, etc. Recently, the 
rational design of therapies based on the Cav1-stem cell axis 
for human diseases has attracted widespread attention. In 
this review, we have collected evidence to reveal the involve-
ment of Cav1 in stem cells (Fig. 3). We hope that this review 
will provide new sights for more clinical therapies, thereby 
allowing us to treat human diseases more effectively.

In the current review, we discussed how Cav1 can exert 
positive or negative roles in stem cells (Tables 1 and 2). 
In normal stem cells, Cav1 can play dual roles in HSC 
self-renewal and senescence (Bai et al. 2014, 2020), MSC 
neuronal differentiation (Wang et al. 2013; Du et al. 2011), 
and EPC proliferation (Tan et al. 2012; Cao et al. 2012). 
Cav1 displays a positive role in ESCs (migration (Park 
and Han 2009; Park et al. 2012), proliferation (Park et al. 

2009, 2011; Lee et al. 2009, 2011) and self-renewal (Lee 
et al. 2010; Sasaki et al. 2011)), NSC neural differentiation 
(Zhao et al. 2017), ADSC hepatic differentiation (Guan et al. 
2016), EpiSC proliferation (Yang et al. 2019b, c), and NPC 
astroglial differentiation (Li et al. 2011a). Cav1 exhibits a 
negative role in MSC osteogenic differentiation (Baker et al. 
2012, 2015), MSC cardiomyocyte differentiation (Chen et al. 
2017), MSC adipogenic differentiation (Park et al. 2005), 
NSC proliferation (Peffer et al. 2014; Jasmin et al. 2009), 
MaSC populations (Sotgia et al. 2005), ISC proliferation 
(Li et al. 2005), NPC oligodendroglial (Li et al. 2011b) and 
neuronal differentiation (Li et al. 2011c, 2020). In response 
to high glucose, Cav1 promotes ESC proliferation (Lee et al. 
2011), however, inhibits EPC proliferation, migration, and 
angiogenesis (Cao et al. 2012). F92A-Cav1 can increase 
NO production to improve MSC endothelial differentiation 
(Bandara et al. 2019) and ADSC osteogenesis (Bandara 
et al. 2016). In CSCs, Cav1 exerts dual roles in BCSC self-
renewal (Wang et al. 2014a, 2020b), lung CSC formation 
(Phiboonchaiyanan et al. 2016; Maiuthed et al. 2018). Cav1 
plays a positive role in self-renewal, CSC formation, and cell 
invasion in liver CSCs (Feng et al. 2020), prostate CSCs (Lin 
et al. 2019), and pancreatic TICs (Gupta et al. 2018), respec-
tively. Furthermore, normal stem cells and CSCs can share 
stemness effectors, for example, the Oct4 (Lee et al. 2010; 
Maiuthed et al. 2018), and use the same stem cell-related 
signals, like Notch (Wang et al. 2013; Li et al. 2011a; Hsu 
et al. 2015), AKT (Lee et al. 2009; Park and Han 2009; Park 
et al. 2011; Baker et al. 2015; Phiboonchaiyanan et al. 2016) 
and NO (Cao et al. 2012; Yongsanguanchai et al. 2015; Mai-
uthed et al. 2018) signals. Interestingly, in our study, we 
found that the mutation of phenylalanine to alanine at posi-
tion 92 in Cav1 suppresses Cav1 repression on ADSC osteo-
genesis differentiation (Bandara et al. 2016). In lung CSCs, 
the Cav1 phosphorylation on tyrosine 14 inhibits Cav1 sup-
pression on CSC formation (Maiuthed et al. 2018). Taken 
together, it can be seen that the effects of Cav1 on stem 

Fig. 3   The involvement of Cav1 in stem cells. Cav1 involves self-
renewal, proliferation, and migration in ESCs. And Cav1 implicates 
self-renewal, proliferation, differentiation, and migration in SSCs. 
Moreover, Cav1 also influences self-renewal, differentiation, CSC 
formation, and chemo-resistance in CSCs
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cells mostly depend on cell types, related signal transduction 
(Figs. 1 and 2; Tables 1 and 2), Cav1 phosphorylation, and 
Cav1 mutation (Williams and Lisanti 2005).

Interestingly, there is evidence that Cav1 has dual roles 
in the development of some cancers. At early tumor stages, 
Cav1 acts as a tumor suppressor. While in the late stages 
of cancer, Cav1 serves as a tumor promoter (Simón et al. 
2020). In breast cancer cells, Cav1 can activate Rab5 by 
recruiting p85α, subsequently, to increase Rac1 activity. The 
Cav1/Rab5/Rac1 signal finally potentiates cell migration 

and cell invasion (Díaz et al. 2014). In BT-474 cells, Cav1 
promotes cell proliferation via activating the ERK1/2 path-
way and increasing the expression of cell cycle-associated 
proteins (Wang et al. 2014c). In MCF-7 cells, the interac-
tion of Cav1 with CD95 can be enhanced by Antarctic krill 
docosahexaenoic acid, which can repress cell migration 
and cell invasion (Zheng et al. 2018). Moreover, increased 
Cav1 represses Ca2+-activated potassium channel, result-
ing in suppressing cell proliferation and invasion in breast 
cancer (Du et al. 2014). In lung cancer, Cav1 up-regulates 

Table 1   The roles of Cav1 in normal stem cells

ESCs embryonic stem cells, Cav1 Caveolin1, LIF leukemia inhibitory factor, STAT3 signal transducer and activator of transcription 3, E2 
estradiol-17β, PI3K phosphatidylinositol-3-kinase, AKT protein kinase B, ERK extracellular signal-regulated kinase, mTOR mammalian target 
of rapamycin, MAPK mitogen-activated protein kinase, FAK focal adhesion kinase, PIP complex PINCH1/2, integrin-linked kinase (ILK), and 
α-parvin, F-actin filamentous-actin, EGF epidermal growth factor, MMP-2 matrix metalloproteinase-2, ROCK Rho-associated protein kinase, 
HSCs hematopoietic stem cells, PTRF polymerase I and transcript release factor, MSCs mesenchymal stem cells, PPARγ2 peroxisome prolifera-
tor-activated receptor gamma 2, TNF-α tumor necrosis factor-alpha, Fap-1 Fas-associated phosphatase-1, IL-1RA interleukin-1 receptor antago-
nist, VEGF vascular endothelial growth factor, NO nitric oxide, NSCs neural stem cells, ADSCs adipose-derived stem cells, MAPK mitogen-
activated protein kinase, eNOS endothelial nitric oxide synthase, EpiSCs epidermal stem cells, MaSCs mammary stem cells, ISCs intestinal stem 
cells, NPCs neural progenitor cells, NICD Notch intracellular domain, Hes1 hairy enhancer of split 1, EPCs endothelial progenitor cells, uPAR 
urokinase-type plasminogen activator receptor

Stem cells Effects Signaling cascades Role References

ESCs Self-renewal Cav1 → LIF/STAT3 signal transduction↑ Promoter Sasaki et al. (2011)
Proliferation E2 → PI3K/AKT pathway↑, ERK1/2 pathway↑ → Cav1↑ Promoter Park et al. (2009)
Proliferation Galectin-1 → Src↑ → Cav1↑ → AKT↑, mTOR↑ Promoter Lee et al. (2009)
Proliferation High glucose → p38 MAPK↑ → Cav1↑ → β1 integrin/FAK/PIP 

complex signal↑ → F-actin reorganization↑
Promoter Lee et al. (2011)

Proliferation, migration EGF → Src↑ → Cav1↑ → PI3K/AKT/ERK1/2/MMP-2 pathway↑ Promoter Park and Han (2009)
Proliferation Fibronectin → Src/FAK signal↑ → Cav1↑ → ROCK↑, 

RhoA↑ → PI3K/AKT signal↑, ERK1/2 signal↑
Promoter Park et al. (2011)

Migration Fibronectin → Cav1↑ → RhoA/ROCK/ERK1/2 signal↑ → MMP-
2↑, F-actin↑

Promoter Park et al. (2012)

HSCs Self-renewal PTRF↑ → Cav1↑ Suppressor Bai et al. (2020)
MSCs Motility Galectin-1 → c-Src↑ → Cav1↑ → Smad2/3↓ → collagen III and V↓ Promoter Yun et al. (2014)

Differentiation Cav1↑ → PI3K/AKT signal↓ Suppressor Baker et al. (2015)
Differentiation Cav1↓ → STAT3 pathway↓ Suppressor Chen et al. (2017)
Differentiation Cav1↑ → insulin signaling↓, PPARγ2↓ Suppressor Park et al. (2005)
Differentiation Cav1↓ → Notch pathway↓ Suppressor Wang et al. (2013)
Wound healing TNF-α → Fas↑, Fap-1↑ → Cav1 membrane translocation↑ → IL-

1RA secretion↑
Promoter Kou et al. (2018)

NSCs Migration, differentiation Cav1↓ → VEGF↓ Promoter Zhao et al. (2017)
ADSCs Differentiation Cav1↓ → MAPK pathway↓ → hepatic marker↓ Promoter Guan et al. (2016)

Differentiation F92A-Cav1, eNOS → NO↑ → Wnt3a/β-catenin pathway↑ Promoter Bandara et al. (2016)
EpiSCs Proliferation, wound healing Curcumin → Cav1↑ Promoter Yang et al. (2019c)
MaSCs Cell populations Cav1↓ → β-catenin↑ Suppressor Sotgia et al. (2005)
ISCs Proliferation Cav1↓ → Wnt/β-catenin pathway↑ Suppressor Li et al. (2005)
NPCs Differentiation Cav1 → NICD↑ → Hes1↑ Promoter Li et al. (2011a)

Differentiation Cav1 → β-catenin↑ Suppressor Li et al. (2011b)
Differentiation Cav1↑ → VEGF signal↓ Suppressor Li et al. (2011c)
Differentiation Cav1 → NeuroD1↓, VEGF signal↓ Suppressor Li et al. (2020)

EPCs Proliferation Estrogen → lysosomal degradation pathway↓ → Cav1↑ Promoter Tan et al. (2012)
Proliferation, migration high glucose → Cav1↑, eNOS↓ → NO↓ Suppressor Cao et al. (2012)
Angiogenesis Cav1↓ → uPAR absence↑ Promoter Margheri et al. (2011)
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Snail protein and mRNA expressions, which can accelerate 
NSCLC brain metastasis (Kim et al. 2019). Volonte et al. 
indicated that Cav1 can enhance oncogenic K-Ras-induced 
lung cancer cell senescence. And low Cav1 can predict poor 
survival of lung cancer patients (Volonte et al. 2018). It is 
suggested that the communication between cells and their 
microenvironment is essential for normal tissue homeo-
stasis and tumor growth (Quail and Joyce 2013). In recent 
years, the roles of the tumor microenvironment in cancer 
development have received a lot of attention. The tumor 
microenvironment encompasses immune cells, blood ves-
sels, extracellular matrix, fibroblasts, lymphocytes, inflam-
matory cells, and signaling molecules (Spill et al. 2016; 
Prete et al. 2017). Cancer-associated fibroblasts (CAFs) are 
the most abundant stromal cells in the tumor microenviron-
ment. CAFs repress cancer cell apoptosis and promote tumor 
cell proliferation, tumor metastasis, and tumor angiogenesis 
(Jang and Beningo 2019; Chen and Che 2014). It is dem-
onstrated that Cav1 down-regulation stimulates the trans-
formation of fibroblasts into CAFs (Martinez-Outschoorn 
et al. 2010). SHI et al. demonstrated that Cav1 depletion in 
CAFs increases the expression and secretion of stromal cell-
derived factor-1, EGF, and fibroblast-specific protein-1, and 
all of them enhance breast cancer cell proliferation (Shi et al. 
2016). And down-regulation and up-regulation of Cav1 in 
CAFs can predict poor (Ren et al. 2014) and good (Shan-Wei 
et al. 2012) outcomes in breast cancer patients, respectively. 
In summary, it is suggested that decreased stromal Cav1 
is always beneficial for tumor progression (Chen and Che 
2014; Martinez-Outschoorn et al. 2010; Shi et al. 2016; Ren 
et al. 2014; Shan-Wei et al. 2012).

In the current review, we found that treadmill exercise 
increases Cav1 and VEGF levels in NSCs, which can 

improve neurological recovery of the brain after ischemic 
injury (Zhao et al. 2017). Curcumin, the traditional Chi-
nese medicine used to treat skin diseases, can elevate Cav1 
expression in EpiSCs. Inhibiting Cav1 in the curcumin-
treated EpiSCs can significantly repress wound healing 
(Yang et  al. 2019c). In various cancer types, Cav1 is 
related to chemo-drug resistance. Taking lung cancer as 
an example, it is reported that Cav1 attenuation reduces 
NSCLC sensitivity to albumin-bound paclitaxel (Chat-
terjee et al. 2017). Liu et al. suggested that Cav1 silence 
increases lung cancer sensitivity to cisplatin (Liu et al. 
2020b). Furthermore, suppressing Cav1 can sensitize 
BCSCs and pancreatic TICs to epirubicin (Wang et al. 
2014a) and paclitaxel (Gupta et al. 2018), respectively. 
These results indicate potential treatment strategies asso-
ciated with the combination of Cav1 and stem cells for 
ischemic injury, wound healing, and cancer drug resist-
ance. Increasing evidence suggests that nano-drugs are 
widely used for anti-tumor drug delivery, gene therapy, 
and imaging diagnosis. Cav1-mediated endocytosis path-
way can increase the entrance of nano-drugs into tumor 
cells and promote antitumor response. The strategies for 
Cav1 targeting nano-drugs will be a new way to achieve 
antitumor efficacy (Yang et  al. 2021). Presently, great 
efforts have been made in stem cell-based therapies for 
human tissue repair and cancer treatment resistance. As 
mentioned above, Cav1 is widely involved in stem cell 
biology. Targeting Cav1 will strongly influence stem cell 
properties, which might provide new insights to more 
effectively treat human tissue repair and cancer drug 
resistance. However, these studies previously mentioned 
are performed mainly on stem cells, and studies on tissues 
are still lacking. Therefore, further explorations in these 

Table 2   The roles of Cav1 in CSCs

CSCs cancer stem cells, Cav1 Caveolin1, GSK3β glycogen synthase kinase 3 beta, AKT protein kinase B, ABCG2 ATP-binding cassette subfam-
ily G member 2, ILK integrin-linked kinase, NICD Notch intracellular domain, ERK extracellular signal-regulated kinase, Oct4 octamer-binding 
transcription factor 4, NO nitric oxide, miR microRNA, NF-κB nuclear factor kappa B

CSCs Effects Signaling cascades Role References

Breast Self-renewal Cav1↓ → c-Myc↑ → mitochondrial respiration↓, aerobic glycoly-
sis↑

Suppressor Wang et al. (2020b)

Chemo-sensitivity Cav1↓ → GSK3β↑, AKT↓ → β-catenin/ABCG2 signal↓ → drug 
efflux ability↓

Suppressor Wang et al. (2014a)

CSC subpopulation Interleukin-6/ILK signal → Cav1-γ-secretase interac-
tion↑ → NICD↑ → CSC marker↑

Promoter Hsu et al. (2015)

Lung CSC induction Ciprofloxacin → Cav1↑ → ERK↑, AKT↑ → CSC marker↑ Promoter Phiboonchaiyanan et al. (2016)
CSC induction Cav1 → p53↓ Promoter Luanpitpong et al. (2014)
Aggressive behaviors NO → Cav1↑ Promoter Yongsanguanchai et al. (2015)
CSC formation NO → AKT↑ → Cav1 phosphorylation↑ → Oct4↑ Suppressor Maiuthed et al. (2018)

Liver Self-renewal MiR-124 → Cav1↓ Promoter Feng et al. (2020)
Prostate CSC formation Cav1 → NF-κB pathway↑ Promoter Lin et al. (2019)
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microenvironments are required to elucidate the roles of 
Cav1 in stem cells more completely.
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