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Abstract
Purpose Intra-tumor heterogeneity and high mortality among patients with non-small-cell lung carcinoma (NSCLC) empha-
size the need to identify reliable prognostic markers unique to each subtype.
Methods In this study, univariate cox regression and prognostic index (PI)-based approaches were used to develop models 
for predicting NSCLC patients’ subtype-specific survival.
Results Prognostic analysis of TCGA dataset identified 1334 and 2129 survival-specific genes for LUSC (488 samples) 
and LUAD (497 samples), respectively. Individually, 32 and 271 prognostic genes were found and validated in GSE study 
exclusively for LUSC and LUAD. Nearly, 9–10% of the validated genes in each subtype were already reported in multiple 
studies thus highlighting their importance as prognostic biomarkers. Strong literature evidence against these prognostic 
genes like “ELANE” (LUSC) and “AHSG” (LUAD) instigates further investigation for their therapeutic and diagnostic 
roles in the corresponding cohorts. Prognostic models built on five and four genes were validated for LUSC [HR = 2.10, p 
value = 1.86 × 10−5] and LUAD [HR = 2.70, p value = 3.31 × 10−7], respectively. The model based on the combination of age 
and tumor stage performed well in both NSCLC subtypes, suggesting that despite having distinctive histological features 
and treatment paradigms, some clinical features can be good prognostic predictors in both.
Conclusion This study advocates that investigating the survival-specific biomarkers restricted to respective cohorts can 
advance subtype-specific prognosis, diagnosis, and treatment for NSCLC patients. Prognostic models and markers described 
for each subtype may provide insight into the heterogeneity of disease etiology and help in the development of new thera-
peutic approaches for the treatment of NSCLC patients.

Keywords NSCLC · Survival analysis · Prognostic biomarker · Cox univariate regression · Subtype-specific

Introduction

Disruption in the signaling system that governs cell fate and 
development is the major initiation factor that contributes 
to tumorigenesis (Frost and Amos 2018). Lung cancer is 
the leading cause of cancer-related death worldwide (Siegel 
et al. 2018). It originates from transformed epithelial cells 
that form a heterogeneous undifferentiated malignant neo-
plasm (Molina et al. 2008). Its two major subtypes include 
small cell lung carcinoma (SCLC) and non-small cell lung 
carcinoma (NSCLC). NSCLC accounts for 85–90% of lung 
cancer cases. NSCLC’s two major subtypes include squa-
mous cell carcinoma (LUSC) and lung adenocarcinoma 
(LUAD) (Chang et al. 2015).

The heterogeneous nature of the disease and lack of effec-
tive therapeutic options further contribute to poor prognosis 
and a low 5-year survival rate in NSCLC patients (Stewart 
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et al. 2004). However, the survival rate can be increased to 
50% if patients diagnosed at an early stage (Matsuda et al. 
2012). Currently, the available diagnosis method includes 
X-ray, CT scan, bronchoscopy, sputum cytology, and tissue 
histology. These traditional techniques have some limitations 
such as low sensitivity of X-rays, invasive nature of bron-
choscopy, sputum cytology works only when cancer arises 
in the mid airway, and lack of availability of tissues for his-
tological examination (Midthun 2011; Sheng et al. 2019).

The tumor and normal dataset generated by The Cancer 
Genome Atlas (TCGA) for both NSCLC subtypes has served 
the basis of numerous studies leading to the identification of 
diagnostic, prognostic, and novel therapeutic markers. Sev-
eral genomic signatures have been identified for NSCLC 
subtypes, but these are still of limited use in terms of sig-
nificance, biological relevance, and clinical application. The 
major factor contributing to this is the heterogeneity of the 
disease. Although several studies are in the literature which 
identify the gene signature from the meta-analysis of dif-
ferent cohorts available for lung cancer, but they are also 
suffering from non-reproducibility among cohorts (Tseng 
et al. 2012). One possible explanation could be that dif-
ferent gene signature is merely the separate aspect of the 
same molecular pathways/mechanism that leads to disease 
(Chen et al. 2010). Multiple pan-cancer studies suggest that 
the molecular mechanisms of carcinogenesis exhibit a high 
level of heterogeneity between LUAD and LUSC (Cancer 
Genome Atlas Research Network 2014; Chang et al. 2015; 
TCGA 2012), and hence, they should have separate thera-
peutic strategies. Drugs such as Bevacizumab (Avastin) 
can be used for LUSC patients, but have not tested so for 
LUAD (Sandler et al. 2006). Also, a few therapies proposed 
for LUAD often seem to be ineffective for LUSC patients 
(Rekhtman et al. 2012). Thus, it is important to contradis-
tinguish between the two subtypes in a more specific way to 
design an effective therapeutic approach.

In this study, we have performed an integrative analysis 
by screening for survival-associated genes from TCGA data-
set based on the median value of gene expression for lung 
cancer subtypes. Random forest variable hunting (RF-vh) 
was used for feature selection, and using these features as 
input, we have developed univariate cox regression-based 
prognostic models that can classify the patients in low- and 
high-risk groups within each subtype. Cancer-specific path-
ways and clinical information were further incorporated to 
identify a better risk assessment model for NSCLC patients. 
The significance of the study can be seen in terms that it not 
only captures the tumor heterogeneity by providing NSCLC 
subtype-specific survival-associated genes, but also prior-
itizes significant biological pathways when it comes to risk 
stratification among NSCLC patients. The identified candi-
date genes could serve as a potential discriminatory marker/
target among the subtypes and, thus, may help clinicians and 

researchers in proposing better subtype-specific therapeutics 
for the treatment of NSCLC patients.

Methods

Data acquisition and pre‑processing

In our study, we have gathered RNA_seq expression data 
from TCGA for LUSC (488 samples) and LUAD (497 
samples) using TCGA assembler (Zhu et al. 2014). Only 
samples for which clinical information was available were 
considered here. We started with a few clinical features and 
20,530 genes for each subtype. As done in some previous 
studies (Wang et al. 2018), we first selected the genes having 
an expression in more than 50% of the samples which lead 
to 17,982, and 17,756 gene expression profiles for LUSC 
and LUAD cohorts, respectively. Quantile normalization 
was applied on these cohorts using R code to change the 
genomic expressions to a common scale and to remove the 
technical variation caused by noisy data (He et al. 2019; 
Mandelboum et al. 2019). We downloaded the GEO dataset 
using the accession number GSE42127 having 176 patients 
samples and 19,141 genes for the validation of our results. 
There were 133 and 43 patient samples of LUAD and LUSC 
in GEO dataset, respectively. There were total 16,295 com-
mon genes in GEO and TCGA LUSC datasets, whereas the 
number of common genes was 16,104 for LUAD. Following 
the standard protocol (Shi and Xu 2019), we processed and 
normalized the GEO dataset using the target matrix of the 
TCGA dataset. We mapped the Probe IDs to their corre-
sponding gene symbols using the mapping scheme provided 
in the GEO database.

Prognosis‑associated genomic and clinical feature 
selection

To screen the genes associated with the overall survival 
(OS) in TCGA dataset, we performed cox proportional haz-
ard regression on the two cohorts, i.e., LUSC and LUAD 
using the “Survival” package (V.2.42-6) in R (V.3.4.4, 
The R Foundation). Genes significantly related to the OS 
(p value < 0.05) were selected. The identified prognostic 
genes for each subtype were then classified as bad prognos-
tic markers (BPM), genes that were correlated with poor OS 
of the patient and good prognostic markers (GPM), genes 
that were correlated with better OS of the patient. For each 
dataset, the resulting genes were grouped into three sets as 
BPM, GPM, and combined (GPM + BPM) set. Similar to 
the previous studies done in the literature (Yunhe Liu et al. 
2019a, b; Zhang et al. 2018), we have used the RF-vh with 
100 iterations available in the “randomForestSRC” package 
of R to refine the gene pool. We iteratively scrutinized the 
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minimum possible gene set that can be used to build the 
predictive models so as to further enhance the scalability of 
the gene signature in the clinical setup. We also considered 
ten signaling pathways—cell cycle, HIPPO, MYC, NOTCH, 
NRF2, P53, PI3K-AKT, RAS, TGF-Beta, and WNT along 
with the apoptotic pathway which are likely to be cancer 
drivers (functional contributors) or therapeutic targets 
(Sanchez-Vega et al. 2018). The pathway genes that were 
significantly associated with OS were selected for further 
studies. Six clinical features in TCGA dataset such as age, 
gender, N staging, T staging, organ subdivision, and tumor 
stage were selected to evaluate their relevance with the OS 
of the patients. We have validated our final predictive models 
on the GEO dataset.

Development of models

Univariate cox regression was implemented on the median 
cut-off value (Lathwal et al. 2019) of the identified prognos-
tic gene expression using the ‘survival’ package (V.2.42-6) 
in R (V.3.4.4, The R Foundation). We have also evaluated 
the hazard ratio (HR) to indicate the survival probability for 
each group. We had the cox regression coefficient for each 
prognostic gene which represents the level change in the OS 
based on the unit change in the gene expression, keeping 
other factors constant. Several statistical tests such as log-
rank test and Wald test were carried out for the assessment 
of the model. The Kaplan–Meier plots were also generated 
for the best models to compare the survival curves of high- 
and low-risk groups.

Prognostic index (PI), similar to previous studies (Li et al. 
2018; Wang et al. 2018), was formulated on n number of 
genes as follows:

where α is the regression coefficient for a gene Y, obtained 
using a univariate cox-ph model.

For each set of subtypes, PI at median cut-offs was used 
to classify patients in high- and low-risk groups. PI model 
was built on the resultant gene sets that were obtained after 
the feature selection steps mentioned above. The patient 
samples with PI greater than median (PI) come under high-
risk group and patients with PI less than equal to median (PI) 
were classified under the low-risk group. The corresponding 
statistical metrics such as HR, p value, concordance, and 
standard error were also obtained.

Evaluation metrics

Statistical analysis of the survival models was done using 
various metrics such as HR, log-rank, Wald test, and con-
cordance index. HR predicts the death risk associated with 

PI = �1Y1 + �2Y2 +⋯ + �
n
Y
n
,

the two groups. Log-rank test was used to explain the statis-
tical significance of the survival curves of the two groups. 
The Wald test estimated the significance of explanatory vari-
ables used to calculate HR. The concordance index in terms 
of prediction accuracy (PA) measures the model’s distin-
guishability between the high- and low-risk groups. Lower 
log-rank, p value (< 0.05), and a higher concordance value 
(> 0.5) (Chaudhary et al. 2018; Dyrskjøt et al. 2017) imply a 
better prognostic model. Using the standard approach (Deng 
et al. 2020; Li et al. 2017), we validated our models (gene 
signature and clinical) and prognostic gene expressions onto 
the GEO dataset. We have given the complete workflow of 
the study in Fig. 1.

Results

Survival analysis was performed on each TCGA dataset 
(LUSC and LUAD) to screen the prognostic genes. Select-
ing the median expression value of each gene as the cut-off 
for high- and low-risk groups, the cox univariate regression 
was used to extract 1334 and 2129 genes having some prog-
nostic potential in LUSC and LUAD datasets, respectively. 
HR, p value, regression coefficients, concordance index, 
and standard error were calculated for these genes in each 
dataset and are provided in Supplementary S1 Tables 1 and 
2. Genes were categorized among BPM and GPM sets for 
both subtypes using the criterion explained in the Methods 
section. RF-vh was used for selection of the gene panel to 
build a robust prognostic model for the prediction of the 
survival of patients in LUSC and LUAD. We obtained 26 
genes from 637 BPM genes, 24 genes from 697 GPM genes, 
and 44 genes from combined set of 1334 genes for LUSC 
after applying RF-vh. Similarly, 41 genes from 1153 BPM 
genes, 34 genes from 976 GPM genes, and 89 genes from 
combined set of 2129 genes for LUAD were obtained. We 
have also provided the list of these genes in Supplementary 
S1 Table 3. We have generated the results using different 
machine learning (ML) models and PI-based models, but 
our PI models outperformed in terms of HR and PA, like 
similar studies done in past (Lathwal et al. 2019). However, 
results of our ML models are not shown here due to being 
less effective for this study.

Prognostic index‑based survival model

Prognostic index was used to build the different predictive 
models. PI-based models use the gene expressions and their 
corresponding regression coefficients obtained from univari-
ate cox proportional hazard for input as mentioned in the 
Methods section.

PI was estimated using the same set of genes as men-
tioned above and the results corresponding to each subtype 
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are shown in Table 1. The patients with PI less than equal to 
median (PI) were grouped in low risk and patients with PI 
greater than median (PI) were grouped in high risk. Using 
the gene sets of best models for LUSC (BPM) and LUAD 
(Combined) cohorts, we iteratively searched for a minimal 
subset of genes that can discriminate the patients among 
high- and low-risk groups in the respective cohorts. We 
started with the set of two genes and stopped the incremental 

iteration whenever the gene set performed comparable to 
the existing model. This way, we came up with the gene 
signature based on five (KIF16B, KLK7, LONRF3, OPLAH, 
and RIPK3) and four genes (AHSG, DKK1, MGAT5B, and 
NEMP2) for LUSC [HR = 2.10 and p value = 1.86 × 10–5] 
and LUAD [HR = 2.70 and p value = 3.31 × 10–7], respec-
tively. We have given the Kaplan–Meier plots for the same in 
the Fig. 2. We have also tested the performance of the mod-
els in the counter cohorts and found that model for LUSC 
does not work for LUAD and vice-versa. These results con-
firmed that prognostic models will work dedicatedly in their 
respective cohorts only.

Universal NSCLC model poorly discriminates 
among subtypes

This section focuses on investigating whether a universal 
prognostic model exists for the NSCLC cohort. We found 
that there were no common prognostic genes among each 
set of subtypes obtained after applying RF-vh. Therefore, to 
build a prognostic model that can be used universally across 
the NSCLC patients, we extracted 1381 prognostic genes for 
the NSCLC complete cohort using univariate cox regression, 

Fig. 1  Workflow of the study

Table 1  Statistics obtained for each dataset based on prognostic index 
model

n denotes the number of genes

HR p value PA (%) Std. error

LUSC
 BPM (n = 26) 2.21 1.83 × 10–6 61 0.0225
 GPM (n = 24) 2.20 2.23 × 10–6 59 0.0237
 Combined (n = 44) 2.04 1.50 × 10–5 60 0.0226

LUAD
 BPM (n = 41) 1.85 1.08 × 10–3 60 0.0273
 GPM (n = 34) 1.70 3.78 × 10–3 58 0.0270
 Combined (n = 89) 2.10 9.58 × 10–5 63 0.0260
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out of which 682 were BPM and 699 were GPM genes. We 
found 68 overlapping prognosis-related genes across sub-
types and the NSCLC complete cohort which formed the 
basis of our universal models.

All the information on these gene sets can be found in 
Supplementary S1 Table 4. We have summarized the results 
along with all the statistical details of the model such as 
HR, p value, PA, and the standard error in Table 2. When 
compared to previous subtype-specific prognostic models, 
we found that this model poorly discriminates among the 
subtypes in terms of HR and PA.

Survival analysis of cancer‑specific pathway genes

To further comprehend the differences between the LUSC 
and LUAD, we extracted the gene set of 11 cancer-spe-
cific pathways as explained in Methods section. Prog-
nostic potential of the pathway genes was calculated by 
applying cox univariate regression and all the potential 
genes found in each pathway are listed in Supplementary 
S1 Table 5. These genes were then used in developing 
the different prognostic models. We built models using a 

similar approach as explained in the above sections. The 
goal was to identify the important biological markers for 
risk stratification in NSCLC subtypes which can improve 
the PA with better HR and provide us with few insights 
on heterogeneity at the pathway level. All the details of 
the models corresponding to each pathway can be found 
in Supplementary S1 Table 6. We observed that none of 
the models in each subtype outperformed the previous 
models in terms of HR and PA. Also, the models based 
on the apoptotic pathway genes have shown the good per-
formance with HR greater than 2.0, in both LUSC and 
LUAD. These results further strengthened our hypothesis 
that NSCLC patients should be considered in a more sub-
type-specific way while building reliable diagnostic and 
prognostic strategies.

Risk estimation using clinical features

To investigate the correlation between different clinical fea-
tures and the survival of NSCLC patients, cox univariate 
regression model was implemented. The data were trans-
formed to binary using the criteria mentioned in the strata 
column of Table 3. We have found that none of the clini-
cal features are of much importance in the case of LUSC 
patients except tumor stage.

However, in LUAD samples, tumor and N stage give the 
performance comparable to the best prognostic model so 
far. The result statistics of the models for LUSC and LUAD 
using all relevant clinicopathological features is shown in 
Table 3.

Fig. 2  Kaplan–Meier plots for the top models used in prognostication 
of NSCLC patients in TCGA dataset. a In LUSC subtype, patients 
having PI > median (PI) are at high risk as compared to the patients 
with PI ≤ median (PI) with HR = 2.10 (p value = 1.86 × 10−5) and 

PA = 61%. b In LUAD subtype, patients having PI > median (PI) are 
at high risk than the patients with PI ≤ median (PI) with HR = 2.70 (p 
value = 3.31 × 10−7) and PA = 68%

Table 2  Statistics obtained for each dataset based on PI- and ML-
based model for NSCLC

Cohorts HR p value PA (%) Std. error

LUSC 1.73 7.46 × 10–4 58 0.0240
LUAD 1.82 1.28 × 10–3 58 0.0270
NSCLC Cohort 1.79 1.87 × 10–6 58 0.0180



2748 Journal of Cancer Research and Clinical Oncology (2020) 146:2743–2752

1 3

External validation of the prognostic models

To evaluate the robustness of the final prognostic gene 
signatures and clinical feature-based prognostic models, 
we downloaded the GEO dataset with accession number 
GSE42127. The dataset has been transformed and normal-
ized using the target matrix of the TCGA dataset for both 
LUSC and LUAD. We performed the cox univariate regres-
sion analysis to authenticate the predictive power of our 
gene signatures and the results of which can be found in the 
Table 4. Clearly, the final models for LUSC and LUAD also 
performed well in our validation GEO cohorts.

We have generated the Kaplan–Meier plots for the visual 
representation of comparison between the high- and low-risk 
groups among the LUSC and LUAD cohorts of the valida-
tion dataset in Fig. 3. We can see that our proposed gene 
signature also performed well in the validation sets with 
fairly good predictive power.

We have also tried validating the robustness of our clini-
cal feature-based prognostic models for NSCLC subtypes. 
However, there were only three clinical features (gender, age, 
and tumor Stage) available for the GEO patient’s samples. 

We built and validated the clinical model using these limited 
features in the similar manner as done in Table 4. In vali-
dation set, none of the independent clinical features were 
found to be significantly associated with the overall survival 
of the patients when univariate cox regression analysis was 
performed. However, in both TCGA and GEO studies, age 
and tumor stage are the two features that showed some prog-
nostic potential.

Combination of age and tumor stage works best 
for risk stratification in both NSCLC subtypes

We tried to build a prognostic model using the combination 
of clinical features to come up with a better and simplistic 
model for risk assessment among NSCLC patients. Entries 
corresponding to every clinical feature under consideration 
are categorized as 1,  − 1, and 0 for high risk, low risk, and 
unavailable, respectively. This categorization was done to 
handle the missing clinical data and, thus, ensured fixed-
length vectors of patient samples. Different linear combina-
tions of two or more features were computed to obtain the 
best results.

The sum of different linear combinations was termed as 
“SUM” which was used as the cut-off to stratify patients 
in high- and low-risk groups. Patients with SUM ≤ median 
(SUM) were categorized as high  risk and patients with 
SUM > median (SUM) were listed as low risk groups. We 
evaluated the significance of age and tumor stage in predict-
ing the risk for LUSC and LUAD patients in both testing and 
validation sets. The results corresponding to each subtype 
using a combination of clinical features for TCGA and GEO 
datasets can be found in Table 5. The results signifies that 
age and tumor stage can be good prognostic predictors when 
used in combination for both LUSC and LUAD subtypes, 

Table 3  Statistics of clinical 
features-based risk stratification 
model for NSCLC subtypes

Strata HR p value PA (%) Std error

LUSC (samples)
 Age (488) < 65 vs ≥ 65 1.28 1.70 × 10–1 52 0.0220
 Gender (488) Female vs male 1.06 7.70 × 10–1 51 0.0220
 N staging (482) N0 vs N1, N2, N3 1.32 1.00 × 10–1 51 0.0230
 T staging (488) T1, T2 vs T3, T4 1.48 5.04 × 10–2 53 0.0200
 Tumor stage (484) I, II vs III, IV 1.48 3.50 × 10–2 53 0.0200
 Organ subdivision (459) Left vs right 1.51 6.14 × 10–1 50 0.0250

LUAD (samples)
 Age (497) < 65 vs ≥ 65 1.32 1.38 × 10–1 54 0.0260
 Gender (497) Female vs male 0.94 7.29 × 10–1 49 0.0280
 N staging (485) N0 vs N1, N2, N3 2.62 1.97 × 10–7 63 0.0270
 T staging (494) T1, T2 vs T3, T4 2.39 2.69 × 10–4 57 0.0240
 Tumor stage (489) I, II vs III, IV 2.80 4.84 × 10–8 64 0.0270
 Organ subdivision (483) Left vs right 1.08 6.79 × 10–1 51 0.0280

Table 4  Statistics obtained for PI-based model in TCGA and GEO 
datasets

n Denotes the number of genes

HR p value PA (%) Std. error

LUSC (n = 5)
 TCGA 2.10 1.86 × 10–5 61 0.0215
 GEO 2.53 4.00 × 10–2 60 0.0589

LUAD (n = 4)
 TCGA 2.70 3.31 × 10–7 68 0.0262
 GEO 2.50 4.00 × 10–3 63 0.0339
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despite having very distinctive histological features, onco-
genic origins, and treatment paradigm.

Prognostic biomarker unique to LUSC and LUAD

In the above sections, we have built and validated the vari-
ous prognostic models based on gene signature and clinical 
features for NSCLC subtypes. We have identified 32 and 
271 prognostic biomarkers specific to LUSC and LUAD 
subtype, respectively. These biomarkers were also found to 
be significantly associated with survival of the patients in 
the validation dataset and list of all such genes can be found 
in Supplementary S1 Table 7. We have investigated the rel-
evance of these biomarkers in the other published studies 
and found that around 9–10% of these prognostic biomarkers 
were already reported in the literature (Cheng et al. 2020; 
Liu et al. 2019a, b; Lv and Lei 2020; Ma et al. 2020a, b; 
Relli et al. 2018). This indicates that our marker genes are 
of high importance having in more than one study and needs 

further investigation for their therapeutic potential in a more 
subtype-specific manner. Interestingly, literature evidence 
suggests that one of our identified prognostic gene, UIMC1 
is involved in DNA damage repair mechanism and is in clini-
cal trial (NCT00883480) exclusively for LUSC treatment 
(Yan et al. 2007). However, we could not verify this gene 
from our GEO study. Another study showed the relevance of 
ELANE gene specific to advancement of LUSC, not LUAD 
(Yang et al. 2017). Also, AHSG gene, i.e., used in prognos-
tic model, has already been specifically targeted in a clini-
cal trial having patent number (CA2847188A1) for LUAD 
patients. Using DisGeNET (Piñero et al. 2020), we were 
able to select 12 prognostic genes (ALOX5, HELLS, KPNA2, 
NRAS, RRM2, SFTPC, TK1, TOP2A, TPI1, TYMS, BZW2, 
and SFXN1) that are particularly playing role in the progres-
sion and development of LUAD. All these genes are experi-
mentally validated in several studies and have also shown 
great prognostic potential in both TCGA as well as GEO 
datasets for LUAD patients. These evidences are strongly 
supporting the credibility of our results. We suggest that 
these genes may be further exploited for their therapeutic, 
prognostic, and diagnostic potential, specifically in LUAD.

Therapeutic potential of identified prognostic genes 
specific to subtype

There are several prospective strategies such as gene inser-
tion and silencing, immune modulation, and targeting gene 
expression using inhibitors/activators for the treatment of 
cancer. In our study, each marker gene stratifies patients 
in high- and low-risk groups with significant difference 

Fig. 3  Kaplan–Meier plots for the top models used in prognostica-
tion of NSCLC patients in GEO dataset. a In LUSC subtype, patients 
having PI > median (PI) are at high risk as compared to the patients 
with PI ≤ median (PI) with HR = 2.53 (p value = 4.00 × 10−2) and 

PA = 60%. b In LUAD subtype, patients having PI > median (PI) are 
at high risk than the patients with PI ≤ median (PI) with HR = 2.50 (p 
value = 4.00 × 10−3) and PA = 63%

Table 5  Statistics of combinatorial clinical feature-based prognostic 
model for NSCLC subtypes

HR p value PA (%) Std error

LUSC (clinical features—age, tumor stage)
 TCGA 1.74 1.06 × 10–2 53 0.0173
 GEO 3.90 6.29 × 10–3 60 0.0476

LUAD (clinical features—age, tumor stage)
 TCGA 2.72 2.85 × 10–6 61 0.0265
 GEO 2.40 1.53 × 10–2 56 0.0335
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among the gene expression levels of two cohorts. For exam-
ple, APH1A gene is greatly up regulated in the high-risk 
cohort as compared to low-risk cohort. Thus, strong inhibi-
tors against APH1A gene can be suggested to poor progno-
sis patients for better outcome. We have found 32 and 271 
genes with greater degree of up regulation in poor prognostic 
patients as compared to good prognostic ones in LUSC and 
LUAD, respectively. We have used DGIdb resource (https ://
www.dgidb .org/searc h_inter actio ns) to investigate the thera-
peutic potential of the identified prognostic genes specific 
to each subtype. This database maintains latest information 
of drug–gene interactions identified from the experimental 
studies. We found that 6 out of 32 (LUSC) and 58 out of 271 
(LUAD) identified prognostic genes have inhibitory drugs 
designed against them. We have summarized the details of 
the corresponding drug–gene interactions along with the 
source and PMIDS of the study in the Supplementary S1 
Tables 8 and 9. Data analysis further highlights that the 
identified prognostic genes may be attractive drug targets 
for subtype-specific lung cancer treatment as some of the 
interacting drugs are already in clinical trial against some 
other genes for lung cancer. This emphasizes on the fact that 
already approved drugs may be repurposed for our identified 
marker genes. For example, paclitaxel drug which shows 
interaction with the identified prognostic AURKB gene is 
well-known treatment for lung cancer, Alisertib drug (also 
interacting to AURKB gene) in combination with osimertinib 
is currently in clinical trial for the treatment of EGFR mutant 
lung cancer (NCT04085315). Thus, it is clear that the identi-
fied prognostic genes may hold a great therapeutic potential, 
and can be used for designing strategies based on inhibitors, 
agonist, and antagonists.

Discussion

Genomic and epigenomic alterations within the genome 
favor the tumorigenesis (Kumar et  al. 2019). Several 
genomic alterations occur in cell signaling pathways that 
control cell death, cell division, and cell fate. Despite the 
advancement in lung cancer treatment, the survival rate 
among the patients is very poor (Song et al. 2018). The 
possible reason could be the inability of the drug to relieve 
all patients and the lack of an effective biomarker for the 
identification of lung cancer. Although some statistical 
methods have been developed for the prognosis predic-
tion that are based on a gene-centric approach (Yuan et al. 
2014; Zhao et al. 2015), but they are still of limited use. It 
has also been observed that patients respond differently to 
treatment because of heterogeneity among non-small-cell 
lung cancer molecular subtypes, which makes it necessary 
to capture the heterogeneity for the better management 
of patients. Previous studies exploited the differences in 

genomic alterations among LUSC and LUAD to explain 
the variation in the OS rates of the NSCLC patients. They 
identified SNTG1 and LRRK2 genes to be significantly 
associated with the OS in LUSC and LUAD, respectively 
(Meng et al. 2019). However, we observed that these two 
genes were not associated with OS in both LUSC and 
LUAD at mRNA expression level. These findings provoke 
the need of investigation to understand why a gene with 
some prognostic importance at one biological level fails to 
depict the same at other levels. To fill the gap between the 
different biological molecular mechanisms of the disease 
and to increase the predictive power of a multi-gene signa-
ture that operates in different pathways, we performed an 
integrative study that takes into consideration the disease-
related pathway and gene expression information.

In this study, we have used the RNA_seq expression and 
clinical data of LUSC and LUAD from TCGA and GEO 
for training and validation, respectively. We aim to identify 
survival-associated genes for each subtype by applying 
cox regression and other statistical measures. We devel-
oped different prognostic index-based models to stratify 
the patients in high- and low-risk groups for NSCLC sub-
types. The obtained results were further supported by the 
experimental evidences. We have found 32 and 271 prog-
nostic marker genes, some of which were also validated in 
other published studies for LUSC and LUAD, respectively. 
These genes can be further investigated for therapeutic and 
diagnostic potentials in more subtype-specific interven-
tions. Also, 90% of the identified prognostic biomarkers 
are novel and need further investigation. We showed that 
for the risk stratification of patients in LUAD and LUSC, 
different gene set and pathways come out to be impor-
tant. For the LUSC, apoptosis and p53 pathway genes are 
more important and for LUAD genes involved in apop-
tosis, PI3K-AKT, and WNT pathways are more impor-
tant (Supplementary S1 Tables 5 and 6). We have also 
shown that despite having different oncogenic origins, age 
and tumor stage (in combination) are good predictors for 
both NSCLC subtypes. Our best models outperformed the 
existing prognostic models for NSCLC subtypes in terms 
of HR estimation and significance of prediction (Meng 
et al. 2019). The limitation of the present study is that we 
have considered only the gene expression data and clin-
icopathological features. In the future, we hope to apply 
this approach to the other levels of genomic data such as 
methylation, copy number change, and miRNA data.

The significance of the present study can be seen in 
terms that it can effectively explain the basis of heterogene-
ity among NSCLC subtypes at different levels. Our study 
revealed the subtype-specific prognostic genes, thus pro-
viding little insight into the biology of the disease etiol-
ogy. The identified genes have been poorly investigated and 
thus deserve the attention of clinicians and researchers to 
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propose reliable prognostic as well as therapeutic strategies 
for NSCLC patients in a subtype-specific manner.
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