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Abstract
Gastric cancer is still a major cancer worldwide. The early diagnosis rate of gastric cancer in most high incidence countries 
is low. At present, the overall treatment effect of gastric cancer is poor, and the median overall survival remains low. Most of 
the patients with gastric cancer are in an advanced stage when diagnosed, and drug treatment has become the main means. 
Thus, new targeted drugs and therapeutic strategies are the hope of improving the therapeutic effect of gastric cancer. In 
this review, we summarize the new methods and advances of targeted therapy for gastric cancer, including novel molecular 
targeted therapeutic agents and drug delivery systems, with a major focus on the development of drug delivery systems 
(drug carriers and targeting peptides). Elaborating these new methods and advances will contribute to the management of 
gastric cancer.
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Introduction

The incidence and mortality of cancer are increasing rapidly 
worldwide. It is estimated that there were 18.1 million new 
cases and 9.6 million cancer deaths worldwide in 2018. Gas-
tric cancer is a major cancer worldwide. There were over 1 
million new cases and an estimated 783 thousands deaths of 
gastric cancer in 2018, which making gastric cancer the fifth 
most commonly diagnosed cancer and the third leading for 
mortality (Bray et al. 2018).

The incidence rate of gastric cancer remains high espe-
cially in Eastern Asia and Eastern Europe. The early diag-
nosis rate of gastric cancer in most high incidence countries 

is low. Most patients have been diagnosed as advanced, and 
drug treatment has become the main means. But traditional 
chemotherapy has limited efficacy and short duration. At 
present, the overall treatment effect of gastric cancer is poor, 
and the median overall survival remains low. Therefore, fur-
ther research and development of new targeted drugs and 
strategies is the key to improve the therapeutic effect of gas-
tric cancer. In the past few decades, researches on new drugs 
targeting at dysfunctional signaling pathways in gastric can-
cer have become a hot topic. At the same time, the develop-
ment of a smart drug delivery system is also very important 
for improving the therapeutic effect of gastric cancer.

In this review, we summarize the new methods and 
advances of targeted therapy for gastric cancer, including 
novel therapeutic agents and drug delivery systems, with a 
major focus on the development of drug delivery systems 
(drug carriers and targeting peptides).

Therapeutic agents for gastric cancer

Different gene mutations, epigenetic changes and dysfunc-
tion of molecular signaling pathways in gastric cancer have 
been reported. Currently, some of these aberrant molecules 
and signaling pathways are used as novel therapeutic tar-
gets of gastric cancer. Herein, we reviewed the novel agents 
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which are used for targeted therapeutics in advanced gas-
tric cancer, some of which are already in clinical applica-
tion, while others have obtained promising positive results 
in clinical trials. Furthermore, we also summarized some 
novel therapeutic targets for gastric cancer that are still in 
the exploration, such as miRNA-based and gene therapy 
(Fig. 1).

Targeted drugs for clinical application

With the efforts of researchers, some targeted medicines 
are applied to clinical treatment. Based on the data from 
targeted therapeutic clinical trials in gastric cancer, trastu-
zumab, by virtue of its excellent improved overall survival 
(OS) and progression-free survival (PFS), become the first-
line therapy for human epidermal growth factor receptor 2 
(HER2) positive patients. In addition, some agents with dif-
ferent target spot, such as ramucirumab and apatinib, with 
the lower OS and PFS are apply to second- or third-line 
therapy. Pembrolizumab, the programmed death-1 (PD-1) 
inhibitor, is also applied as second-line treatment in micro-
satellite instability (MSI)-high cancers and third-line ther-
apy in programmed death ligand 1 (PD-L1)-positive cancer. 
Otherwise, the TAS-102 was also put into application for 
pretreated gastric cancer patients. And napabucasin is used 
for clinical treatment as an orphan drug (Selim et al. 2019b).

Trastuzumab is a humanized monoclonal antibody 
which arrests the cell cycle at G1 and targets the extracel-
lular binding domain of the HER2 receptor. The TOGA 
trail, a phase ΙΙΙ study, had shown that the median overall 
survival increased from 11.1 months (in chemotherapy 
alone group, n = 290) to 13.8 months (in the trastuzumab 
plus chemotherapy group, n = 294). What’s more, a post-
hoc analysis showed in subgroup with high HER2 pro-
tein expression, median overall survival was improved to 
16.0 months by trastuzumab plus chemotherapy, while 

it was 11.8 months by chemotherapy alone. Unsurpris-
ingly, based on the significantly improved dates of median 
overall survival, overall tumor response rate, time to pro-
gression and duration of response, trastuzumab has been 
approved by the FDA in 2010 for patients with gastric 
or gastroesophageal junction adenocarcinoma (GEJC) 
(Bang et al. 2010). Recently, a subpopulation analysis of 
the JACOB trial, a phase ΙΙΙ study, was conducted to inves-
tigate outcomes in Chinese patients with HER2-positive 
GC/GEJC after pertuzumab in combination with trastu-
zumab and chemotherapy treatment. The results showed 
that adding pertuzumab to trastuzumab and chemotherapy 
as first-line treatment made both OS and PFS improved 
(Liu et al. 2019a).

Ramucirumab is a fully human monoclonal antibody, 
binding to the vascular endothelial growth factor receptor 
2 (VEGFR-2), blocking the connection with VEGF. The 
REGARD was a phase ΙΙΙ trial, results showed an increased 
OS in patients with ramucirumab than placebo (5.2 m versus 
3.8 m). And the ramucirumab group was also benefited more 
in PFS (2.1 m versus 1.3 m) (Fuchs et al. 2014). While, the 
RAINBOW, a phase ΙΙΙ trial, showed a significantly pro-
longed OS (9.6 m versus 7.4 m), PFS (4.4 m versus 2.9 m) 
and response rate (28% versus 16%) in the ramucirumab plus 
paclitaxel group compared within the placebo plus pacli-
taxel group (Wilke et al. 2014). FDA approved that addition 
ramucirumab to paclitaxel as second-line therapy for gastric 
cancer patients. Apatinib is a small tyrosine kinase inhibi-
tor (TKI) developed in China that targets VEGFR-2. The 
phase ΙΙΙ study, which recruited patients from 32 centers 
in China with advanced gastric cancer, showed an excel-
lent improvement in OS (6.5 months versus 4.7 months) and 
PFS (2.6 months versus 1.8 months) (Li et al. 2016). Based 
on these positive results, in October 2014, apatinib was 
approved for metastatic GC/GEJC after second-line chemo-
therapy progression by the China FDA. In June 2017, the 

Fig. 1  Promising targeted drugs, 
molecules and novel research 
for gastric cancer therapy
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apatinib got the approval from the US FDA as an orphan-
drug for advanced gastric cancer therapy.

Pembrolizumab is a monoclonal antibody that impedes 
the binding of PD-1 to PD-L1. The phase ΙΙ clinical KEY-
NOTE-059 trial showed the encouraging efficacy and sta-
ble safety of the pembrolizumab in advanced GC/GEJC 
(Fuchs et al. 2018). Based on this study, pembrolizumab 
was approved by US FDA for the therapy of PD-L1-positive, 
second or more lines pretreated gastric cancer patients.

Moreover, TAS-102 is an oral treatment composing of 
thymidine analog trifluridine and tipiracil hydrochloride, a 
thymidine phosphorylase inhibitor (Temmink et al. 2007). 
A phase ΙΙΙ trial TAGS showed a dramatically prolonged 
OS in the TAS-102 plus best supportive care group than 
in the placebo plus best supportive care group (5.7 m ver-
sus 3.6 m) in advanced gastric cancer patients who have 
accepted two chemotherapy or more (Shitara et al. 2018). 
TAS-102 was approved by the US FDA as a third-line treat-
ment for advanced gastric cancer patients. In particular, 
Napabucasin (BBI608) is a molecule, with the capacity of 
inhibiting STAT3 and cancer stem cells (CSC) (Li et al. 
2015d). In a phase ΙΙ study, addition napabucasin to weekly 
paclitaxel showed incentive signs of anti-tumor activity in 
patients with advanced gastric cancer (Becerra et al. 2015). 
Based on this study, napabucasin was approved as an orphan 
drug destination by the US FDA for patients with advanced 
gastric cancer.

Taken together, trastuzumab is currently the best-targeted 
drug for gastric cancer. But the positive rate of HER2 in gas-
tric cancer patients is only 10% to 20%, which greatly affects 
the application of trastuzumab. Therefore, the exploration 
and discovery of new and more effective gastric cancer-
targeting drugs is still the current research hotspot.

Molecules currently under clinical trial

Plenty targeted pathways have been explored for gastric can-
cer therapy, such as HER2, VEGFR, fibroblast growth factor 
receptor (FGFR), programmed death-1 (PD-1) and (PD-L1), 
epidermal growth factor receptor (EGFR) and mammalian 
target of rapamycin (mTOR). And some of which show good 
prospects on gastric cancer treatment (Lazar et al. 2016; 
Selim et al. 2019a).

Lapatinib (an oral TKI) and nimotuzumab (a human-
ized IgG1 monoclonal antibody) both target EGFR. A 
phase ΙΙΙ trial TRIO-013/LOGIC displayed no difference 
in OS between lapatinib plus capecitabine and oxaliplatin 
(CapeOx) group and placebo plus CapeOx group, whereas 
the increased OS was showed in the subgroup with lapatinib 
plus CapeOx (Hecht et al. 2016). A phase ΙΙ trial, with two 
groups including nimotuzumab plus Irinotecan group and 
Irinotecan alone, investigated the effect of nimotuzumab in 
advanced gastric cancer patients, showed no difference in OS 

and PFS between this two groups, whereas, the prolonged 
OS and PFS was displayed on the EGFR 2 + /3 + subgroup 
(Satoh et al. 2015).

There are some promising agents in clinical trials that tar-
geted VEGF or VEGFR, such as bevacizumab, regorafenib 
and sunitinib. A phase ΙΙΙ double-blind study (AVAGAST), 
showed a dramatically improved median PFS in bevaci-
zumab plus fluoropyrimidine-cisplatin group compared to 
in placebo plus fluoropyrimidine-cisplatin group (6.7 m 
versus 5.3 m) (Ohtsu et al. 2011). A phase ΙΙ placebo-con-
trolled trial, designed to evaluate the efficacy and safety 
of regorafenib (an oral inhibitor of VEGFR) in advanced 
gastric cancer patients, demonstrated that the regorafenib 
group had a significant prolonged median PFS (2.6 m versus 
0.9 m) (Pavlakis et al. 2016). A phase ΙΙ trial was conducted 
to investigate the effect and security of sunitinib (an oral 
tyrosine kinase inhibitor of VEGFR) in combination with 
docetaxel in metastatic gastric cancer, showed a dramatic 
improved objective response in the sunitinib plus docetaxel 
group than in the docetaxel alone group (Yi et al. 2012).

Nivolumab is a monoclonal antibody that prevents the 
PD-1 receptor (Brahmer et al. 2010). The phase ΙΙΙ study 
ATT RAC TION-2 (ono-4538-12), conducted to evalu-
ate the effect and security of nivolumab in GC/GEJC 
therapy, showed a significantly improved median OS in 
the nivolumab group compared within the placebo group 
(5.26 m versus 4.14 m) (Kang et al. 2017).

Everolimus is an oral mTOR inhibitor. The randomized, 
double-blind, placebo-controlled, phase ΙΙΙ GRANITE-1 
study demonstrated that there was no significant difference 
in OS (primary end point), however, the median OS was 
improved in the everolimus group (5.4 m versus 4.3 m) 
(Ohtsu et al. 2013).

Novel research on miRNA therapy for gastric cancer

In recent years, microRNAs get the researchers’ attention 
by their excellent targeting function. MicroRNAs are a 
large family of small, endogenous, non-coding RNAs with 
a length of approximately 19–21 nucleotides (Lu and Roth-
enberg 2018). MiRNAs participate in gene regulation via 
binding the 3′-untranslated region (3′-UTR) of the target 
genes, which leads to the degradation of mRNA or inhibition 
of translation. Notably, emerging evidences demonstrated 
that miRNA could therapeutically be a promising factor for 
patients with gastric cancer.

Immediately after discovering the decreased expression 
of miR-1179 in gastric cancer patients, Li et al. demonstrated 
that the proliferation of gastric cancer could effectively be 
restrained by over-expressed miR-1179 (Li and Qin 2019). 
MiR-198, which directly targeting and silencing fibroblast 
growth factor receptor 1 (FGFR1), was down-regulated 
in gastric cancer and possessed anti-cancer capacity (Gu 



976 Journal of Cancer Research and Clinical Oncology (2021) 147:973–986

1 3

et al. 2019). Similarly, recovered the expression of down-
expressed miR-623 could inhibit cell proliferation and 
inverse the drug resistance to 5-Fluorouracil in gastric can-
cer (Jiang et al. 2018).

These studies raised the possibility that these miRNAs 
could be promising targets to develop novel therapeutic strat-
egies for the treatment of gastric carcinoma.

Novel research on gene therapy for gastric cancer

Gene therapy is an emerging targeting therapy in gastric 
cancer treatment, as the research goes on, more and more 
gene sites are discovered. Lysine-specific demethylase 1 
(LSD1) is the first histone lysine demethylase discovered, 
which belongs to the family of amine exidases. Zhang et al. 
uncovered that LSD1 was highly expressed in gastric carci-
noma and facilitated gastric cancer cell proliferation, migra-
tion and invasion (Zhang et al. 2019b). Down-regulated the 
expression of LSD1 could suppress the proliferation of gas-
tric cancer cells and blocked VEGF-C/PI3K/AKT signaling 
pathway (Pan et al. 2019). These studies indicated that LSD1 
was a promising candidate for gastric cancer therapy.

On the other hand, Pin1 (the unique proline isomerase) 
was found observably up-expressed in gastric carcinoma, 
which might be related to clinical-pathological parameters 
and poor prognosis. Down-regulation of Pin1 expression 
prevented gastric carcinoma growth and arrested PI3K/AKT 
and Wnt/β-catenin oncogenic pathways (Zhang et al. 2019c).

The level of serine protease PRSS23 protein was dra-
matically increased in gastric cancer tissues, and the lower 
expression of PRSS23 revealed a better prognosis. Knock-
down of PRSS23 (with PRSS23 shRNA) could inhibit the 
gastric cancer development via restraining EIF2 signaling 
(Han et al. 2019). These findings showed that PRSS23 was 
a promising target for the treatment of gastric cancer.

Notably, the high expression level of lncRNA GHET1 
in gastric cancer facilitated cell proliferation, invasion and 
closely related to poor prognosis (Yang et al. 2014). Knock-
down of lncRNA GHET1 inhibited AGS cell proliferation, 
migration and invasion, as well as stimulated cell apoptosis 
(Huang et al. 2017a). These results suggested that lncRNA 
GHET1 could be a potential molecular target for gastric can-
cer therapy.

Drug carriers used in the treatment 
of gastric cancer

Chemotherapy is the major treatment for advanced gastric 
carcinoma, but chemotherapy for gastric carcinoma is facing 
the challenge of maximizing the therapeutic concentrations 
and low systemic distribution. In addition, sensitive immune 
response and physiological mucosal barriers also hinder 

the accumulation of drugs in tumor tissues. To solve these 
challenges, high doses of drugs are needed, which brings 
new problems, such as drug resistance. In view of these, 
researchers have turned to intelligent drug delivery system 
to improve the concentration of drugs in tumor tissue.

Nanocarriers for the treatment of gastric cancer

Nanotechnology, a multidisciplinary research field, provides 
a splendid, paradigm-breaking chance in carcinoma treat-
ment by providing intelligent drug delivery systems (Cuenca 
et al. 2006) and it aims at material which is 1–100 nm scale. 
Since the basis laid down for nanotechnology to deliver 
therapeutic agents over 40 years ago (Strebhardt and Ullrich 
2008), many nanocarriers have emerged. Some nanocarri-
ers had been eliminated due to their fatal shortcomings. For 
example, although viral carrier possessed the property of 
high transfection efficiency, but its clinical use was mark-
edly limited by the genotoxicity, inferior loading efficiency 
and noteworthy immunogenicity (Liu et al. 2009; Tanaka 
et al. 2006). However, others such as nanoparticles (NPs) 
have gained wide spread applications in gastric carcinoma 
treatment because of their unique characteristics in drug 
delivery. For example, drug capsulation within nanoparti-
cles could lengthen plasma circulation time, allow for better 
drug payloads and alleviate off-target toxicity. In addition, 
a single nanoparticle is capable of encapsulate multifarious 
synergistic drugs and its surface can be functionalized with 
various ligands which target carcinoma-related biomarkers 
(Muntimadugu et al. 2017). Moreover, they themselves also 
play a role in fighting against gastric carcinoma.

Up till now, there are various types of nanoparticles that 
commonly used in drug delivery of gastric carcinoma, such 
as liposome, micelle, solid lipid nanoparticles, magnetic 
nanoparticles, chitosan nanoparticles and PLGA nanoparti-
cles, etc. Their advantages and limitations are summarized 
in Table 1.

Liposome described as early as 1965 is the archetypal, 
simplest form of nanocarrier, with a spherical structure in 
which an aqueous core was encapsulated in the lipid layer 
(Bangham et al. 1965). It has been explored widely as a 
delivery system for biologics, gene therapies and chemo-
therapeutic drugs. At present, most scholars will choose 
liposomes with multiple modifications, which called mul-
tifunctional liposome. PTX encapsulating in a novel multi-
functional liposome system, which using ginsenosides as the 
membrane stabilizer and chemotherapy adjuvant, revealed 
splendid tumor growth suppression in a gastric carcinoma 
xenografted model and exceeded most reported PTX for-
mulations, including  Lipusu® and  Abraxane® (Hong et al. 
2019).

Polymeric nanoparticles are promising drug carri-
ers, among which PLGA nanoparticles, biopolymer 



977Journal of Cancer Research and Clinical Oncology (2021) 147:973–986 

1 3

nanoparticles and micelles are widely used. Poly (lactic-co-
glycolic acid) (PLGA) nanoparticle was one of the poly-
meric nanoparticles approved by the FDA/EMA and there 
were some studies about this carrier in gastric carcinoma 
(Fernandes et al. 2019; Liu et al. 2019b). A double-targeting 
hybrid nanoparticle system, consisting of a PLGA particle 
core and a lipoid shell, allowed SN38 agent to be specifically 
delivered towards human solid gastric tumor cells via target-
ing the CD44 and HER2 and thus exhibited extraordinary 
antitumor efficacy (Yang et al. 2016). Coincidentally, PLGA-
based nanoparticles, which were decorated with polyethyl-
ene glycol and engrafted with a human Fab, were safe and 
possessed enhanced circulation time (Kennedy et al. 2018).

Biopolymer nanoparticles are promising drug carriers 
due to their biocompatibility and biodegradability. Chi-
tosan nanoparticles and silk fibroin nanoparticles were two 
representative biopolymer nanoparticles in the treatment 
of gastric carcinoma. Chitosan nanoparticle was one of the 
commonly used gene carriers and was also approved by the 
FDA/EMA for drug delivery. BRAF siRNA encapsulated 
chitosan NPs in BGC823 cells not only remarkably down-
regulated BRAF expression but also inhibited cell invasion 

(Huo 2016). Furthermore, Chitosan NPs can also be used to 
synthesize complex for targeting the delivery of epigallocat-
echin-3-gallate (Lin et al. 2015) as well as prepare chitosan/
heparin nanoparticle for cytolethal distending toxin (CDT) 
targeted delivery to gastric carcinoma (Lai et al. 2014). Silk 
fibroin (SF) based nanoparticle conjugated with cRGDfk 
and Chlorin e6 was fabricated to load 5-FU for both chemo-
therapy and photodynamic therapy (PDT) of gastric carci-
noma, showing active tumor targeting, certified sustained 
release and promising PDT potential in gastric MGC-803 
cells (Mao et al. 2018). Similarly, PTX-SF-NPs (encapsulat-
ing PTX into SF nanoparticles), with 130 nm in diameter, 
could be taken up by SGC-7901 and BGC-823 cell lines 
efficiently and had a significant antitumor effect for gastric 
carcinoma in vivo (Wu et al. 2013).

Micelles have been widely used in drug delivery due 
to their in vivo serum stability, longer circulation time 
and many other advantages. Polymeric micelles incorpo-
rated with KRN5500, a water-insoluble anticarcinogen, 
achieved no vascular damage and liver toxicity compared 
with KRN5500 alone (Matsumura et al. 1999). Meanwhile, 
Micelles can also be modified to improve delivery efficiency. 

Table 1  Nanoparticles that commonly used in drug delivery of gastric carcinoma

Nanoparticle type Advantages Limitations References

PLGA NPs Excellent biocompatibility and biodeg-
radability

Suitable pharmacokinetics and control-
lable degradation rate

Minimal toxicity

Their angiogenic nature may nega-
tively affect anticarcinogen curative 
effect

Poor release of acid-labile drugs

Bonelli et al. (2012); Chereddy et al. 
(2018); Mohammadian et al. (2016)

Silk fibroin NPs Good biocompatibility and biodegra-
dability

Negligible toxicity
Controlled degradation, size, shape and 

drug loading

Rely on passive accumulation Mottaghitalab et al. (2015); Wu et al. 
(2013)

Chitosan NPs Anti-gastric carcinoma activity
good biocompatibility and biodegrada-

bility
Safe and serum stability

Rely on passive accumulation Chen et al. (2017); Qi et al. (2005)

micelle In vivo serum stability
Longer circulation time

Limited drug loading capacity
Drug premature release

Li et al. (2012)

Liposome Good biocompatibility and bioavail-
ability

Good biological distribution
Low drug toxicity

Drug storage and leakage problems
Short shelf life

Bulbake et al. (2017); Das and Huang 
(2019)

Solid lipid nano-
particles (SLNs)

Good biocompatibility
Sustained drug release
Effortlessly encapsulation of lipophilic 

anti-carcinoma drugs

Low encapsulation of
Hydrophilic drugs
Nonuniform drug release

Wang et al. (2014b); Yingchoncharoen 
et al. (2016)

Magnetic NPs Magnetic targeting capacity
Chemohyperthermia ability
Can be modified for custom drug admin-

istration

Unknown security
Burst drug release
Low stability

Chenthamara et al. (2019); Jiang and 
Chan (2012)

Carbon nanotubes High surface area
Biocompatibility
Thermodynamic properties

Limited aqueous solubility
Toxicity

Chenthamara et al. (2019); Taghavi et al. 
(2017)
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Li et al. developed a unique temperature-sensitive immu-
nomicelle in which PLGA played the role of drug loading 
reservoir in the micellar core and anti-Her2 Fabs served 
as targeting ligands conjugated onto the micellar surface. 
This doxorubicin-loaded immunomicelle showed signifi-
cantly enhanced cytotoxicity, evidently increased intratu-
moral accumulation and improved in vivo stability as well 
as promising tumor inhibition in gastric carcinoma bearing 
mice (Li et al. 2012). Moreover, a unique SN-38 (an active 
metabolite of irinotecan)-releasing polymeric micelle, called 
NK012, revealed stronger anticarcinoma efficacy compared 
with irinotecan in orthotopic gastric carcinoma mice mode 
(Koizumi et al. 2006; Nakajima et al. 2008). Despite all the 
progress that has been made, the characteristic of releasing 
drugs earlier on arrival at the target site and the small micel-
lar size still hampered its application in gastric carcinoma 
treatment.

In recent years, magnetic nanoparticles have been widely 
studied in hyperthermia and targeted imaging of gastric car-
cinoma as well due to their special magnetic properties (Li 
et al. 2015a; Ruan et al. 2012). For example, silver nanopar-
ticles which synthesized by using Artemisia turcomanica 
leaf (Mousavi et al. 2018), Dysosma pleiantha rhizome 
(Karuppaiya et al. 2019) or Artemisia marschalliana Spren-
gel (Salehi et al. 2016) extract as well as gold nanoparti-
cles (Wu et al. 2016) can fight against gastric carcinoma. 
Au nanoparticles conjugating Tmab on its surface showed 
stronger antitumor effects against both HER2-postive Tmab-
sensitive (NCI-N87) and HER2-postive Tmab-resistant 
(MKN7) gastric carcinoma cell lines (Kubota et al. 2018). 
In addition, these nanoparticles can also be used for drug 
delivery, such as doxorubicin (Fang et al. 2019; Ma et al. 
2015), 5-fluorouracil (Liu et al. 2014b) and Cardiospermum 
halicacabum (Li et al. 2019). Furthermore, drug-embedded 
magnetoliposomes achieved simultaneous chemotherapy and 
hyperthermia in mice implanted with human MKN45 gastric 
carcinoma cells (Yoshida et al. 2010, 2012).

Additionally, there were many other nanoparticles that 
used in the treatment of gastric carcinoma, including solid 
lipid nanoparticles (Muller et al. 2000), carbon nanotubes 
(Taghavi et al. 2017; Yao et al. 2014). mesoporous silica 
nanoparticles (Fang et al. 2018; Hu et al. 2019),  CeO2 nano-
particles (Li et al. 2014), calcium carbonate nanoparticles 
(He et al. 2008) and cerium oxide nanoparticles (Xiao et al. 
2016). But more research is needed on these nanocarriers.

Exosomes, a novel promising drug delivery system

Exosome which gained its first description in 1981 (Trams 
et al. 1981), has made a dramatic breakthrough in the treat-
ment of gastric cancer in recent years. Exosomes are lipid 
bilayer vesicles that contain a variety of bioactive mole-
cules, such as nucleic acids, lipids, and proteins, ranging in 

size from 30 to 150 nm (Wang et al. 2019). Exosomes orig-
inate from multivesicular bodies (MVBs), which can be 
secreted by almost all eukaryotic cells (Abak et al. 2018; 
Colombo et al. 2014). Exosomes transmit information 
between cells by carrying components such as proteins and 
nucleic acids. The membranes of exosomes are rich in cho-
lesterol, sphingolipids, fittsfceramides, phosphatidylser-
ine, and saturated fatty acids, which play an important role 
in the cellular microenvironment (Colombo et al. 2014). 
Exosomes contain nucleic acids (DNA, mRNA, micro-
RNA), proteins and lipids, etc. (Becker et al. 2016). Com-
pared to the traditional drug carriers, exosomes as a novel 
drug delivery system have many advantages: firstly, they 
have small particle size, strong permeability in the body, 
and are easy to penetrate the biological barrier (Fitts et al. 
2019); secondly, the protein phospholipid bilayer structure 
on the surface of exosomes can efficiently package and 
transport various drugs to recipient cells (Allahverdiyev 
et al. 2018); thirdly, they have good stability in human 
blood (Rufino-Ramos et al. 2017); finally, they are endog-
enous substances, greatly reducing the risk of toxicity and 
immunogenicity (Allahverdiyev et al. 2018). Therefore, 
in recent years, exosomes as drug carriers and therapeu-
tic systems for clinical treatment has become a research 
hotspot. Emerging evidences indicate that exosomes play 
a critical and robust role in the diagnosis and treatment of 
gastric carcinoma.

On account of the excellent stability and distinctive 
expression mode, exosomes are highlighted the probability 
to apply in gastric cancer diagnosis and prognosis as novel 
and promising biomarkers. Some studies had shown exoso-
mal lncRNAs (such as LINC0015, HOTTIP and lncUEGC1) 
was highly expressed in patients with gastric cancer or early 
gastric cancer, with the stable feature and precise diagnosis, 
might be the potential biomarkers for gastric cancer (Li et al. 
2015b; Lin et al. 2018; Zhao et al. 2018). Similarly, it had 
been reported that exosomal miRNAs could also be used as 
biomarkers for the diagnosis and prognosis of gastric can-
cer. The expression of miR-451 up-regulated in exosomes 
derived from tumor tissues was able to predict poor progno-
sis in post-operation gastric cancer patients (Liu et al. 2018). 
Exosomal miR-1246 in the serum of gastric cancer patients 
was typically increased, indicating that miR-1246 might also 
be a promising candidate for gastric cancer diagnosis (Shi 
et al. 2019).

In addition to being biomarkers for the diagnosis and 
prognosis of gastric cancer, the important characteristics of 
exosomes suggested that they can also be used as a deliv-
ery system of biomolecules and chemotherapeutic drugs for 
gastric carcinoma therapy. At present, the most commonly 
used donor cells of exosomes are immature dendritic cells 
(DC), mesenchymal stem cells (MSc) or model cells (such 
as HEK293T cells).
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Some studies reported that exosomes delivering miRNA 
inhibitor were a new approach for the treatment of gastric 
cancer. MiR-374a-5p was overexpressed in gastric cancer 
serum, which predicted poor prognosis. Exosome deliv-
ered miR-374a-5p inhibitor could induce cell apoptosis and 
inhibit chemoresistance of gastric cancer via increasing 
Neurod1 expression (Ji et al. 2019). Macrophage-released 
exosomes were the capacity of delivering miR-21 inhibitor 
into BGC-823 gastric cancer cells, suppressing migration 
and promoting apoptosis (Wang et al. 2015a). Furthermore, 
Exosome-anti-miR-214 could reverse the cisplatin (DDP)-
resistance, preventing migration and inducing apoptosis in 
gastric carcinoma (Wang et al. 2018).

Other studies showed that exosome-mediated delivery of 
protein targeted biomolecules could also be a new strategy 
for gastric cancer therapy. Exosome carrying Gastrokine 1 
(GKN1) could suppress cell proliferation and induce apop-
tosis in both AGS and MKN1 gastric cancer cells. The tumor 
volume and tumor weight of MKN1 xenograft nude mice 
significantly reduced after exosomes carrying GKN1 treated 
(Yoon et al. 2018). Hepatocyte growth factor (HGF) could 
promote the growth of tumor cells and vascular cells. HGF-
siRNA loaded exosomes could inhibit the proliferation and 
migration of gastric cancer cells and vascular cells in vitro, 
and suppressing the tumor growth and angiogaenesis in vivo 
(Zhang et al. 2018).

Targeting peptides for gastric cancer 
therapy

Unfortunately, drug carriers such as nanoparticles did not 
significantly improve the therapeutic effect, only about 1% of 
the nanoparticles accumulated in the tumor (Wilhelm et al. 

2016). Even though the modification of drug carriers with 
targeted ligands can successfully overcome the high inter-
stitial pressure and penetrate into tumor tissues, most of the 
ligands are broad-spectrum ligands and lack specificity for 
gastric carcinoma.

Therefore, the targeting peptides, which can localize 
tumor vessels, target gastric cancer or gastric cancer bio-
markers, and thus improve the efficiency of targeted therapy 
for gastric cancer, have attracted the attention of scientists. 
Phage display library is a potent tool to gain targeting pep-
tides with specific binding properties on the basis of bio-
panning procedure (Smith 1985). During the past two dec-
ades, a series of peptides having affinity to gastric carcinoma 
have been screened, including RGD (Arap et al. 1998), GX1 
(Zhi et al. 2004), GEBP11 (Liang et al. 2006), LSP-5 (Lee 
et al. 2007), iRGD (Sugahara et al. 2009), TCP-1 (Li et al. 
2010), AAD (Zhang et al. 2012), GMBP1 (Kang et al. 2013), 
GP-5 (Wang et al. 2014a) and RP-1 (Zhang et al. 2015). 
These targeting peptides can be used to improve the effi-
ciency of targeted therapy for gastric cancer through various 
ways (Fig. 2).

Targeting peptides modify the drug carrier 
to promote the ability of gastric cancer targeting

For many therapies (such as chemotherapy and gene ther-
apy), efficient carriers can improve the therapeutic effect 
(Fang et al. 2014; Yin et al. 2014). Targeting peptides can 
modify the carriers so that the carriers can better target gas-
tric cancer.

RGD (Arg-Gly-Asp) was a commonly used targeting pep-
tide for several kinds of tumor. Many studies had reported 
that RGD modified drug carriers possessed high affinity to 
gastric cancer. Wei Wang et al. employed RGD to modify 

Fig. 2  The functions of target-
ing peptides in improving the 
therapeutic effect for gastric 
cancer. a Targeting peptides 
can modify the drug carrier. b 
Targeting peptides can directly 
combine with the drugs. c 
Targeting peptides can enhance 
lymphocyte infiltration. d Tar-
geting peptides can bind with 
imaging agent
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Pluronic triblock copolymers which encapsulated with acti-
vating protein 2 family expression plasmids (RGD@P123@
AP-2α). This composite showed targeted and continuous 
inhibitory effect of gastric carcinoma cells growth both 
in vivo and in vitro via increasing AP-2α protein expression 
(Wang et al. 2015b). In addition, anti-EGFR-iRGD, a fusion 
protein constructed and expressed by Huizi Sha et al., con-
sisting of peptide iRGD (internalizing-RGD) as well as an 
EGFR single-domain antibody. It could improve the perme-
ability and efficacy of anticarcinogen on monolayer cells (2 
dimensional), multicellular spheroids (3 dimensional) and 
tumor-bearing mice (Sha et al. 2015b). Further, they used 
this fusion protein to fabricate an erythrocyte membrane-
derived targeting nanosystem (anti-EGFR-iRGD-RBCm-
PTX or PRP), in which RBCm-derived microvesicles 
guaranteed promising carriers and lipid insertion method 
improved the active targeting ability, displaying improved 
gastric carcinoma suppression (Chen et al. 2018).

GX1 (CGNSNPKSC) was another peptide utilized to 
form a targeting delivery system. Immunohistochemistry 
analysis of human tissues and murine revealed its specifical 
ability of binding to human gastric carcinoma endothelial 
cells; moreover, GX1 labeled with 99Tcm, 64Cu and Cy5.5 
was also firmly targeted to gastric carcinoma both in vivo 
and in vitro (Chen et al. 2012a, b; Hui et al. 2008). A GX1-
mediated delivery system (GX1-Ad5-AL) could notably 
restrain the migration and the proliferation of SGC-7901 
cells, as well as the proliferation of HUVEC (Xiong et al. 
2015). In addition to this, the GX1-DGC nanoparticles (GX1 
conjugating with chitosan derivative nanoparticles DGC) 
could deliver hydrophobic docetaxel (DCT) toward gastric 
carcinoma vasculature. GX1-DGC-DCT showed potentiated 
antitumor activity in tumor-bearing models but no obvious 
toxicity to healthy L929 cells (Zhang et al. 2019a).

Moreover, apart from using peptides screened by phage 
display library to directly modify the carrier, there were 
studies that remoulded peptides to better modify the carrier. 
Retro-inverso peptide D-SP5 was remoulded from peptide 
L-SP5. D-SP5-conjugated micelles showed potentiated 
tumor homing and displayed increased tumor cytotoxic effi-
cacy in KB tumor xenografts than L-SP5 micelles (Li et al. 
2013). Thereafter, D-SP5-PEG-PEI was found to be a safe 
and efficient carrier for antitumor gene therapy for gastric 
cancer (Li et al. 2015c).

Targeting peptides directly combine with drugs 
to improve their therapeutic effects

Excluding modifying drug carriers, some targeting peptides 
can also be directly combined with drugs to improve their 
therapeutic effects of gastric carcinoma. They can work in 
the following ways: enhancing drug efficacy, synthesizing 
new agents and directly anti-angiogenesis.

In terms of enhancing drug efficacy, there were many 
studies. Anti-EGFR-iRGD could enhance the curative 
effect of drugs broadly in high-EGFR-expressing gas-
tric carcinoma (Sha et al. 2015a). Zhang et al. also found 
iRGD peptide could help 5-FU to penetrate into tumors 
(Zhang et al. 2017). Besides, a novel peptide named GX1-
RPAKPAR (GXC) was consisting of GX1 and a kind of 
CendR peptide RPARPAR. CendR peptides screened by 
phage display technology guaranteed improved penetration 
of tumor cells via binding to NRP-1, a protein which could 
facilitate proliferation, migration as well as invasion of 
gastric carcinoma cells (Teesalu et al. 2009). Co-adminis-
tration of GXC peptide with Adriamycin could potentiate 
the therapeutic efficacy of anticarcinogen in SGC-7901 
xenograft models (Jin et al. 2018). Analogously, peptide 
TCP-1 which could be used as a targeting probe against 
gastric carcinoma vasculature (Li and Cho 2012) enabled 
normalized gastric carcinoma blood vessels and potenti-
ated antitumor efficiency of 5-FU (Lu et al. 2017). It was 
worth mentioning that peptide GMBP1 could enhance the 
efficacy of drugs in a specific way. GMBP1 could bind to 
GRP78 peptide, a gastric MDR tumor-specific expression 
protein, displaying its capability to reverse gastric carci-
noma cells MDR phenotype and enhance drug efficacy 
(Kang et al. 2013; Wang et al. 2015c).

In addition to this, synthesizing new agents was another 
pattern. A recombinant protein called KLA-iRGD was 
reported as a promising antineoplastic agent for MKN45 
gastric carcinoma (Huang et al. 2017c), in which KLA 
peptide enabled the swelling and permeabilization of mito-
chondrial as well as apoptosis-promoting (Chu et al. 2015; 
Ellerby et al. 1999), and iRGD guaranteed high penetra-
tion. Another recombinant protein called sTRAIL-iRGD 
was consisting of CRGDKGPDC and sTRAIL, in which 
sTRAIL could induce programed cell death in various 
tumors (Liu et al. 2014a). The antineoplastic effect of 
sTRAIL-iRGD in tumor cells (2D), multicellular spheroids 
(3D), and mice was assessed. And its property of restricted 
systemic toxicity and high selectivity was ultimately con-
firmed (Huang et al. 2017b).

As angiogenesis plays an important role in tumorigene-
sis and metastasis, the unique anti-angiogenesis properties 
makes GX1 a promising strategy for gastric cancer treat-
ment (Folkman 1971). GX1 could directly bind to TGM2, 
reduce the GTP-binding activity of TGM2, suppress its 
downstream pathway (NF-κB/HIF1α), and thus inhibit 
angiogenesis (Lei et al. 2018). Compared with rmhTNF-α 
alone, GX1-rmhTNF-α displayed better selectivity, higher 
antineoplastic activity and lower systemic toxicity. This 
demonstrated that GX1 could act as a targeted guider as 
well as an antiangiogenic agent in human gastric cancer’s 
diagnosis and treatment (Chen et al. 2009).
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Targeting peptides enhance lymphocyte infiltration 
to promote antitumor effect

As a novel treatment method, immunotherapy has recently 
led to dramatic clinical responses towards gastric carcinoma 
(Takimoto et al. 2017; Wrzesinski et al. 2010). The effective 
transport of lymphocytes into tumor microenvironment is the 
key to the success of effective anti-tumor immunotherapy.

Studies have shown that targeting peptides can enhance 
the therapeutic effect of gastric carcinoma by enhancing the 
infiltration of lymphocytes. Anti-EGFR-iRGD could effec-
tively potentiate the infiltration of lymphocytes in gastric 
cancer and promote the anti-tumor activity both in vitro and 
in vivo (Zhu et al. 2018). Besides, iRGD modification could 
also boost the infiltration of lymphocytes in tumor site via 
binding to its receptor neuropilin-1 (Ding et al. 2019).

Targeting peptides bind with imaging agent 
to improve the treatment effect

Primarily, targeting peptide could achieve targeted radio-
nuclide therapy via labeling with radionuclides. 131I-2PEG-
(GEBP11)3, a bifid PEGlylated GEBP11 trimer labeled with 
iodine 131, showed higher tumor accumulation and signifi-
cant inhibitory effect on tumor growth. These results sug-
gested that 131I-2PEG-(GEBP11)3 could be a potential radio-
active targeting drug of gastric cancer and 2PEG-(GEBP11)3 
could be an underlying drug delivery carrier (Zhang et al. 
2013).

Furthermore, peptide-based targeting molecular probe 
(CyIC-GX1) was of great use for gastric carcinoma target-
ing and imaging in vivo, which suggested the combination of 
vasculature-targeted peptide with fluorescence imaging tech-
nology might enhance early detection and the anti-angiogen-
esis therapeutic effect for gastric cancer (Xin et al. 2013).

Conclusion

Most of the patients with gastric cancer were in an advanced 
stage when diagnosed, and were mainly treated with drugs. 
However, the current treatment is limited, and the efficacy 
needs to be improved. To solve these challenges, biomedi-
cal researchers have done a lot of work in the research of 
molecularly targeted treatments and the development of drug 
delivery systems in recent years.

Trastuzumab, which targets HER2 receptor, is the most 
effective molecular targeted drug for gastric cancer at pre-
sent and is approved as a first-line treatment for HER2-posi-
tive advanced gastric cancer. However, HER2-positive rate is 
seen about 10–20% in gastric cancer patients. So, more novel 
targeted therapies are still being explored, including the 
search for novel pathways and targets, and the optimization 

of the compatibility of targeted drugs with chemotherapy 
drugs.

In recent decades, drug delivery systems for gastric can-
cer have been widely investigated, including drug carriers 
and targeted peptides to improve the treatment of gastric 
cancer. At present, nanoparticles are commonly used drug 
carriers for gastric cancer, among which Poly (lactic-co-
glycolic acid) (PLGA) nanoparticle is one of the polymeric 
nanoparticles approved by the FDA/EMA. Several peptides 
have been screened for targeting gastric cancer therapy. 
Among them, iRGD and GX1 have outstanding effects, 
because they not only have a high affinity for gastric cancer 
tissue, the former can help to synthesize new drugs, the latter 
can directly inhibit angiogenesis. Because of many incom-
parable advantages than traditional carriers, the develop-
ment of exosomes as a new delivery carrier is promising. In 
particular, engineering exosomes, such as targeted peptides 
modified exosomes, will have great potential in the treatment 
of gastric cancer.
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